
Selected Areas in Cryptology
Cryptanalysis

Week 7

Marc Stevens

stevens@cwi.nl

https://homepages.cwi.nl/~stevens/mastermath/

mailto:stevens@cwi.nl

Asymmetric from symmetric cryptography
• Can we build asymmetric cryptography from symmetric cryptography?

• Benefits:
• Symmetric cryptography seems generally to resist quantum cryptanalysis

• No number-theoretic assumptions needed

• This week:
• MPC-in-the-head on symmetric cryptography (continued)

Recall: Signatures from Symmetric Crypto
• Consider any one-way function 𝐹

• Hash function: 𝐹 𝑥 = 𝑓 𝑥
• Block cipher: 𝐹 𝑥 = 𝐸𝑛𝑐𝑥(0)

• MQ system: 𝐹 Ԧ𝑥 = 𝑝1 Ԧ𝑥 ,… , 𝑝𝑘 Ԧ𝑥 , where 𝑝𝑖 Ԧ𝑥 ∈ 𝐹𝑞[𝑥1, … , 𝑥𝑛]

• Consider a protocol 𝑃 for a circuit 𝐶𝑦:

• Protocol to prove a Prover knows a secret witness 𝑥 such that 𝐶𝑦 𝑥 = 1

• Instantiation 𝐶𝑦 𝑥 = 𝐹 𝑥 =? 𝑦 for secret 𝑥 and public 𝑦 = 𝐹(𝑥)
• Protocols can be made non-interactive using hash function call

• Combine 𝐹 and 𝑃 into a signature scheme:
• Add message to hash function call
• ⇒ binds non-interactive proof to message
• The non-interactive proof proves signer knows secret 𝑥 for public key 𝑦

• This week: how can we transform any 𝐹 into a zero-knowledge proof?

𝐹: 𝑥 ↦ 𝑦
E.g. hash, AES, MQ

Zero-knowledge proof
𝑥 𝑦

You know x!

Signature

𝑥 Hash
function

𝑚

𝜎𝑚

Secure Multi-Party
Computation (MPC)

Secure Multi-Party Computation (MPC)
• Interactive ZK Proofs can be seen as a special case of MPC

• 𝑛 parties 𝑃1, … , 𝑃𝑛 want to compute 𝐹 on their secret inputs 𝑥1, … , 𝑥𝑛
𝑥1

𝑥2 𝑥3

𝑥4 𝑥5

𝑥1

𝑥3𝑥2

𝑥4 𝑥5

Ԧ𝑎 = 𝐹 Ԧ𝑥

𝑎1

𝑎3

𝑎5𝑎4

𝑎2

Ideal Functionality
A trusted third party (“God”)

that computes 𝐹 for them
without leaking anything else

𝑥1

𝑥2 𝑥3

𝑥4 𝑥5

MPC Protocol
Parties jointly compute 𝐹

and learn its output
without learning anything else

≈
(Universal Composability Framework:

MPC Protocol is secure
if it’s indistinguishable

from Ideal Functionality)

Linear Secret Sharing Schemes (LSSS)
Cryptographic scheme to share a secret 𝑥 ∈ 𝔽 over 𝑛 parties

• Notation : 𝑥 = (𝑥1, … , 𝑥𝑛) 𝑖-th share is also written as 𝑥 𝑖

• Sharing : 𝑥 ← share 𝑥

• Reconstruction : 𝑥 = reconstruct(𝑥) (some shares are allowed to be missing/corrupted)

• ℓ-privacy:

• If and only if: any set of ℓ shares 𝑥𝑖1 , … , 𝑥𝑖ℓ is statistically independent of 𝑥

• 𝑡-reconstruction:

• If and only if: 𝑥 is correctly reconstructed given any subset of 𝑡 correct shares 𝑥𝑖1 , … , 𝑥𝑖𝑡

• Linear:

