Selected Areas in Cryptology Cryptanalysis Week 7

Marc Stevens

stevens@cwi.nl

https://homepages.cwi.nl/~stevens/mastermath/

Asymmetric from symmetric cryptography

Can we build asymmetric cryptography from symmetric cryptography?

- Benefits:
 - Symmetric cryptography seems generally to resist quantum cryptanalysis
 - No number-theoretic assumptions needed

- This week:
 - MPC-in-the-head on symmetric cryptography (continued)

Recall: Signatures from Symmetric Crypto

- Consider any one-way function F
 - Hash function: F(x) = f(x)
 - Block cipher: $F(x) = Enc_x(0)$
 - MQ system: $F(\vec{x}) = (p_1(\vec{x}), \dots, p_k(\vec{x}))$, where $p_i(\vec{x}) \in F_q[x_1, \dots, x_n]$
- Consider a protocol P for a circuit C_{v} :
 - Protocol to prove a Prover knows a secret witness x such that $C_y(x) = 1$
 - Instantiation $C_v(x) = F(x) = ?y$ for secret x and public y = F(x)
 - Protocols can be made non-interactive using hash function call
- Combine *F* and *P* into a signature scheme:
 - Add message to hash function call
 - ⇒ binds non-interactive proof to message
 - The non-interactive proof proves signer knows secret x for public key y
- This week: how can we transform any F into a zero-knowledge proof?

Secure Multi-Party Computation (MPC)

Secure Multi-Party Computation (MPC)

- Interactive ZK Proofs can be seen as a special case of MPC
- n parties P_1 , ..., P_n want to compute F on their secret inputs x_1 , ..., x_n

Ideal Functionality
A trusted third party ("God")
that computes F for them
without leaking anything else

MPC Protocol

Parties jointly compute F

and learn its output

without learning anything else

Linear Secret Sharing Schemes (LSSS)

Cryptographic scheme to share a secret $x \in \mathbb{F}$ over n parties

• Notation : $[x] = (x_1, ..., x_n)$ *i*-th share is also written as $[x]_i$

• Sharing $: [x] \leftarrow \operatorname{share}(x)$

• Reconstruction : x = reconstruct([x]) (some shares are allowed to be missing/corrupted)

• *ℓ*-privacy:

• If and only if: any set of ℓ shares $x_{i_1}, \dots, x_{i_\ell}$ is statistically independent of x

• *t*-reconstruction:

• If and only if: x is correctly reconstructed given any subset of t correct shares x_{i_1}, \dots, x_{i_t}

• Linear:

• Given secret sharings [x], [y] and public scalar $a \in \mathbb{F}$

• Addition $: [x + y] = (x_1 + y_1, ..., x_n + y_n)$

• Scalar multiplication : $[a \cdot x] = (a \cdot x_1, ..., a \cdot x_n)$

• \Rightarrow any linear function on secret sharings $[s_1], ..., [s_m]$ can be computed *locally*

Linear Secret Sharing Schemes (LSSS)

Example: additive secret sharing: $x = \sum x_i$

- Sharing:
 - $x_1, \dots, x_{n-1} \leftarrow \mathbb{F}$
 - $x_n = x x_1 \dots x_{n-1}$
 - Note: each individual share x_i is uniformly distributed over \mathbb{F}
- *n*-reconstruction:
 - $x = x_1 + x_2 + \cdots + x_n$
- Linear:
 - reconstruct $([x + y] = (x_1 + y_1, ..., x_n + y_n)) = \sum (x_i + y_i) = (\sum x_i) + (\sum y_i) = x + y$
 - reconstruct($[a \cdot x] = (a \cdot x_1, ..., a \cdot x_n)$) = $\sum (a \cdot x_i) = a \cdot (\sum x_i) = a \cdot x$
- (n-1)-privacy:
 - Any set of (n-1) shares (say missing x_i) is statistically independent of x
 - Since we can rewrite sampling order to have $x_i = x \sum_{j \neq i} x_j$ without changing distribution

Linear Secret Sharing Schemes (LSSS)

