Selected Areas in Cryptology Cryptanalysis Week 6

Marc Stevens

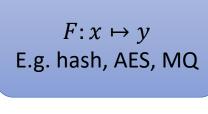
stevens@cwi.nl

https://homepages.cwi.nl/~stevens/mastermath/

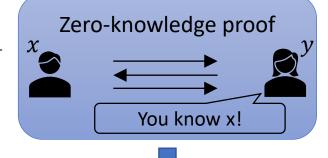
Asymmetric from symmetric cryptography

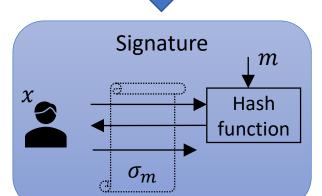
Can we build asymmetric cryptography from symmetric cryptography?

• Benefits:

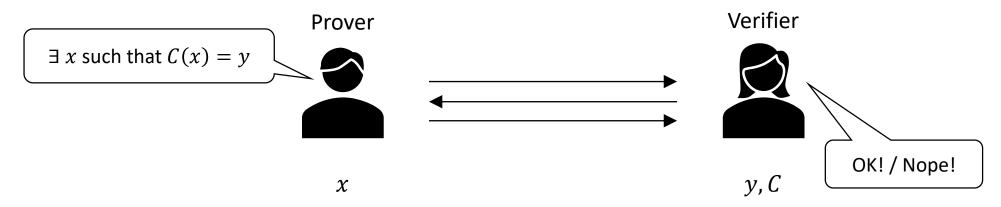

- Symmetric cryptography seems generally to resist quantum cryptanalysis
- No number-theoretic assumptions needed

• This week:

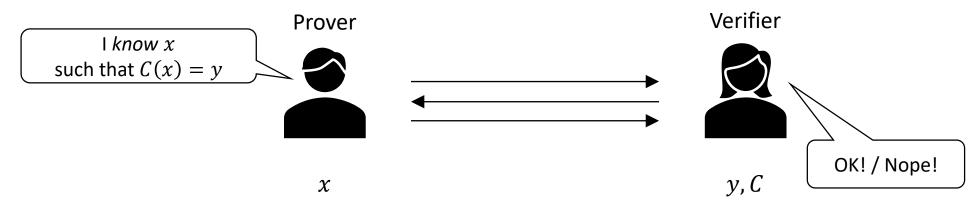

- Hash-based signatures (continued): making schemes more practical
- MPC-in-the-head on symmetric cryptography

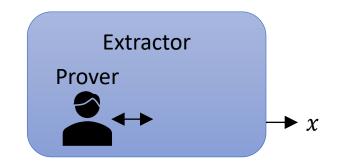

Signatures from Symmetric Crypto

- Consider any one-way function F
 - Hash function: F(x) = f(x)
 - Block cipher: $F(x) = Enc_x(0)$
 - MQ system: $F(\vec{x}) = (p_1(\vec{x}), ..., p_k(\vec{x}))$, where $p_i(\vec{x}) \in F_q[x_1, ..., x_n]$
- Consider a protocol P for a circuit C_{ν} :
 - Protocol to prove a Prover knows a secret witness x such that $C_v(x)=1$
 - Instantiation $C_{\mathcal{V}}(x) = F(x) = ?y$ for secret x and public y = F(x)
 - Protocols can be made non-interactive using hash function call
- Combine F and P into a signature scheme:
 - Add message to hash function call
 - ⇒ binds non-interactive proof to message
 - The non-interactive proof proves signer knows secret x for public key y



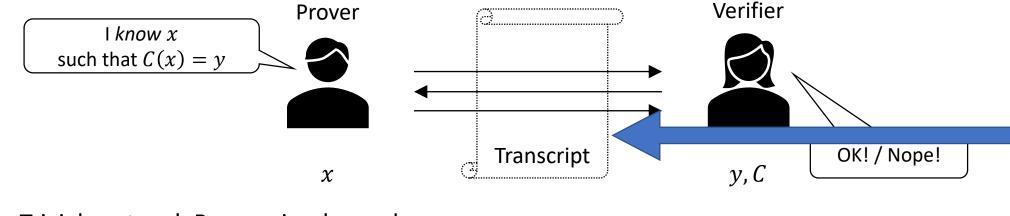
Interactive Proofs


• Multi-round protocol to prove a statement

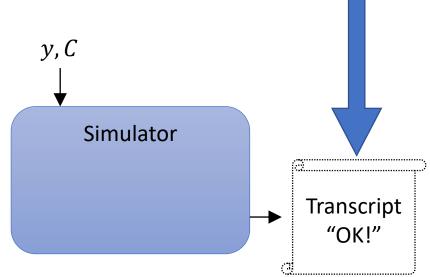

- *C*, *y* define the *statement*, *x* is called the *witness*
- Security Properties
 - Completeness : $Pr[OK! \mid \exists x \ s.t. \ C(x) = y] = 1$
 - Soundness : $\Pr[OK! \mid \neg \exists x \ s.t. \ C(x) = y] \le \epsilon \leftarrow \text{soundness error}$
 - Soundness amplification: repeat protocol n times \Rightarrow soundness error ϵ^n

