Selected Areas in Cryptology
Cryptanalysis
Week 7

Marc Stevens

stevens@cwi.nl

https://homepages.cwi.nl/~stevens/mastermath/

mailto:stevens@cwi.nl

Asymmetric from symmetric cryptography

e Can we build asymmetric cryptography from symmetric cryptography?

* Benefits:
* Symmetric cryptography seems generally to resist quantum cryptanalysis
* No number-theoretic assumptions needed

* This week:
 MPC-in-the-head on symmetric cryptography (continued)

Recall: Signatures from Symmetric Crypto

Consider any one-way function F
 Hash function: F(x) = f(x)
* Block cipher: F(x) = Enc,(0)
« MQsystem: F(X) = (p, (%), ...,pk(f)), where p;(X) € F;[xq, ..., xp,]

Consider a protocol P for a circuit C,,:
* Protocol to prove a Prover knows a secret witness x such that Cy(x) =1
* Instantiation C,(x) = F(x) =?y forsecret x and publicy = F(x)
* Protocols can be made non-interactive using hash function call

Combine F and P into a signature scheme:
* Add message to hash function call
* = binds non-interactive proof to message
* The non-interactive proof proves signer knows secret x for public key y

This week: how can we transform any F into a zero-knowledge proof?

Fix—y
E.g. hash, AES, MQ

4

Zero-knowledge proof

y
)
2
[You know x!] /

D
/ Signature \
¢m
B S

x > Hash

@ > functi
ah S
\\ B e /

/

X

/

|

Secure Multi-Party
Computation (MPC)

Secure Multi-Party Computation (MPC)

* Interactive ZK Proofs can be seen as a special case of MPC

* n parties Py, ..., B, want to compute F on their secret inputs x4, ..., X,

X1 X1
@ ®
dh dh

4,) \\

a; as ~y \
a
%4 / / 4 as\:\xs (Universal Composability Framework:

MPC Protocol is secure

. @
> A

Is
|
!c)
i’l,
';

A~ A
4 e e
‘ a if it’s indistinguishable
X4 Xs from Ideal Functionality) x4 x5
Ideal Functionality MPC Protocol
A trusted third party (“God”) Parties jointly compute F
that computes F for them and learn its output

without leaking anything else without learning anything else

Linear Secret Sharing Schemes (LSSS)

Cryptographic scheme to share a secret x € IF over n parties

* Notation x] = (xq, e, xp) i-th share is also written as [x];
* Sharing . |x] « share(x)
* Reconstruction: x = reconstruct([x]) (some shares are allowed to be missing/corrupted)
e {-privacy:
* Ifand only if: any set of £ shares x;_, ..., x;, is statistically independent of x

* t-reconstruction:

* If and only if: x is correctly reconstructed given any subset of t correct shares x;_, ..., X;,

* Linear:
* Given secret sharings [x], [y] and public scalar a € F
* Addition x+ vyl =0+ vy, e X0 +)
e Scalar multiplication Ja-x]=(a-xq,...,a x,)

* = any linear function on secret sharings [s4], ..., [S;,] can be computed locally

Linear Secret Sharing Schemes (LSSS)

Example: additive secret sharing: x =) x;

e Sharing:
® Xq, e, Xp_1 < [F
[xn:x—xl—...—xn_l

* Note: each individual share x; is uniformly distributed over [F

* n-reconstruction:
* X=Xx1+x+ -+ x,

* Linear:
» reconstruct([x + y] = (%1 + Y1, X +¥0)) = X +y) = Cx) + Cy) =x +y
. reconstruct([a x]=(a-xq,..,a- xn)) =Y(a-x)=a-Ox;)=a-x

* (n—1)-privacy:
* Anyset of (n — 1) shares (say missing x;) is statistically independent of x
* Since we can rewrite sampling order to have x; = x — Zj;ti xj without changing distribution

Linear Secret Sharing Schemes (LSSS)