• Given secret sharings 𝑥 , [𝑦] and public scalar 𝑎 ∈ 𝔽

• Addition : 𝑥 + 𝑦 = (𝑥1 + 𝑦1, … , 𝑥𝑛 + 𝑦𝑛)

• Scalar multiplication : 𝑎 ⋅ 𝑥 = (𝑎 ⋅ 𝑥1, … , 𝑎 ⋅ 𝑥𝑛)

• ⇒ any linear function on secret sharings 𝑠1 , … , [𝑠𝑚] can be computed locally

Linear Secret Sharing Schemes (LSSS)
Example: additive secret sharing: 𝑥 = ∑𝑥𝑖
• Sharing:

• 𝑥1, … , 𝑥𝑛−1 ← 𝔽

• 𝑥𝑛 = 𝑥 − 𝑥1 −⋯− 𝑥𝑛−1
• Note: each individual share 𝑥𝑖 is uniformly distributed over 𝔽

• 𝑛-reconstruction:

• 𝑥 = 𝑥1 + 𝑥2 +⋯+ 𝑥𝑛

• Linear:

• reconstruct 𝑥 + 𝑦 = 𝑥1 + 𝑦1, … , 𝑥𝑛 + 𝑦𝑛 = ∑ 𝑥𝑖 + 𝑦𝑖 = ∑𝑥𝑖 + ∑𝑦𝑖 = 𝑥 + 𝑦

• reconstruct 𝑎 ⋅ 𝑥 = 𝑎 ⋅ 𝑥1, … , 𝑎 ⋅ 𝑥𝑛 = ∑ 𝑎 ⋅ 𝑥𝑖 = 𝑎 ⋅ ∑𝑥𝑖 = 𝑎 ⋅ 𝑥

• (𝑛 − 1)-privacy:

• Any set of (𝑛 − 1) shares (say missing 𝑥𝑖) is statistically independent of 𝑥

• Since we can rewrite sampling order to have 𝑥𝑖 = 𝑥 − ∑𝑗≠𝑖 𝑥𝑗 without changing distribution

Linear Secret Sharing Schemes (LSSS)
Example: (𝑡, 𝑛)-Shamir’s secret sharing over 𝔽

• Select 𝑛 + 1 pair-wise distinct field elements: 𝑒1, … , 𝑒𝑛, 𝑒0 = 0

• Sharing:

• 𝑥 = 𝑃 𝑒1 , … , 𝑃 𝑒𝑛 for randomly sampled 𝑃(𝑋) ← 𝔽[𝑋] with 𝑃 0 = 𝑥 and deg 𝑃 ≤ 𝑡

• (𝑡 + 1)-Reconstruction using Interpolation Theorem:

• 𝑃(𝑋) = interpolate 𝑒𝑖1 , 𝑥𝑖1 , … , 𝑒𝑖𝑡+1 , 𝑥𝑖𝑡+1 for any subset of 𝑡 + 1 shares

• 𝑥 = 𝑃(0)

• Linearity follows linearity of polynomials:

• A linear combination of share polynomials 𝑎 𝑃1 𝑋 + 𝑏 𝑃2(𝑋) still has degree ≤ 𝑡

• Evaluations are also linear: 𝑎 𝑃1 𝑒 + 𝑏 𝑃2 𝑒 = 𝑎 ⋅ 𝑃1 𝑒 + 𝑏 ⋅ 𝑃2 𝑒

• 𝑡-privacy follows from using (0, 𝑥′) as (𝑡 + 1)-th interpolation point:

• Given any 𝑡 shares, obtain bijection: 𝑥′ ↔ 𝑃′(𝑋) with deg 𝑃′ ≤ 𝑡

• Each value for 𝑃′(𝑋) has the same probability, and thus so does each value for 𝑥′

Multiplying Shares
• Any public linear function on secret shared values can be computed locally

using linearity of secret sharing scheme

• Can we also do multiplications of secret shared values?
I.e. obtain [𝑥 ⋅ 𝑦] from [𝑥] and [𝑦].

