
Backtracking Incremental Continuous Integration

Tijs van der Storm
Centrum voor Wiskunde en Informatica

P.O. Box 94079, 1090 GB
Amsterdam, The Netherlands

storm@cwi.nl

Abstract

Failing integration builds are show stoppers. Development
activity is stalled because developers have to wait with in-
tegrating new changes until the problem is fixed and a suc-
cessful build has been run. We show how backtracking can
be used to mitigate the impact of build failures in the context
of component-based software development. This way, even in
the face of failure, development may continue and a working
version is always available.

Index terms: software configuration management, build
management, software maintenance.

1. Introduction

Continuous integration [8] has been heralded as a best prac-
tice of software development. After every change to the
sources the complete system is built from scratch and the
tests are run. If any of the tests fail, all effort is directed at
fixing the problem in order to obtain a working version of
the system. If the build fails, development is stalled. Contin-
uous integration has therefore been called the “heartbeat of
software”. If it stops, you can’t ship.

In this paper, I describe a continuous integration scheme
in component-based development settings. In this scheme
I assume that integration is defined as building the source
of a component against the (build artifacts of) its dependen-
cies. Integrating the whole application then means building
the topmost component in the dependency hierarchy.

The scheme employs two features to improve the feed-
back obtained from it. First, instead of building the com-
plete system on every change, only the components that have
affecting changes are rebuilt, and previous build results are
reused otherwise [19]. Components are integrated in an in-
cremental fashion, similar to the way the Unix tool MAKE
can be used to selectively recompile files [7]. It turns out
that due to the amount of build sharing, the feedback is much
quicker on average. As a result developers are can respond
more quickly to problems encountered during integration.

The second feature, the primary focus of this paper, is
backtracking. If the build of a component has failed, it would
make no sense to build any client components. Normally
this would stall integration until the problem is fixed and the
breaking component has been rebuilt. To prevent this from
occurring, components that normally would depend on a bro-
ken component build, are built using earlier build results of
the very same component. This way some measure of being
completely up-to-date is traded for increased build feedback.
In the end, any build is better than no build at all.

Contributions The contributions of this paper can be sum-
marized as follows:

1. I present a formalization of incremental continuous in-
tegration in the context of component-based develop-
ment.

2. The formalization of incremental continuous integra-
tion is extended with two forms of backtracking,
dubbed “simple backtracking” and “true backtracking”;
both approaches are compared and I present and effi-
cient algorithm for the latter.

3. Simple backtracking has been validated in practice; this
has resulted in empirical data supporting its viability to
improve continous integration.

Both build sharing and backtracking have been implemented
as part of the continous integration and release system Sisy-
phus [20]. Sisyphus was used to validate the scheme in the
setting of the ASF+SDF Meta-Environment [17], which is
a language engineering workbench consisting of around 60
heterogeneous components. The results in this paper derive
from that case study.

2. Background

2.1. Component-Based Development
In component-based software configuration management
(SCM) the sources of a software system are divided over in-

dividual components in the version control system (VCS).
That is, the system is composed of different source trees that
have independent evolution histories. The prime example of
this approach to SCM is the Unified Change Management as
implemented in IBM Rational’s ClearCase [3].

Independent versioning of components promotes paral-
lelism in development activity. Development on a compo-
nent is more or less isolated from the rest of the system. Hav-
ing a good architecture thus creates opportunities for reduced
time to market. At the same time the traditional advantages
of component-based software development apply: complex-
ity is reduced, reuse and variation is stimulated.

Whereas most component models (e.g., COM [15]) sepa-
rate the notions of interface and implementation, in this pa-
per I assume a more liberal notion: a component is consid-
ered to be just a logically coupled set of source files that has
its own version history. Practically this means that a compo-
nent is often represented as a directory entry in a VCS such
as, for example, Subversion [5].

Components are often inter-related through dependency
relations. Such dependencies are specified without version
identifier because that would introduce strong coupling be-
tween the client and the dependency component. As soon as
the latter changes, the former is out of date. Keeping such de-
pendency relations synchronized can be a true maintenance
nightmare. We therefore let components reference their de-
pendencies by name without version information.

However, it now becomes increasingly difficult to select
configurations of components that make up consistent ver-
sions of a system. Any version of a component is a suitable
candidate to satisfy the requirements of the client component
that declares a dependency on its name. The configuration
space has become very large since we have complete decou-
pling between the evolution histories of components.