Example: (t, n)-Shamir’s secret sharing over

Select n + 1 pair-wise distinct field elements: e4, ..., e, €9 = 0
Sharing:
¢ [x] = (P(el), ...,P(en)) for randomly sampled P(X) « F[X] with P(0) = x and deg(P) <t
(t + 1)-Reconstruction using Interpolation Theorem:
 P(X) = interpolate ((eil,xil), e (el-tﬂ,xitﬂ)) for any subset of (t + 1) shares
« x=P(0)
Linearity follows linearity of polynomials:
* Alinear combination of share polynomials a P;(X) + b P,(X) still has degree < t

e Evaluations are also linear: (a P,(e)+ b Pz(e)) =aqa- (Pl(e)) + b - (Pz(e))

t-privacy follows from using (0, x") as (t + 1)-th interpolation point:
 Given any t shares, obtain bijection: x’ & P'(X) with deg(P') <t
 Each value for P'(X) has the same probability, and thus so does each value for x’

Multiplying Shares

Any public linear function on secret shared values can be computed locally
using linearity of secret sharing scheme

Can we also do multiplications of secret shared values?
l.e. obtain [x - y] from [x] and [y].

Assume we have a Beaver-Triple Oracle BTO
* l.e., that provides random sharings [a], [b], [c = a - b] for uniform random a, b
* There are various protocols to achieve this. Recent work: Correlated Pseudorandom Generators!

MPC Protocol to compute [x - y]:
1. Query [a],[b],[c = a-b] « BTO
2. Compute [a] = [x + a] and [B] = [y + b] locally
3. Broadcast shares of [a], [8] and reconstruct a, 8 publicly
4. Compute[x-y]l=a-B— B la] —a-[b] + [c] locally
* Indeed(x+a)(y+b)—(y+b)a—(x+a)b+ab=xy+ay+hbx+ab—ya—hbd—xb—ab+ab
* Note that as a, b are uniform random, «, are as well, thus do no leak information about x, y

Basic MPC Protocol

* Given n semihonest parties Py, ..., P, with secret inputs x4, ..., x, € F

* Given Circuit C of additions and multiplications in [F that implements F

 MPC Protocol for C

1. Each party P; secret shares its secret input as [x;]

2. Evaluate circuit C
* Every addition gate of C can be computed locally
* Every multiplication gate of C with multiplication protocol using BeaverTriple Oracle (BTO)
* (Note many multiplication gates can be computed in parallel)

3. Resultsin secret shares of [y;] for (vq, ..., Vi) = C(Xq1, .., X5)

4. Broadcast all shares of [y;] and reconstruct output y;

Correctness is straightforward
* Assuming BTO is correct & all parties correctly follow the protocol

Privacy of secret inputs & gate outputs: guaranteed by secret sharing & BTO

£-privacy allows up to € colluding semihonest parties
(which correctly follow the protocol, but try to learn more information together)

Various techniques to protect against actively malicious parties (won’t cover here)

MPC-in-the-head

ZK-PoK for 3-Coloring

* A nice simple example towards MPC-in-the-Head: ®
e 3-Coloring for a graph G
* Each node is colored red, green or blue
* Two adjacent nodes must have different color
e Determining if a graph G admits a 3-Coloring is NP-Hard

* A ZK-PoK to prove Prover knows a 3-Coloring for a graph G
1. Prover randomly permutes colors on solution

Prover sends a commitment for the coloring of each node

Verifier randomly selects 2 neighboring nodes

Prover opens commitments for those 2 nodes

Verifier checks opening and that nodes have different color

vk wnN

Verifier

Opening for nodes a, b
P g >

ZK-PoK for 3-Coloring

» Zero-knowledge: Simulator transcript generation
* Can “cheat” by selecting a, b randomly before commitments
* One can show transcript output distribution is statistically identical to valid transcripts (in the ROM)

* Special Knowledge Soundness: Extractor
* Chooses 2 fixed neighbours a, b: note that coloring of a, b fixes prover’s color permutation on solution
* After commitment, clone Prover to obtain related openings for 2 times 2 nodes: a, b, i, j

* = obtains prover’s solution for i, j under alternate fixed 3-coloring scheme (a-color, b-color, not-a-b-color)
* Repeat until entire solution is recovered

 Soundness error: invalid solution = at least 1 out of all N pairs is wrong = Pr["OK"]| <1 —-1/N

Verifier

@) oo
- ieer” R

Opening for nodes a, b
P g >

ZK-PoK for 3-Coloring

» Take-away concept

* There is no 3-coloring computation in the interactive proof

* Prover generates random ‘local’ views on solution & sends commitment

» Verifier is allowed to verify a random view which verifies solution ‘locally’

* How to do this for arbitrary computations?