• Assume we have a Beaver-Triple Oracle 𝐵𝑇𝑂

• I.e., that provides random sharings 𝑎 , 𝑏 , [𝑐 = 𝑎 ⋅ 𝑏] for uniform random 𝑎, 𝑏

• There are various protocols to achieve this. Recent work: Correlated Pseudorandom Generators!

• MPC Protocol to compute [𝑥 ⋅ 𝑦]:
1. Query 𝑎 , 𝑏 , 𝑐 = 𝑎 ⋅ 𝑏 ← 𝐵𝑇𝑂

2. Compute 𝛼 = [𝑥 + 𝑎] and 𝛽 = [𝑦 + 𝑏] locally

3. Broadcast shares of 𝛼 , [𝛽] and reconstruct 𝛼, 𝛽 publicly

4. Compute 𝑥 ⋅ 𝑦 = 𝛼 ⋅ 𝛽 − 𝛽 ⋅ 𝑎 − 𝛼 ⋅ 𝑏 + [𝑐] locally

• Indeed 𝑥 + 𝑎 𝑦 + 𝑏 − 𝑦 + 𝑏 𝑎 − 𝑥 + 𝑎 𝑏 + 𝑎𝑏 = 𝑥𝑦 + 𝑎𝑦 + 𝑏𝑥 + 𝑎𝑏 − 𝑦𝑎 − 𝑏𝑎 − 𝑥𝑏 − 𝑎𝑏 + 𝑎𝑏

• Note that as 𝑎, 𝑏 are uniform random, 𝛼, 𝛽 are as well, thus do no leak information about 𝑥, 𝑦

Basic MPC Protocol
• Given 𝑛 semihonest parties 𝑃1, … , 𝑃𝑛 with secret inputs 𝑥1, … , 𝑥𝑛 ∈ 𝔽

• Given Circuit 𝐶 of additions and multiplications in 𝔽 that implements 𝐹

• MPC Protocol for 𝐶
1. Each party 𝑃𝑖 secret shares its secret input as [𝑥𝑖]

2. Evaluate circuit 𝐶

• Every addition gate of 𝐶 can be computed locally

• Every multiplication gate of 𝐶 with multiplication protocol using BeaverTriple Oracle (BTO)

• (Note many multiplication gates can be computed in parallel)

3. Results in secret shares of 𝑦𝑖 for (𝑦1, … , 𝑦𝑚) = 𝐶(𝑥1, … , 𝑥𝑛)

4. Broadcast all shares of 𝑦𝑖 and reconstruct output 𝑦𝑖

• Correctness is straightforward

• Assuming BTO is correct & all parties correctly follow the protocol

• Privacy of secret inputs & gate outputs: guaranteed by secret sharing & BTO

• ℓ-privacy allows up to ℓ colluding semihonest parties
(which correctly follow the protocol, but try to learn more information together)

• Various techniques to protect against actively malicious parties (won’t cover here)

MPC-in-the-head

ZK-PoK for 3-Coloring
• A nice simple example towards MPC-in-the-Head:

• 3-Coloring for a graph 𝐺

• Each node is colored red, green or blue

• Two adjacent nodes must have different color

• Determining if a graph 𝐺 admits a 3-Coloring is NP-Hard

• A ZK-PoK to prove Prover knows a 3-Coloring for a graph 𝐺
1. Prover randomly permutes colors on solution

2. Prover sends a commitment for the coloring of each node

3. Verifier randomly selects 2 neighboring nodes

4. Prover opens commitments for those 2 nodes

5. Verifier checks opening and that nodes have different color

Prover Verifier

Node 𝑎, 𝑏

𝑎

𝑏

Opening for nodes 𝑎, 𝑏

≠

OK!