This is where continuous integration comes in. Instead of
explicitly searching the configuration space for the “right”
configuration, we let an automated build system construct
“bleeding edge” configurations as frequent and quick as pos-
sible. This means that always a working version is avail-
able without additional maintenance of selecting the right
versions of the right components and doing the integration
by hand.

2.2. Continuous Integration

Continuous integration proper originates from the Extreme
Programming (XP) software development methodology [2].
There, the process of continuous integration also includes the
continuous checking in of changes, however small they may
be. Current usage of the term, however, most often refers
to the process of building the complete system every time
changes have been committed, whichever the frequency they
occur in. As such it can be seen as a heavier instance of daily
or nightly integration builds [13].

The goal of continuous integration is to know the global
effects of local changes as soon as possible. Integration bugs
are hard to track down because they originate from the in-
teraction between (changes to) different subsystems, so they
are hard to test for on a subsystem level. Post-poning in-
tegration makes things even worse: the interaction between
changes increases very fast making integration bugs expo-
nentially harder to find. It is therefore important that integra-
tion builds are executed quickly enough. As Martin Fowler
states: ”The whole point of Continuous Integration is to pro-
vide rapid feedback.” [8] Failing builds, of course, are the
main impediment to such rapid feedback if they are not fixed
timely.

In component-based software development the sources of
a product are partitioned in independently versioned compo-
nents. This means that “change integration” (check in) can
be highly parallelized since every component has its own de-
velopment line. This increased parallelism poses even higher
demands on continuous integration. Furthermore, integra-
tion builds not only test the new changes, but also the compo-
sition of the different components (possibly containing those
changes) to obtain a complete system.

2.3. Motivation: Continuous Release
The goal of backtracking continuous integration is to miti-
gate the effect of build failures in order to have a working
version at all times and at the same time increase feedback
for developers. Always having a working version of the sys-
tem is a key requirement for continuous release, which en-
tails making the software available after every change.

Releasing in this context means making the software
available to a certain group of users. For instance, it might
not be desirable to continuously release to actual end-users.
However, it may be very beneficial to release the software
after every change to beta-testers or to the developers them-
selves (who want to see the effect of their changes).

Continuous release is motivated along the same line as the
reason for continuous integration: early discovery of defects
and a shortened feedback loop. In order to extend the process
of continuous integration to continuous release, I distinguish
the following goals:

• Feedback: a build (successful or not) is always better
than no build. If there are changes to a component,
the system should find a way to integrate them, even
if builds of certain dependencies may have failed.

• Currency: the continuous integration system should al-
ways attempt to build the latest version of the software.
Builds should be maximally up-to-date.

• Traceability: accurate bills of materials (BOMs) [12]
should be maintained for the sake of tracing releases to
the sources that were used to build them.

• Purity: the integration of components should be pure,
i.e. the set of builds that transitively participate in an
integration build should not involve multiple versions
of the same component; this is a requirement for the
derivation of release packages.

• Efficiency: the continuous integration system should
perform no duplicate work. This means that previous
build results should be reused if possible.

Not all of these goals can be achieved at once. For instance,
we will see that there is a trade-off between maximal up-to-
dateness and maximal feedback.

3. Overview

3.1. Introduction
Before I a describe incremental continuous integration and
the two kinds of backtracking, I first introduce some prelim-
inary assumptions. First of all, it is assumed that the depen-
dencies of a component can be derived from the sources, for
instance by analyzing a specific file that lists them explic-
itly. Since the specification of dependencies thus is part of
the sources of a component, a change in the dependencies
induces a change of the component. This allows for smooth
evolution of a system’s architecture.

In the context of our case-study the dependencies are
specified in pkgconfig files [9]. For instance, the pretty-
print subsystem of the ASF+SDF Meta-Environment [17]
corresponds to the pandora component. Its pkgconfig file
is shown below (slightly abridged for clarity):

Name: pandora
Requires: asc-support,aterm, \

pt-support,toolbuslib

The first line in the file declares the identity of this compo-
nent, in this case pandora. The second line lists the required
dependencies. Note that these dependencies do not have ver-
sion identifiers attached. Requiring this would surely intro-
duce a large maintenance penalty: on every change to one
of the dependencies this files would have to be updated. In-
stead, at a certain moment in time the continuous integration
system will take a snapshot of the repository and bind each
unversioned dependency to the versions of those required
components at that very moment in time. In other words,
for all components the latest revision is taken.