Example: (t, n)-Shamir's secret sharing over \mathbb{F}

- Select n+1 pair-wise distinct field elements: $e_1, \dots, e_n, e_0 = 0$
- Sharing:
 - $[x] = (P(e_1), ..., P(e_n))$ for randomly sampled $P(X) \leftarrow \mathbb{F}[X]$ with P(0) = x and $\deg(P) \le t$
- (t+1)-Reconstruction using Interpolation Theorem:
 - $P(X) = \text{interpolate}\left(\left(e_{i_1}, x_{i_1}\right), \dots, \left(e_{i_{t+1}}, x_{i_{t+1}}\right)\right)$ for any subset of (t+1) shares
 - x = P(0)
- Linearity follows linearity of polynomials:
 - A linear combination of share polynomials $a P_1(X) + b P_2(X)$ still has degree $\leq t$
 - Evaluations are also linear: $(a P_1(e) + b P_2(e)) = a \cdot (P_1(e)) + b \cdot (P_2(e))$
- t-privacy follows from using (0, x') as (t + 1)-th interpolation point:
 - Given any t shares, obtain bijection: $x' \leftrightarrow P'(X)$ with $\deg(P') \le t$
 - Each value for P'(X) has the same probability, and thus so does each value for x'

Multiplying Shares

- Any public linear function on secret shared values can be computed locally using linearity of secret sharing scheme
- Can we also do multiplications of secret shared values? I.e. obtain $[x \cdot y]$ from [x] and [y].
- Assume we have a Beaver-Triple Oracle BTO
 - I.e., that provides random sharings [a], [b], $[c=a\cdot b]$ for uniform random a, b
 - There are various protocols to achieve this. Recent work: Correlated Pseudorandom Generators!
- MPC Protocol to compute $[x \cdot y]$:
 - 1. Query [a], [b], $[c = a \cdot b] \leftarrow BTO$
 - 2. Compute $[\alpha] = [x + a]$ and $[\beta] = [y + b]$ locally
 - 3. Broadcast shares of $[\alpha]$, $[\beta]$ and reconstruct α , β publicly
 - 4. Compute $[x \cdot y] = \alpha \cdot \beta \beta \cdot [a] \alpha \cdot [b] + [c]$ locally
 - Indeed (x+a)(y+b)-(y+b)a-(x+a)b+ab=xy+ay+bx+ab-ya-ba-xb-ab+ab
 - Note that as a, b are uniform random, α, β are as well, thus do no leak information about x, y

Basic MPC Protocol

- Given *n* semihonest parties P_1, \dots, P_n with secret inputs $x_1, \dots, x_n \in \mathbb{F}$
- Given Circuit C of additions and multiplications in $\mathbb F$ that implements F
- MPC Protocol for C
 - 1. Each party P_i secret shares its secret input as $[x_i]$
 - 2. Evaluate circuit *C*
 - Every addition gate of C can be computed locally
 - Every multiplication gate of C with multiplication protocol using BeaverTriple Oracle (BTO)
 - (Note many multiplication gates can be computed in parallel)
 - 3. Results in secret shares of $[y_i]$ for $(y_1, ..., y_m) = C(x_1, ..., x_n)$
 - 4. Broadcast all shares of $[y_i]$ and reconstruct output y_i
- Correctness is straightforward
 - Assuming BTO is correct & all parties correctly follow the protocol
- Privacy of secret inputs & gate outputs: guaranteed by secret sharing & BTO
- ℓ -privacy allows up to ℓ colluding semihonest parties (which correctly follow the protocol, but try to learn more information together)
- Various techniques to protect against actively malicious parties (won't cover here)

ZK-PoK for 3-Coloring

- A nice simple example towards MPC-in-the-Head:
 - 3-Coloring for a graph *G*
 - Each node is colored red, green or blue
 - Two adjacent nodes must have different color
 - Determining if a graph G admits a 3-Coloring is NP-Hard
- A ZK-PoK to prove Prover knows a 3-Coloring for a graph G
 - 1. Prover randomly permutes colors on solution
 - 2. Prover sends a commitment for the coloring of each node
 - 3. Verifier randomly selects 2 neighboring nodes
 - 4. Prover opens commitments for those 2 nodes
 - 5. Verifier checks opening and that nodes have different color