ZK-PoK for 3-Coloring
• Zero-knowledge: Simulator transcript generation

• Can “cheat” by selecting 𝑎, 𝑏 randomly before commitments

• One can show transcript output distribution is statistically identical to valid transcripts (in the ROM)

• Special Knowledge Soundness: Extractor
• Chooses 2 fixed neighbours 𝑎, 𝑏: note that coloring of 𝑎, 𝑏 fixes prover’s color permutation on solution

• After commitment, clone Prover to obtain related openings for 2 times 2 nodes: 𝑎, 𝑏, 𝑖, 𝑗

• ⇒ obtains prover’s solution for 𝑖, 𝑗 under alternate fixed 3-coloring scheme (𝑎-color, 𝑏-color, not-𝑎-𝑏-color)

• Repeat until entire solution is recovered

• Soundness error: invalid solution ⇒ at least 1 out of all 𝑁 pairs is wrong ⇒ Pr "OK" ≤ 1 − 1/𝑁

Prover Verifier

Node 𝑎, 𝑏

𝑎

𝑏

Opening for nodes 𝑎, 𝑏

≠

OK!

ZK-PoK for 3-Coloring
• Take-away concept

• There is no 3-coloring computation in the interactive proof

• Prover generates random ‘local’ views on solution & sends commitment

• Verifier is allowed to verify a random view which verifies solution ‘locally’

• How to do this for arbitrary computations?

Prover Verifier

Node 𝑎, 𝑏

𝑎

𝑏

Opening for nodes 𝑎, 𝑏

≠

OK!

MPC-in-the-Head

𝑥

Prover Verifier

OK! / Nope!

𝑥 , 𝐶

𝐶 𝑥

𝑥1

𝑥2 𝑥3

𝑥4 𝑥5

𝑦, 𝐶

All broadcast messages
+ Commitment to views

Parties 𝑎, 𝑏

Opening for views of parties 𝑎, 𝑏 𝑎 𝑏

𝐶 𝑥 =?𝑦 &
Are views 𝑎, 𝑏
honest &
consistent?

𝑦, 𝐶

• Generic ZK-PoK for knowledge of a computation, say 𝐶 𝑥
1. Prover simulates MPC protocol run on secret shared 𝑥

2. Prover generates local views for each party: all inputs/outputs & all messages to/from party

3. Prover sends all broadcast messages and the commitment for each view

4. Verifier randomly selects 2 parties 𝑎, 𝑏

5. Prover opens views for parties 𝑎, 𝑏

6. Verifier verifies MPC output 𝐶 𝑥 =? 𝑦 and local views of 𝑎, 𝑏 for correctness,
i.e., that parties 𝑎, 𝑏 acted honestly and have consistent views

MPC-in-the-Head
• Zero-knowledge: follows from definition of MPC security

• Recall: LSSS with ℓ-privacy ⇒ any subset of ℓ shares of 𝑥 is statistically independent of 𝑥

• Special Knowledge Soundness:

• Reconstruction of 𝑥 possible by recovering sufficiently many related views through cloning of Prover

• Soundness error:

• Invalid solution ⇒≥ 1 party dishonest, or inconsistency between views of ≥ 1 pair of parties

• When opening ℓ views: Pr "OK" bad solution] ≤ 1 − ℓ
2
/ 𝑛

2

𝑥

Prover

𝑥 , 𝐶

𝐶 𝑥

𝑥1

𝑥2 𝑥3

𝑥4 𝑥5

𝑦, 𝐶

𝑎 𝑏

Verifier

OK! / Nope!

𝐶 𝑥 =?𝑦 &
Are views 𝑎, 𝑏
honest &
consistent?