Taking a snapshot of the repository results in a set of
source trees which capture the state of every component at
the moment of the snapshot. These source trees are related
in a dependency graph that results from the requirements as
specified within those source trees at the moment of the snap-
shot. The snapshot is now input to the continuous integration
process.

FS 1.1

DB 1.0

Successful

Failed

Not tried

Legend:

1 3 4

App App App App

DB

FS

1.0 1.1 1.1

1.1

1.1

1.0 FS 1.2

DB 1.2

2

Figure 1. Incremental integration example

3.2. Build Sharing

Now it is time to describe incremental continuous integration
based on the snapshots introduced above. As an example,
consider a small component-based application consisting of
three components: App (the application) , DB (a database
server) and FS (a file system library). The App component
requires both DB and FS, whereas DB only requires FS; FS
has no dependencies whatsoever. Of course, every build of
a component has an implicit dependency on the build envi-
ronment (e.g. compilers, build tools etc.). This dependency
however, we assume, is managed by the continuous integra-
tion system itself.

Figure 1 shows four integration cycles, corresponding to
each column. In the first iteration, all components have been
successfully built (indicated by solid boxes and arrows). The
arrows indicate the dependency relation in the snapshot at
the time of integration.

In the second iteration, the App component has changed
since the first iteration, but there are no changes in DB and
FS. Instead of building all components from scratch—which
would mean a waste of valuable resources—the incremental
continuous integration system reuses the build results (e.g.,
binaries, libraries etc.) from earlier integrations for the de-
pendencies of App. This is indicated by the arrows going
from App 1.1 to DB 1.0 and FS 1.0. In other words, the
builds of DB 1.0 and FS 1.0 are shared between the consec-
utive builds App, versions 1.0 and 1.1 respectively.

However, suppose that a build fails. This is shown in in-
tegration 3. Changes have been committed to both FS and
DB, so all components require a build. In the case of App a
rebuild is required of version 1.1 in order to take the changes
of DB and FS into account. So it is very well possible that
a single component source tree will be built many times be-
cause of changes in dependencies.

Suppose that the build of DB 1.1 fails, however. This has
been indicated by the dashed box around DB 1.1. This state
of affairs prohibits a build of App 1.1 because one cannot
build against failed dependencies. Builds that will not be at-
tempted because of this reason are called “not tried”. In the
figure this is indicated by dashed boxes with rounded cor-
ners. Clearly, “not tried” builds are to be avoided since we
lose feedback. In the example no feedback is generated, for

FS 1.1

DB 1.0

App 1.1 App 1.1

3

App App

DB

FS

1.0 1.1

1.1

1.0 FS 1.2

DB 1.2

1 2 4

Figure 2. Incremental integration with simple back-
tracking

instance, on how the changes in FS affect App 1.1.
Finally, in the fourth cycle (column 4), again there are

changes in DB (hopefully to fix the previous build) and in
FS. However, now the build of FS 1.2 fails. As a conse-
quence there is neither feedback on the changes in DB itself
nor on the integration of changes in DB 1.2 with App 1.1.
Again, feedback is less than optimal and, moreover, we still
can only release App 1.1 with DB 1.0 and FS 1.0, and we
can release FS 1.1 as a stand-alone component. I will now
describe how a simple form of backtracking improves this
situation slightly.

3.3. Simple Backtracking
In incremental continuous integration builds to satisfy com-
ponent dependencies are always searched for within the cur-
rent snapshot. For instance, in Figure 1, during the second
integration the continuous integration system find builds for
DB 1.0 and FS 1.0 to satisfy the dependencies of App 1.1,
since both DB and FS have not changed since; both DB 1.0
and FS 1.0 are in the snapshot of cycle 2. In the next two
cycles the current snapshot contains DB 1.1 and FS 1.1, and
DB 1.2 and FS 1.2 respectively. However, in cycle 3 the build
of DB 1.1 has failed, and in cycle 4, the build of FS 1.2 has
failed. Hence it is not possible to build App 1.1 in either of
the two cycles.

Figure 2 shows the application of simple backtracking.
This means that, if there is a failed build in any of the depen-
dencies of a component, say App, in the current cycle (with
source trees in the current snapshot), the continuous integra-
tion goes back in time to find the first successful build of
the component in question (in this case App), checks if the
requirements are still the same—does App still require both
DB and FS?—and if so, uses the set of builds that were used
back then.