Verifier

Opening for nodes a, b

MPC-in-the-Head

* Generic ZK-PoK for knowledge of a computation, say C(x)

o vk wh e

Prover simulates MPC protocol run on secret shared x

Prover generates local views for each party: all inputs/outputs & all messages to/from party
Prover sends all broadcast messages and the commitment for each view

Verifier randomly selects 2 parties a, b

Prover opens views for parties a, b

Verifier verifies MPC output C(x) =?y and local views of a, b for correctness,
i.e., that parties a, b acted honestly and have consistent views

()
() e
All broadcast messages @ @ Verifier

+ Commitment to views M M
> @
Parties a, b - Clx) =2y &
< (x) =y

y,C Are views a, b
> honest &

Opening for views of parties a, b a)b consistent?
OK! / Nope!

MPC-in-the-Head

e Zero-knowledge: follows from definition of MPC security
* Recall: LSSS with £-privacy = any subset of € shares of x is statistically independent of x

e Special Knowledge Soundness:
* Reconstruction of x possible by recovering sufficiently many related views through cloning of Prover

* Soundness error:
* Invalid solution = = 1 party dishonest, or inconsistency between views of = 1 pair of parties

* When opening ¢ views: Pr["OK" | bad solution] < 1 — (g)/(g)

()
() e
All broadcast messages @ @ Verifier

+ Commitment to views M M
> @
Parties a, b - Clx) =2y &
< (x) =y

y,C Are views a, b
> honest &

Opening for views of parties a, b a)b consistent?
OK! / Nope!

MPC-in-the-Head

* Prover simulates n parties running a MPC protocol

x1

»

Prover
& / / \\
‘ > -X3

. ©
2-<

C(x)

X

x4 x5

* For any circuit C of addition & multiplication gates over [F
* E.g. AES blockcipher over [F,s

All linear operations, except S-Box
Note AES S-Box is defined using multiplicative inverse

In MPC implemented as [s] = [r]*>* using square-and-multiply
But for MPC-in-the-Head we can do better using the fact that [r]

- [s] = 1!

v

MPC-in-the-Head

* Prover simulates n parties running a MPC protocol
X1

N

))
dh dh
X4 X5

 Number of rounds of parallel multiplications depends on multiplication-depth of C

* Improvement: Prover knows evaluation of C(x)
* Prover can provide sharings of all multiplication gates in C(x): [r;], [s;], [t; = 17 - ;]
* MPC computation becomes entirely linear!
 But need to verify correctness of [r;], [s;], [t;] to verify correctness of C(x)!

* Moreover! Verifying inverse [s;] = [r;" '] is simply checking 1 product that [r;] - [s;] = [¢;] = 1

Multiplication Verification Protocol

* Prover wants to prove that r - s = t for secret shares [r], [s], [t] to Verifier

* MPC-in-the-Head Protocol with inputs from Prover and Verifier:
1. Prover shares random BeaverTriple [a], [b], [c] to the n parties

Verifier sends randomly selected scalar p € F\{0}

Parties compute [a] = p[r] + [al, [B] = [s] + [b]

Parties broadcast shares & reconstruct «, 3

Parties compute [v] = p[t] — [c] + a[b] + Bla] — af

Parties broadcast shares & reconstruct v

N o U e WwWN

Verifier checks v = 0

* Note that if MPC protocol was simulated correctly then
v=pt —c+ (prb+ ab) + (sa + ba) — (prs + prb + as + ab)
= p(t —1rs) + (ba — ¢)
e If r-s=t and a-b=c then v=0
e Ifexactly linequality r-s#t OR a-b#c thenv#0
e If r-s#t and a-b#c¢ then Pr[v=0] =Pr[p=(t—rs) 1(c—ab)] =1/|F

* Note that this omits the necessary steps to verify the MPC protocol was simulated correctly
(i.e., P: commitments to views, V: random view selection, P: opening of selected views, V: check)

MPC-in-the-Head Signhature Scheme

* Bringing all components together:
 Circuit C(+) implementing one-way function F(-)

* Prover knows pre-image x for y = F(x)

* Prover simulates MPC protocol for n parties
* Prover shares x and the outputs t; of all multiplicative gates (7;,s;,t; =17 - 5;) in C(x)
* MPC Parties compute all [r;], [s;] locally (fully linear in inputs [x] and all [¢;])
* Run multiplication verification protocol for all [r;], [s;], [t;] in parallel