Interactive Proofs of Knowledge (PoK)

• Multi-round protocol to prove *knowledge*

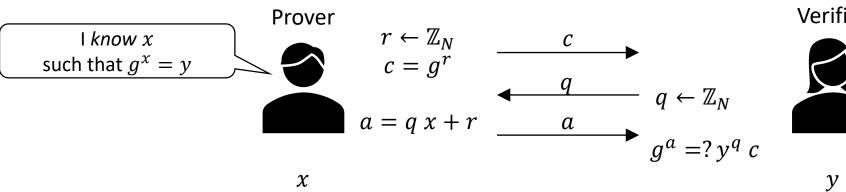


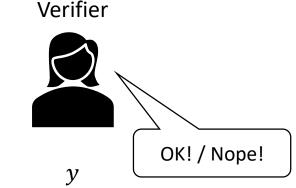
- How to define *knowledge soundness*?
 - Informal: $\Pr[OK! \mid Prover doesn't know x s.t. C(x) = y] \le \epsilon$
- Formally: prove there exists an Extractor such that
 - The Extractor can extract x from any prover P with $Pr[OK!] > \epsilon$
 - Thus for any prover P that doesn't know x we have $Pr[OK!] \le \epsilon$

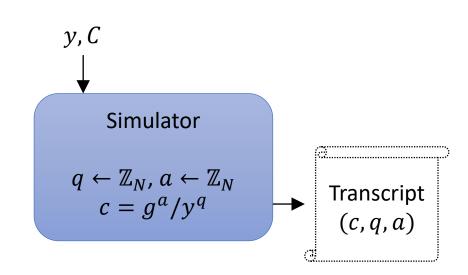


Interactive Zero-Knowledge (ZK) PoK

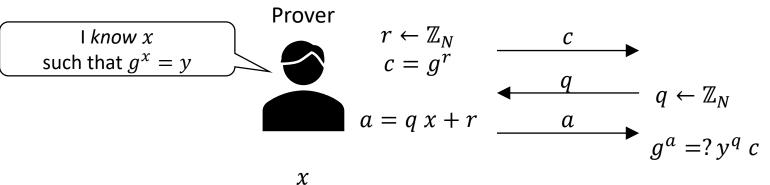
Multi-round protocol to prove knowledge

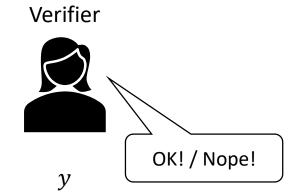


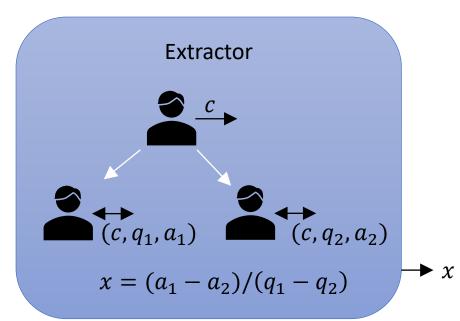

- Trivial protocol: Prover simply sends x
- But we don't want that: x is the secret key!
- We want a Zero Knowledge Interactive Proof of Knowledge:
 - Informally: Verifier learns nothing about x
- Formally: prove there exists a Simulator that
 - Given *y*, *C* produces Transcripts
 - where the Verifier accepts
 - That are indistinguishable from actual valid Transcripts


Example Interactive ZK-PoK

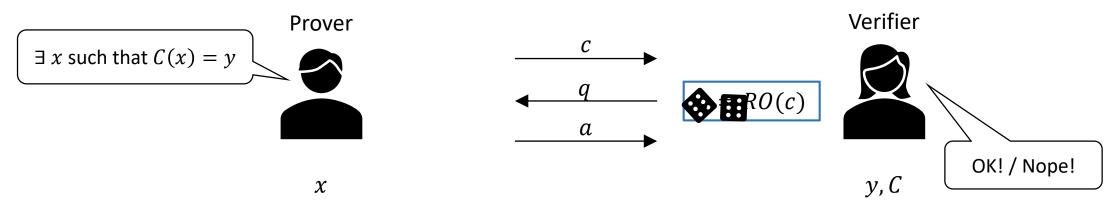
Consider secure Elliptic Curve with generator g of order N