𝑦, 𝐶

All broadcast messages
+ Commitment to views

Parties 𝑎, 𝑏

Opening for views of parties 𝑎, 𝑏

MPC-in-the-Head
• Prover simulates 𝑛 parties running a MPC protocol

• For any circuit 𝐶 of addition & multiplication gates over 𝔽

• E.g. AES blockcipher over 𝔽28

• All linear operations, except S-Box

• Note AES S-Box is defined using multiplicative inverse

• In MPC implemented as [𝑠] = [𝑟]254 using square-and-multiply

• But for MPC-in-the-Head we can do better using the fact that 𝑟 ⋅ [𝑠] = 1!

𝑥

Prover

𝑥 , 𝐶

𝐶 𝑥

𝑥1

𝑥2 𝑥3

𝑥4 𝑥5

𝐶

MPC-in-the-Head
• Prover simulates 𝑛 parties running a MPC protocol

• Number of rounds of parallel multiplications depends on multiplication-depth of 𝐶

• Improvement: Prover knows evaluation of 𝐶(𝑥)
• Prover can provide sharings of all multiplication gates in 𝐶(𝑥): 𝑟𝑖 , 𝑠𝑖 , [𝑡𝑖 = 𝑟𝑖 ⋅ 𝑠𝑖]

• MPC computation becomes entirely linear!

• But need to verify correctness of 𝑟𝑖 , 𝑠𝑖 , [𝑡𝑖] to verify correctness of 𝐶(𝑥)!

• Moreover! Verifying inverse [𝑠𝑖] = [𝑟𝑖
−1] is simply checking 1 product that 𝑟𝑖 ⋅ 𝑠𝑖 = 𝑡𝑖 = 1

{ 𝑟𝑖 , 𝑠𝑖 , 𝑡𝑖 }

{ 𝑡𝑖 =? 𝑟𝑖 ⋅ 𝑠𝑖 }𝑥

Prover

𝑥 , 𝐶

𝐶 𝑥

𝑥1

𝑥2 𝑥3

𝑥4 𝑥5

𝐶

Multiplication Verification Protocol
• Prover wants to prove that 𝑟 ⋅ 𝑠 = 𝑡 for secret shares 𝑟 , 𝑠 , [𝑡] to Verifier

• MPC-in-the-Head Protocol with inputs from Prover and Verifier:

1. Prover shares random BeaverTriple 𝑎 , 𝑏 , [𝑐] to the 𝑛 parties

2. Verifier sends randomly selected scalar 𝜌 ∈ 𝔽\{0}

3. Parties compute 𝛼 = 𝜌 𝑟 + 𝑎 , 𝛽 = 𝑠 + [𝑏]

4. Parties broadcast shares & reconstruct 𝛼, β

5. Parties compute 𝑣 = 𝜌 𝑡 − 𝑐 + 𝛼 𝑏 + 𝛽 𝑎 − 𝛼𝛽

6. Parties broadcast shares & reconstruct 𝑣

7. Verifier checks 𝑣 = 0

• Note that if MPC protocol was simulated correctly then
𝑣 = 𝜌𝑡 − 𝑐 + 𝜌𝑟𝑏 + 𝑎𝑏 + 𝑠𝑎 + 𝑏𝑎 − 𝜌𝑟𝑠 + 𝜌𝑟𝑏 + 𝑎𝑠 + 𝑎𝑏
= 𝜌 𝑡 − 𝑟𝑠 + (𝑏𝑎 − 𝑐)

• If 𝑟 ⋅ 𝑠 = 𝑡 and 𝑎 ⋅ 𝑏 = 𝑐 then 𝑣 = 0

• If exactly 1 inequality 𝑟 ⋅ 𝑠 ≠ 𝑡 OR 𝑎 ⋅ 𝑏 ≠ 𝑐 then 𝑣 ≠ 0

• If 𝑟 ⋅ 𝑠 ≠ 𝑡 and 𝑎 ⋅ 𝑏 ≠ 𝑐 then Pr 𝑣 = 0 = Pr[𝜌 = 𝑡 − 𝑟𝑠 −1 𝑐 − 𝑎𝑏] = 1/ 𝔽∗

• Note that this omits the necessary steps to verify the MPC protocol was simulated correctly
(i.e., P: commitments to views, V: random view selection, P: opening of selected views, V: check)