Verifier

Opening for nodes *a*, *b*

ZK-PoK for 3-Coloring

- Zero-knowledge: Simulator transcript generation
 - Can "cheat" by selecting a, b randomly before commitments
 - One can show transcript output distribution is statistically identical to valid transcripts (in the ROM)
- Special Knowledge Soundness: Extractor
 - Chooses 2 fixed neighbours a, b: note that coloring of a, b fixes prover's color permutation on solution
 - After commitment, clone Prover to obtain related openings for 2 times 2 nodes: a, b, i, j
 - \Rightarrow obtains prover's solution for i, j under alternate fixed 3-coloring scheme (a-color, b-color, not-a-b-color)
 - Repeat until entire solution is recovered
- Soundness error: invalid solution \Rightarrow at least 1 out of all N pairs is wrong $\Rightarrow \Pr["OK"] \le 1 1/N$

ZK-PoK for 3-Coloring

- Take-away concept
 - There is no 3-coloring computation in the interactive proof
 - Prover generates random 'local' views on solution & sends commitment
 - Verifier is allowed to verify a random view which verifies solution 'locally'
- How to do this for arbitrary computations?

- Generic ZK-PoK for knowledge of a computation, say C(x)
 - 1. Prover simulates MPC protocol run on secret shared x
 - 2. Prover generates local views for each party: all inputs/outputs & all messages to/from party
 - 3. Prover sends all broadcast messages and the commitment for each view
 - 4. Verifier randomly selects 2 parties a, b
 - 5. Prover opens views for parties a, b
 - 6. Verifier verifies MPC output C(x) = ?y and local views of a, b for correctness, i.e., that parties a, b acted honestly and have consistent views

- Zero-knowledge: follows from definition of MPC security
 - Recall: LSSS with ℓ -privacy \Rightarrow any subset of ℓ shares of x is statistically independent of x
- Special Knowledge Soundness:
 - Reconstruction of x possible by recovering sufficiently many related views through cloning of Prover
- Soundness error:
 - Invalid solution $\Rightarrow \ge 1$ party dishonest, or inconsistency between views of ≥ 1 pair of parties
 - When opening ℓ views: $\Pr["OK" \mid bad solution] \le 1 {\ell \choose 2}/{n \choose 2}$

Prover simulates n parties running a MPC protocol

- For any circuit C of addition & multiplication gates over $\mathbb F$
 - E.g. AES blockcipher over \mathbb{F}_{2^8}
 - All linear operations, except S-Box
 - Note AES S-Box is defined using multiplicative inverse
 - In MPC implemented as $[s] = [r]^{254}$ using square-and-multiply
 - But for MPC-in-the-Head we can do better using the fact that $[r] \cdot [s] = 1!$

Prover simulates n parties running a MPC protocol

- Number of rounds of parallel multiplications depends on *multiplication-depth* of *C*
- Improvement: Prover knows evaluation of C(x)
 - Prover can provide sharings of all multiplication gates in C(x): $[r_i]$, $[s_i]$, $[t_i = r_i \cdot s_i]$
 - MPC computation becomes entirely linear!
 - But need to verify correctness of $[r_i]$, $[s_i]$, $[t_i]$ to verify correctness of C(x)!
 - Moreover! Verifying inverse $[s_i] = [r_i^{-1}]$ is simply checking 1 product that $[r_i] \cdot [s_i] = [t_i] = 1$