- Zero-Knowledge Simulator:
 - $q \leftarrow \mathbb{Z}_N$, $a \leftarrow \mathbb{Z}_N$
 - Output (c, q, a) with $c = g^a/y^q$
- Note that Transcript distributions match *perfectly*
 - Given q there is a bijection between a and c
 - a uniform random $\Rightarrow c$ uniform random
 - q uniform random over \mathbb{Z}_N
 - $g^a = y^q \cdot c$
- ⇒ *Perfect* zero-knowledge
 - (vs statistical / computational in case of negligible statistical distance / indistinguishability by any PPT A)


Example Interactive ZK-PoK

Consider secure Elliptic Curve with generator g of order N

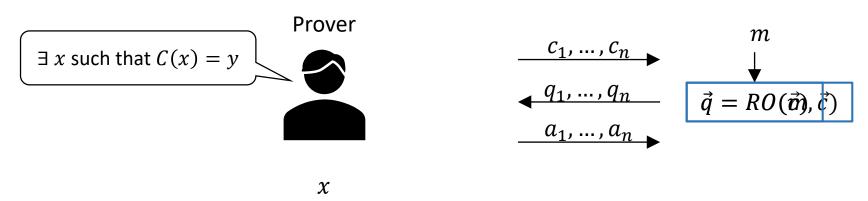


- Knowledge Soundness Extractor:
 - Wait till Prover P outputs c
 - Now *clone* P into P_1 and P_2
 - Send q_1 to P_1 and q_2 to P_2 , with $q_2 \neq q_1$
 - Valid answers a_1 and a_2 give $a_1 a_2 = (q_1 q_2) \cdot x$
 - Called 2-Special Knowledge Soundness
- For any c, if Prover can produce answers to 2 distinct queries then extractor obtains x !
- Note that adversary successful for any y is discrete log oracle!

Fiat-Shamir Transform

Given any multi-round protocol with public-coin verifier

- Public-coin verifier:
 - Messages from the verifier contain only public coin tosses: uniform random bits
- Fiat-Shamir Transform:
 - Replace Verifier with public coin tosses with Random Oracle (instantiated with hash function)
 - Prover can generate transcripts $\pi = (c, q, a)$ without knowing random q before committed to c
 - Non-Interactive proof: π can be made public and verified by any verifier


Fiat-Shamir Soundness Amplification

- Interactive ZK-PoK Soundness Amplification
 - Repeat protocol with soundness error ϵ a total of n times
 - \Rightarrow soundness error $\leq \epsilon^n$
- Non-interactive ZK-PoK Forgery
 - An adversary A can attempt many instances until it finds a proof that verifies properly
 - Generating n proofs $\pi_1, ..., \pi_n$ independently costs only a factor n more !!
- Non-interactive ZK-PoK Soundness Amplification
 - Instead, to amplify soundness, the n protocol executions should be done together
 - The verifier's queries should depend on all commitments: $q_1, \dots, q_n \leftarrow RO(c_1, \dots, c_n)$
 - Now all instances need succeed to generate a valid proof $\pi_{[1,n]}$: soundness error $\leq \epsilon^n$

Signatures from non-interactive ZK-PoK

Consider non-interactive ZK-PoK

- Transformation into signature scheme:
 - Simply add message m to sign to RO input
 - Private key: *x*
 - Public key: y = C(x)
 - Signature = transcript $\pi_{[1,n]}$ which can be compressed:
 - (q_1, \ldots, q_n) can be omitted as they can be computed by both signer & verifier
 - Thus $\sigma = (c_1, ..., c_n, a_1, ..., a_n)$
 - Signing & Verifying is straightforward from non-interactive ZK-PoK
 - Security reduces in ROM to security of non-interactive ZK-PoK & finding x' s.t. C(x') = y

<u>Summary</u>

- Interactive Proofs
- "Proof of Knowledge"
 - Extractor that can extract witness/secret from successful adversary
- "Zero-Knowledge"
 - Simulator that produces transcripts indistinguishable from real transcripts
- Fiat-Shamir Transformation
 - Replace public-coin verifier with Random Oracle
 - Transformation Interactive Proof ⇒ Non-interactive Proof
 - Parallel Soundness Amplification
- Signature scheme
 - Add message to Random Oracle input
 - Signature is compressed transcript