MPC-in-the-Head Signature Scheme
• Bringing all components together:

• Circuit 𝐶(⋅) implementing one-way function 𝐹(⋅)

• Prover knows pre-image 𝑥 for 𝑦 = 𝐹(𝑥)

• Prover simulates MPC protocol for 𝑛 parties

• Prover shares 𝑥 and the outputs 𝑡𝑖 of all multiplicative gates (𝑟𝑖 , 𝑠𝑖 , 𝑡𝑖 = 𝑟𝑖 ⋅ 𝑠𝑖) in 𝐶(𝑥)

• MPC Parties compute all 𝑟𝑖 , [𝑠𝑖] locally (fully linear in inputs [𝑥] and all [𝑡𝑖])

• Run multiplication verification protocol for all 𝑟𝑖 , 𝑠𝑖 , [𝑡𝑖] in parallel

• Prover proves simulated MPC protocol is correct

• Using commitments for each party’s view, and opening a random selection of views

• Fiat-Shamir

• Verifier’s messages are generated by Random Oracle

• Transcript of messages between Prover & Verifier is non-interactive ZK-PoK

• Signature scheme

• 𝑝𝑘 and 𝑚 are also input to Random Oracle ⇒ non-interactive ZK-PoK bound to 𝑝𝑘 &𝑚

• Random Oracle is replaced by cryptographic hash function

• Parallel Soundness amplification (multiple MPC simulations in parallel), but omitting in next slides

MPC-in-the-Head Signature Scheme
• Sign(𝑚):

1. Generate random sharings [𝑥], { 𝑡𝑖 } and random BeaverTriples 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 for 𝑛 parties

2. Compute [𝑦], 𝑟𝑖 , { 𝑠𝑖 } as linear combinations of 𝑥 , { 𝑡𝑖 }

3. Generate commitments of the view of each party 𝑝 = 1,… , 𝑛:

• 𝑐𝑝
1
, 𝑜𝑝

1
← Commit 𝑥 𝑝, 𝑟𝑖 𝑝, 𝑠𝑖 𝑝, 𝑡𝑖 𝑝, 𝑎𝑖 𝑝, 𝑏𝑖 𝑝, 𝑐𝑖 𝑝 , 𝑦 𝑝

4. Query random scalars: 𝜌𝑖 ← RO 𝑝𝑘,𝑚, 𝑐𝑝
1

5. Linearly compute: 𝛼𝑖 = 𝜌𝑖 𝑟𝑖 + 𝑎𝑖 , { 𝛽𝑖 = 𝑠𝑖 + 𝑏𝑖 }

6. “Broadcast” all 𝛼𝑖 and [𝛽𝑖] shares and compute 𝛼𝑖 , {𝛽𝑖}

7. Linearly compute: 𝑣𝑖 = 𝜌𝑖 𝑡𝑖 − 𝑐𝑖 + 𝛼𝑖 𝑏𝑖 + 𝛽𝑖 𝑎𝑖 − 𝛼𝑖𝛽𝑖
8. “Broadcast” all [𝑣𝑖] shares and compute {𝑣𝑖}

9. Generate commitments of the view of each party 𝑝 = 1,… , 𝑛:

• 𝑐𝑝
2
, 𝑜𝑝

2
← Commit 𝑐𝑝

1
, 𝜌𝑖 , 𝛼𝑖 𝑝, 𝛽𝑖 𝑝, 𝑣𝑖 𝑝

10. Query to-open views: 𝑢, 𝑣 ← RO 𝑝𝑘,𝑚, 𝑐𝑝
2

11. “Broadcast” all [𝑦] shares and compute 𝑦

12. 𝜎𝑚 = 𝑐𝑝
1

, 𝑐𝑝
2

, 𝛼𝑖 𝑝 , 𝛽𝑖 𝑝 , 𝑣𝑖 𝑝 , 𝑦 𝑝 , 𝑜𝑢
1
, 𝑜𝑢

2
, 𝑜𝑣

1
, 𝑜𝑣

2

Parallel
Multiplication
Verification
Protocol

Commit to views
Randomly select
to-open views

All commitments
+ all broadcasts
+ view openings

MPC-in-the-Head Signature Scheme
• Verify(𝑝𝑘,𝑚, 𝜎):