To illustrate this, consider Figure 2. In cycle 3, there are
failed dependencies for App 1.1. The most recent successful
build of App with the same requirements, is the build of cy-
cle 2. However, using that set of dependencies (DB 1.0 and
FS 1.0) does not achieve anything: we would be merely du-
plicating the build of cycle 2 because App has not changed
in between cycles 2 and 3. This is indicated by the absence

FS 1.1

DB 1.0

App 1.1App 1.1 App 1.1

1 2 3 4

App

DB

FS

1.0

1.1

1.0 FS 1.2

DB 1.2

Figure 3. Incremental integration with true back-
tracking

of a box around App 1.1 in cycle 3. Note that this is a dif-
ferent outcome than “not tried”, since with “not tried” builds
we always lose something, either feedback or currency, and
this is not the case here.

Another important detail here is that we cannot just use
DB 1.0 and FS 1.1 for building App 1.1 in cycle 3, since that
would lead to an impure build: DB 1.0 uses FS 1.0 whereas
App 1.1 would have used FS 1.1. This means there are two
versions (1.0 and 1.1) of the same component (FS) in the
closure of the build graph of App 1.1.

Simple backtracking shows its value in the fourth cycle:
there is a change in DB, and there is a successful most recent
build, the build of DB 1.0 in the first cycle. Using simple
backtracking, at least DB 1.2 can be built. We do not get
feedback on the integration of DB 1.2 and FS 1.1 but it is
better than nothing at all. Although in this case, it seems
trivial to just use the build of FS 1.1 for building DB 1.2, this
is deceiving. When the dependency graph is more complex
one cannot just take the most recent successful builds of de-
pendencies without ensuring the result will be pure. This is
exactly what true backtracking achieves, which I will discuss
next.

3.4. True Backtracking
Simple backtracking involves searching for earlier successful
builds of the component that should be built now. True back-
tracking adapts this search by search for sets of successfully
built required components such that a purity of integration
is ensured. Figure 3 shows the example scenario with true
backtracking enabled.

The figure only differs from Figure 2 in the fourth cycle.
Cycle 3 remains the same because using the most recent set
of successful dependency builds that maintain purity (DB 1.0
and FS 1.0) again would entail duplicating the App build of
cycle 2. It is still impossible to use DB 1.0 and FS 1.1 be-
cause it would violate purity.

In the cycle 4 however, the new version DB (1.2) can now
be built. The set of most recent successful dependency builds
is {FS 1.1} and this set does not violate purity from the per-
spective of DB 1.2. Furthermore, App 1.1 can now also be
built: {DB 1.2, FS 1.1} maintains purity.

Note that in both Figure 2 and Figure 3 all “not trieds”
have disappeared. However, true backtracking presents the
following advantages over simple backtracking:

• We were able to build DB 1.2 against FS 1.1 instead of
FS 1.0, hence with true backtracking the build of DB
1.2 is more on the bleeding edge.

• It was possible to build App 1.1 against DB 1.2 and FS
1.1, hence we obtain one additional release opportunity
for component App.

In addition, the simple backtracking suffers from the fact that
it only works if dependencies have not changed in between
integrations. In that case, the probability of finding an earlier
build with the same set of requirements is rather low.

In the following section I will present a light-weight for-
malization of incremental continuous integration and the two
forms of backtracking. The formalization is based on the for-
malization presented in [19], slightly reformulated for pre-
sentation purposes.

4. Formalization

4.1. Preliminaries
In order to reason about integration I introduce a lightweight
formal model of components, revisions and builds in this sec-
tion. It is instructive to see the relations and sets that make up
the model as a software knowledge base (SKB) that can be
queried and updated. The SKB is required for implementing
build sharing, backtracking and to automatically derive pure
releases.

To be able to build a component, a source tree is needed
for every component. To reflect this relation explicitly I in-
troduce the relation state that bijectively maps components
(names) to source trees (revisions) according to some crite-
rion (for instance, by taking the current revision of each com-
ponent). It has the following type: State ⊆ Components×
Revisions.

In practice, a revision r ∈ Revisions is often represented
as a tuple of a source location (e.g. a path or URL) together
with a version identifier.