* Prover proves simulated MPC protocol is correct
* Using commitments for each party’s view, and opening a random selection of views

e Fiat-Shamir
* Verifier’'s messages are generated by Random Oracle
* Transcript of messages between Prover & Verifier is non-interactive ZK-PoK

e Signature scheme
* pk and m are also input to Random Oracle = non-interactive ZK-PoK bound to pk & m
 Random Oracle is replaced by cryptographic hash function

* Parallel Soundness amplification (multiple MPC simulations in parallel), but omitting in next slides

MPC-in-the-Head Signhature Scheme

e Sign(m):
1. Generate random sharings [x], {[t;]} and random BeaverTriples [a;], [b;], [c;] for n parties
2. Compute [y], {[r:]}, {[s;]} as linear combinations of [x], {[t;]}

3. Generate commitments of the view of each party p=1..,n

“Broadcast” all [v;] shares and compute {v;}

) (2(91)' (1)) < Commit([x]p, {([1:]p, [[tilp, [ailp, [bilp, [cilp)} [1,)
Parallel
4. Query random scalars: {p;} < RO (pk, m, {Cz(a)}) I\/Tt:?tiSIication
5. Linearly compute: {[a;] = p;[r;] + [a;]}, {[B:] = [s:] + [b;]} [Verification
6. “Broadcast” all [a;] and [B;] shares and compute {«a;}, {B;} Protocol
7. Linearly compute: [v;] = p;[t;] — [¢;] + a;[b;] + Bila;] — a;B;
8.
9.

Generate commitments of the view of each partyp =1, .

. Commit to views
. (zEZ)' 252)) - Commit(A(pi, [aily, [Bily [p)}) :|, Randomly select

10. Query to-open views: u, v « RO(pk, m, {cp}) to-open views

11. “Broadcast” all [y] shares and compute y

1 2 1 5 L , All commitments
12. om = ({C?(’)}’{Clg)}’{[ai]P}'{[ﬁi]p}'{ p} { p} 0() () 1(7)» 1(7)) } + all broadcasts
+ view openings

MPC-in-the-Head Signhature Scheme

» Verify(pk, m, o):

1.

2
3.
4

o v

et = (e}, {2 Aladp b (180} ([0} (7] 02, o2, o of?)
Query random scalars: {p;} < RO (Pk» m, {Cz(o)})

Query to-open views: u’, v’ « RO(pk, m, {cg})

Reconstruct broadcasts: {a;}, {5;}, {vi}, ¥

Check if y is correct: y =7pk

Check if all multiplication gates are correct: all v; =?0

Check MPC Simulation was correct:

1. Verify openings o() ol(tz), 0,51), (2) to commitments C(,), c(%), C(}), c(,) belonging to parties u’, v’

2. Verify view of each party p € {u’ v’}'
1. Extract view ([p,{(Tilp, [ilp, [aily, [bily, [ci]p)}, [y]p) from openings
2. Recompute shares [p,{ T; p},{ S; p},{ i]p},{[ﬁi]p},{[vi]p} linearly as in signature algorithm
3. Check consistency of recomputed shares with view-opening shares / broadcasted shares

MPC-in-the-Head schemes

e 2017 NIST PQC competition (1 out of 82 submissions):
* Picnic: LowMC blockcipher (didn’t make it beyond round 3)

e 2023 NIST PQC “on-ramp” signature competition (9 out of 40):
e 15t Round: 9 out of 40

* FAEST : AES

* AlMer : AIM tweakable one-way function
* Biscuit : MQ

* MQOM : MQ

* MIRA : MinRank

* MiRitH : MinRank

* PERK : Permuted Kernel Problem
 RYDE : Syndrome Decoding

e SDitH : Syndrome Decoding

« 2"d Round: 6 out of 14
* Merge: MIRA & MiRitH = Mirath
* FAEST, MQOM, PERK, RYDE, SDitH

* For example: FAEST (with many optimizations not covered here!)
* pk,sk: 32B, sig: 4.5KiB

Summary

* MPC
* Linear Secret Sharing Schemes
* Multiplication Protocol using BeaverTriples
* Basic MPC protocol

* MPC-in-the-Head
e Paradigm of committing to random views of local computations & open selection
» ZK-PoK for any Circuit evaluation C(x) on secret x
» Share all multiplication gates — Multiplication Verification Protocol

e Basic MPC-in-the-Head signature scheme description