1. Let 𝜎 = 𝑐𝑝
1

, 𝑐𝑝
2

, 𝛼𝑖 𝑝 , 𝛽𝑖 𝑝 , 𝑣𝑖 𝑝 , 𝑦 𝑝 , 𝑜𝑢
1
, 𝑜𝑢

2
, 𝑜𝑣

1
, 𝑜𝑣

2

2. Query random scalars: 𝜌𝑖 ← RO 𝑝𝑘,𝑚, 𝑐𝑝
1

3. Query to-open views: 𝑢′, 𝑣′ ← RO 𝑝𝑘,𝑚, 𝑐𝑝
2

4. Reconstruct broadcasts: 𝛼𝑖 , 𝛽𝑖 , 𝑣𝑖 , 𝑦

5. Check if 𝑦 is correct: 𝑦 =? 𝑝𝑘

6. Check if all multiplication gates are correct: all 𝑣𝑖 =?0

7. Check MPC Simulation was correct:

1. Verify openings 𝑜𝑢
1
, 𝑜𝑢

2
, 𝑜𝑣

1
, 𝑜𝑣

2
to commitments 𝑐

𝑢′
1
, 𝑐
𝑢′
2
, 𝑐
𝑣′
1
, 𝑐
𝑣′
2

belonging to parties 𝑢′, 𝑣’

2. Verify view of each party 𝑝 ∈ {𝑢′, 𝑣′}:

1. Extract view 𝑥 𝑝, 𝑟𝑖 𝑝, 𝑠𝑖 𝑝, 𝑡𝑖 𝑝, 𝑎𝑖 𝑝, 𝑏𝑖 𝑝, 𝑐𝑖 𝑝 , 𝑦 𝑝 from openings

2. Recompute shares 𝑦 𝑝, 𝑟𝑖 𝑝 , 𝑠𝑖 𝑝 , 𝛼𝑖 𝑝 , 𝛽𝑖 𝑝 , 𝑣𝑖 𝑝 linearly as in signature algorithm

3. Check consistency of recomputed shares with view-opening shares / broadcasted shares

MPC-in-the-Head schemes
• 2017 NIST PQC competition (1 out of 82 submissions):

• Picnic: LowMC blockcipher (didn’t make it beyond round 3)

• 2023 NIST PQC “on-ramp” signature competition (9 out of 40):
• 1st Round: 9 out of 40

• FAEST : AES
• AIMer : AIM tweakable one-way function
• Biscuit : MQ
• MQOM : MQ
• MIRA : MinRank
• MiRitH : MinRank
• PERK : Permuted Kernel Problem
• RYDE : Syndrome Decoding
• SDitH : Syndrome Decoding

• 2nd Round: 6 out of 14
• Merge: MIRA & MiRitH ⇒ Mirath
• FAEST, MQOM, PERK, RYDE, SDitH

• For example: FAEST (with many optimizations not covered here!)
• pk,sk: 32B, sig: 4.5KiB

Summary
• MPC

• Linear Secret Sharing Schemes

• Multiplication Protocol using BeaverTriples

• Basic MPC protocol

• MPC-in-the-Head
• Paradigm of committing to random views of local computations & open selection

• ZK-PoK for any Circuit evaluation 𝐶(𝑥) on secret 𝑥

• Share all multiplication gates → Multiplication Verification Protocol

• Basic MPC-in-the-Head signature scheme description