Multiplication Verification Protocol

- Prover wants to prove that $r \cdot s = t$ for secret shares [r], [s], [t] to Verifier
- MPC-in-the-Head Protocol with inputs from Prover and Verifier:
 - 1. Prover shares random BeaverTriple [a], [b], [c] to the n parties
 - 2. Verifier sends randomly selected scalar $\rho \in \mathbb{F} \setminus \{0\}$
 - 3. Parties compute $[\alpha] = \rho[r] + [a]$, $[\beta] = [s] + [b]$
 - 4. Parties broadcast shares & reconstruct α , β
 - 5. Parties compute $[v] = \rho[t] [c] + \alpha[b] + \beta[a] \alpha\beta$
 - 6. Parties broadcast shares & reconstruct v
 - 7. Verifier checks v = 0
 - Note that if MPC protocol was simulated correctly then

$$v = \rho t - c + (\rho rb + ab) + (sa + ba) - (\rho rs + \rho rb + as + ab)$$

= $\rho(t - rs) + (ba - c)$

- If $r \cdot s = t$ and $a \cdot b = c$ then v = 0
- If exactly 1 inequality $r \cdot s \neq t$ OR $a \cdot b \neq c$ then $v \neq 0$
- If $r \cdot s \neq t$ and $a \cdot b \neq c$ then $\Pr[v = 0] = \Pr[\rho = (t rs)^{-1}(c ab)] = 1/|\mathbb{F}^*|$
- Note that this omits the necessary steps to verify the MPC protocol was simulated correctly (i.e., P: commitments to views, V: random view selection, P: opening of selected views, V: check)

MPC-in-the-Head Signature Scheme

- Bringing all components together:
 - Circuit $C(\cdot)$ implementing one-way function $F(\cdot)$
 - Prover knows pre-image x for y = F(x)
 - Prover simulates MPC protocol for n parties
 - Prover shares x and the outputs t_i of all multiplicative gates $(r_i, s_i, t_i = r_i \cdot s_i)$ in C(x)
 - MPC Parties compute all $[r_i]$, $[s_i]$ locally (fully linear in inputs [x] and all $[t_i]$)
 - Run multiplication verification protocol for all $[r_i]$, $[s_i]$, $[t_i]$ in parallel
 - Prover proves simulated MPC protocol is correct
 - Using commitments for each party's view, and opening a random selection of views
 - Fiat-Shamir
 - Verifier's messages are generated by Random Oracle
 - Transcript of messages between Prover & Verifier is non-interactive ZK-PoK
 - Signature scheme
 - pk and m are also input to Random Oracle \Rightarrow non-interactive ZK-PoK bound to $pk \ \& \ m$
 - Random Oracle is replaced by cryptographic hash function
 - Parallel Soundness amplification (multiple MPC simulations in parallel), but omitting in next slides

MPC-in-the-Head Signature Scheme

• Sign(*m*):

- 1. Generate random sharings [x], $\{[t_i]\}$ and random BeaverTriples $[a_i]$, $[b_i]$, $[c_i]$ for n parties
- 2. Compute [y], $\{[s_i]\}$, as linear combinations of [x], $\{[t_i]\}$
- 3. Generate commitments of the view of each party p = 1, ..., n:

•
$$(c_p^{(1)}, o_p^{(1)}) \leftarrow \text{Commit}([x]_p, \{([r_i]_p, [s_i]_p, [t_i]_p, [a_i]_p, [b_i]_p, [c_i]_p)\}, [y]_p)$$

- 4. Query random scalars: $\{\rho_i\} \leftarrow \text{RO}\left(pk, m, \left\{c_p^{(1)}\right\}\right)$
- 5. Linearly compute: $\{[\alpha_i] = \rho_i[r_i] + [a_i]\}, \{[\beta_i] = [s_i] + [b_i]\}$
- 6. "Broadcast" all $[\alpha_i]$ and $[\beta_i]$ shares and compute $\{\alpha_i\}, \{\beta_i\}$
- 7. Linearly compute: $[v_i] = \rho_i[t_i] [c_i] + \alpha_i[b_i] + \beta_i[a_i] \alpha_i\beta_i$
- 8. "Broadcast" all $[v_i]$ shares and compute $\{v_i\}$
- 9. Generate commitments of the view of each party p = 1, ..., n:

•
$$\left(c_p^{(2)}, o_p^{(2)}\right) \leftarrow \operatorname{Commit}\left(c_p^{(1)}, \left\{\left(\rho_i, [\alpha_i]_p, [\beta_i]_p, [v_i]_p\right)\right\}\right)$$

- 10. Query to-open views: $u, v \leftarrow \text{RO}(pk, m, \{c_p^2\})$
- 11. "Broadcast" all [y] shares and compute y

12.
$$\sigma_m = (\{c_p^{(1)}\}, \{c_p^{(2)}\}, \{[\alpha_i]_p\}, \{[\beta_i]_p\}, \{[v_i]_p\}, \{[y]_p\}, o_u^{(1)}, o_u^{(2)}, o_v^{(1)}, o_v^{(2)})$$

Parallel Multiplication Verification Protocol

Commit to views Randomly select to-open views

All commitments+ all broadcasts+ view openings

MPC-in-the-Head Signature Scheme

- Verify(pk, m, σ):
 - 1. Let $\sigma = (\{c_p^{(1)}\}, \{c_p^{(2)}\}, \{[\alpha_i]_p\}, \{[\beta_i]_p\}, \{[v_i]_p\}, \{[y]_p\}, o_u^{(1)}, o_u^{(2)}, o_v^{(1)}, o_v^{(2)})$
 - 2. Query random scalars: $\{\rho_i\} \leftarrow \mathrm{RO}\left(pk, m, \left\{c_p^{(1)}\right\}\right)$
 - 3. Query to-open views: $u', v' \leftarrow \text{RO}(pk, m, \{c_p^2\})$
 - 4. Reconstruct broadcasts: $\{\alpha_i\}, \{\beta_i\}, \{v_i\}, y$
 - 5. Check if y is correct: y = ?pk
 - 6. Check if all multiplication gates are correct: all $v_i = ?0$
 - 7. Check MPC Simulation was correct:
 - 1. Verify openings $o_u^{(1)}$, $o_u^{(2)}$, $o_v^{(1)}$, $o_v^{(2)}$ to commitments $c_{u'}^{(1)}$, $c_{u'}^{(2)}$, $c_{v'}^{(1)}$, $c_{v'}^{(2)}$ belonging to parties u', v'
 - 2. Verify view of each party $p \in \{u', v'\}$:
 - 1. Extract view $([x]_p, \{([r_i]_p, [s_i]_p, [t_i]_p, [a_i]_p, [b_i]_p, [c_i]_p)\}, [y]_p)$ from openings
 - 2. Recompute shares $[y]_p$, $\{[r_i]_p\}$, $\{[s_i]_p\}$, $\{[\alpha_i]_p\}$, $\{[\beta_i]_p\}$, $\{[v_i]_p\}$ linearly as in signature algorithm
 - 3. Check consistency of recomputed shares with view-opening shares / broadcasted shares

MPC-in-the-Head schemes

- 2017 NIST PQC competition (1 out of 82 submissions):
 - Picnic: LowMC blockcipher (didn't make it beyond round 3)
- 2023 NIST PQC "on-ramp" signature competition (9 out of 40):
 - 1st Round: 9 out of 40

• FAEST : AES

• AIMer : AIM tweakable one-way function

• Biscuit : MQ

• MQOM : MQ

MIRA : MinRankMiRitH : MinRank

• PERK : Permuted Kernel Problem

• RYDE : Syndrome Decoding

• SDitH : Syndrome Decoding

• 2nd Round: 6 out of 14

• Merge: MIRA & MiRitH ⇒ Mirath

FAEST, MQOM, PERK, RYDE, SDitH

For example: FAEST (with many optimizations not covered here!)

pk,sk: 32B, sig: 4.5KiB

<u>Summary</u>

- MPC
 - Linear Secret Sharing Schemes
 - Multiplication Protocol using BeaverTriples
 - Basic MPC protocol

- MPC-in-the-Head
 - Paradigm of committing to random views of local computations & open selection
 - ZK-PoK for any Circuit evaluation C(x) on secret x
 - Share all multiplication gates → Multiplication Verification Protocol

Basic MPC-in-the-Head signature scheme description