Source trees may declare dependencies on components.
This is modeled by the relation Requires: Requires ⊆
Revisions×Components. Note that the domain and range of
this relation are not the same. The idea is that dependencies
on components may change inbetween revisions.

For instance, source tree T may require the components
A and B, but the following revision T ′ might only require
A. Moreover, the range of the relation is unversioned for
another reason. If Requires would have been a relation from
Revisions to Revisions this would mean that it would have to
be updated on every change to a component that is depended

on by T . In the current situation, the requires relation can be
maintained within the source trees themselves.

A snapshot maps every path to a tree according to some
criterion, that is, it fixates a certain version for each com-
ponent. The definition makes use of the State relation in-
troduced above: Snapshot = Requires ◦ State. This relation
represents a dependency graph between Revisions and is the
starting point for integration. This means that subsets of
carrier(Snapshot) will be built in an appropriate order. The
results are stored in a relation Builds⊆ State×N.

This Builds set is partitioned in two subsets Success and
Failure, resp. containing the successful builds and the failed
ones. A build relates a tree to a build number, because a
single tree can be built many times, possibly using different
dependencies. Which builds of dependencies actually were
used is recorded in the Integration relation: Integration ⊆
Builds×Builds. Again, Integration is a dependency graph
but this time between builds.

For any successful integration we require that the set
of builds that participated in the integration is pure. Pu-
rity of a set of builds B is defined as: pure?(B) ≡ |B| =
|domain(domain(B))|, with domain(R) = {x | 〈x,y〉 ∈ R}
Note that a set B contains tuples of the form 〈〈c,r〉, i〉, so
that domain(B) ⊆ State, and hence domain(domain(B)) ⊆
Components. In other words, a set of builds B is pure if there
are no two builds and/or revisions for the same component
contained in B.

The algorithms presented here ensure that Integration
is pure for every build. Formally this means ∀b ∈
Builds : pure?(Integration∗[b]). This invariant was intro-
duced in [19]. It ensures that the Integration relation can
be used to derive compositions for every build which is what
is delivered to users. If Integration would not have been pure
composition would be ambiguous: it could occur that two
builds used different versions for the same dependency,—
which one should be in the composition? This invariant is
used in Subsection 4.4 where backtracking is added to inte-
gration.

4.2. Schematic Integration Algorithm

Now that I have introduced the preliminary definitions, I
present a schematic version of an algorithm for continuous
integration in component-based development setting; it is
shown in pseudo-code in Algorithm 1. The input to the build
algorithm is the Snapshot, i.e. a relation between Revisions
and a number that identifies the build cycle. Since snapshots
are directed, acyclic graphs (DAGs) they have a topological
order. The topological order consist of a list of vertices in the
DAG, such that every dependency of vertex N comes before
N. The topological order of the snapshot is stored in variable
order on line 2.

Then, for each revision/source tree t in order (line 3) we
obtain a workingset for t (line 4). Workingsets consist of

Algorithm 1 Template for component-based integration
1: procedure INTEGRATE(i, Snapshot)
2: order← topological-sort(Snapshot)
3: for t ∈ order do
4: w← workingset(t)
5: if w is undefined then . “Not tried”
6: Failed← Failed∪{〈t, i〉}
7: continue
8: if build?(t,w) then
9: b← execute-build(i, t,w)

10: Builds← Builds∪{b}
11: Integration← Integration∪ ({b}×w)

builds (∈ Success) that will be used to satisfy the require-
ments of t (i.e. Requires[t]). The definition of workingset
is a parameter of this algorithm, as it captures the nature of
backtracking. For now, we just assume that it returns a valid
(i.e. pure) set of builds compatible to the requirements of t,
if any. Below I will present three versions of the function,
corresponding to the cases of no backtracking, simple back-
tracking and finally true backtracking.

If the function workingset is undefined (i.e. there are
no valid workingsets) the algorithm continues with the next
source tree in order. In this case the build of t is “not tried”.
Otherwise, w will be used in build i of t.

As Figure 2 and 3 showed, rebuilding a component us-
ing earlier dependencies occasionally amounts to duplicating
earlier builds of that same component. The build criterion
prevents this from occurring:

build?(t,w)≡ ¬∃b ∈ Builds :

tree(b) = t ∧ Integration+[b] = Integration∗[w]

This function takes a tree t and a workingset w and searches
Builds for an earlier build of t. If such a build is found, the
Integration relation is used to check whether the same (tran-
sitive) dependencies were used the algorithm is about to use
now via w. If the two closures are the same, building t against
w would mean duplicating an earlier build, and no build is re-
quired.

If, on the other hand, a build is required according to the
build criterion, t is built against workingset w by the function
execute-build on line 9. This function returns a new build
entity b which is either failed or successful. The following
lines update the software knowledge-base. First, b is added
to Builds1, then Integration is extended with tuples linking b
to each build in w since this captures how t has been built.

4.3. Incremental Continuous Integration
In this subsection I explain how the model just introduced,
can be used to do continuous integration in an incremental

1This entails that b is either added to Success or Failed.

fashion. This is done by presenting an implementation of
the workingset function referenced in Algorithm 1. Without
backtracking, this function can specified as follows:

workingset(t) = w

where
w = {〈t ′, i〉 ∈ Builds | t ′ ∈ T,¬∃〈t ′, j〉 ∈ Builds : j > i}
w⊆ Success

For every revision (required by t) in the current snapshot,
the working set contains the most recent build that has been
successful. So, the set of workingsets is defined as the edge
of the set of dependencies of t in the current snapshot if all
builds are successful.

A valid workingset should contain successful builds for
every component in the set Requires[t]. Because of topolog-
ical order, every dependency of t has an element in Builds.
This means, in turn, that the workingset contains the (glob-
ally) most recent build for those dependencies. However, if
it contains a failed build, it makes no sense to proceed with
building t. In that case t is added to the Failure part of Builds
(see line 6 of Algorithm 1). This kind of failure—failure be-
cause dependencies have failed—is labeled with “not tried”.
It is precisely these kinds of failures that backtracking is de-
signed to mitigate.

If we turn our attention to Figure 1, we observe that the
only valid working sets in each cycle (indicated by sub-
scripts) are as follows:

workingset1(〈FS,1.0〉) = {}
workingset1(〈DB,1.0〉) = {〈〈FS,1.0〉,1〉}
workingset1(〈App,1.0〉) = {〈〈DB,1.0〉,1〉,〈〈FS,1.0〉,1〉}
workingset2(〈App,1.1〉) = {〈〈DB,1.0〉,1〉,〈〈FS,1.0〉,1〉}
workingset3(〈FS,1.1〉) = {}
workingset3(〈DB,1.1〉) = {〈〈FS,1.1〉,2〉}

The working sets are presented in the order of building, as
follows from the the topological order between component
revisions and the integration cycles.

4.4. Backtracking Incremental Continuous
Integration

In the previous section dependencies were resolved by taken
the latests builds out of Builds whether they had failed or not.
In this section I change the dependency resolution algorithm
in order to find the latest successful set of dependencies that
lead to consistent (i.e. pure) integration. In the following I
discuss two ways of backtracking: simple backtracking and
true backtracking.

4.4.1. Formalization of Simple Backtracking

The simplest approach to find such a set is to look at earlier
builds of the same component we are resolving the depen-
dencies for. If an earlier successful build exists, then that

build used successful dependencies. Since all built artifacts
can be reproduced at all times, the dependencies of that ear-
lier build could be used. In this case the workingset is com-
puted as follows:

workingset(t) = w

where
t = 〈c,v〉, t ′ = 〈c,v′〉,〈t ′, i〉 ∈ Success,

¬∃〈〈c,v′′〉, j〉 ∈ Success : j > i,

w = Integration[t ′],Requires[t ′] = Requires[t]

In other words, the set of successful builds is searched for the
most recent build t ′ of the component of t (i.e. c). For this
build the working set is retrieved from the Integration rela-
tion. Because the requirements of t may have changed since
t ′—requirements declarations are part of the source tree—we
explicitly require that t and t ′ have the same requirements.

By induction on the sequencing of builds (i.e. in time and
topological ordering of build) we know that the workingset w
is pure because build 〈t ′, i〉 is, and therefore w can be used to
build t. As a consequence purity of Integration is maintained.
If no workingset w is found, the build of t still fails with “not
tried”.

Simple backtracking has been implemented as part of the
Sisyphus continuous integration system [20]. How actual
continuous integration performance is affected by this strat-
egy is discussed in Section 5.

4.4.2. Formalization of True Backtracking

Let’s state the problem more precisely. Assume we are build-
ing a source tree t. The objective is to find the most recent
set of successful builds D for resolving the declared depen-
dencies of t. Normally the dependencies used will be the
builds for Snapshot[t], as they have been built already due to
the topological order. But since these builds may have failed
this requirement is weakened, that is, we are looking for any
most recent set of successful builds for each component in
Requires[t] such that building t against D is pure.

If the builds for the dependent trees in the current snap-
shot did actually succeed, the following algorithm will select
these builds as D nevertheless. Thus, if all builds succeed, no
currency is lost with respect to the normal dependency reso-
lution algorithm.

Next I will present a formal version of selecting the most
recent set D that can be used to build a tree t. It operates by
computing all combinations of successful builds for each of
the components in Requires[t] and then selecting the newest
combination. Formally, this reads:

workingsets(t) = ∏
c∈Requires[t]

{〈〈c,v〉, i〉 ∈ Success}

The function workingsets returns all workingset candidates
that could be used for building source tree t. However, this

could contain invalid permutations that would cause the build
of t to become impure.

If we consider Figure 3 again, it can be seen that this algo-
rithm returns the following sets of workingsets in the fourth
integration cycle for component revision App 1.1:

workingsets4(〈App,1.1〉) = {
{〈〈DB,1.0〉,1〉,〈〈FS,1.0〉,1〉},
{〈〈DB,1.0〉,1〉,〈〈FS,1.1〉,3〉},
{〈〈DB,1.2〉,4〉,〈〈FS,1.0〉,1〉},
{〈〈DB,1.2〉,4〉,〈〈FS,1.1〉,3〉}
}

The second and third workingsets lead to impure integrations
of App 1.1. This is a consequence of the fact that the FS ver-
sion in those workingets (resp. 1.1 and 1.0) are not the ver-
sions that have been used in the builds of DB (cf. Figure 3).
Therefore, App 1.1 cannot be built using those workingsets.
To fix the problem, the Integration relation is used to filter
out the workingsets leading to impurity. This leads to the fi-
nal version of workingset which implements true backtrack-
ing:

workingset(t) = w

where
w ∈ workingsets(t),
pure?(Integration∗[w]),
w is most recent

Now it is clear that, the third workingset leads to impure in-
tegration:

pure?(Integration∗[{〈〈DB,1.2〉,4〉,〈〈FS,1.0〉,1〉}])
≡ pure?({〈〈DB,1.2〉,4〉,〈〈FS,1.0〉,1〉,〈FS,1.1〉,3〉}

≡ 4 = 3≡⊥

Whether one workingset is more recent than another
can be determined as follows. Since builds in Builds
are totally ordered (in time), subsets w ⊆ Builds can be
sorted such that builds that are more recent come up front.
Whether one working set is newer than another is deter-
mined by defining a lexicographic order on the sorted work-
ingsets. In the example above it then follows that workingset
{〈〈DB,1.2〉,4〉,〈〈FS,1.1〉,3〉} is the most recent one.

4.4.3. Efficient Implementation

The generalized product used to find all permutations that
could serve as a working set is very expensive. The number
of workingsets increases very fast so this is no feasible way
of implementation. In this subsection I describe an algorithm
to generate all workingsets incrementally. By ordering builds

Algorithm 2 Incremental search for the latest working set
1: function WORKINGSET(t)
2: cursor← |Success|−1
3: loop
4: w← /0; i← 0; todo← Requires[t]
5: while todo 6= /0 do
6: if cursor− i < 0 then return nil
7: b← Successcursor−i
8: c← component(tree(b))
9: if c ∈ todo then

10: w← w∪{b}
11: todo← todo\{c}
12: i← i+1
13: if pure?(Integration∗[w]) then
14: return w
15: cursor← cursor−1

in decreasing temporal order, only the workingsets have to be
generated that come before the one that will be used.

The algorithm is displayed in Algorithm 2. The func-
tion WORKINGSET takes a source tree t and incrementally
searches for a valid working set in order to build it. It does
this by maintaining a cursor that indicates the start of a
search window over the set of successful builds (Success).
Builds are ordered in time so that Success0 is the first build
maintained by the system, and Success|Success|−1 is the last
build. The cursor is moved from the last build downwards
towards the first one in the outer loop (line 3) of the algo-
rithm.

In the body of the loop the variable todo is initialized with
the components we have to find builds for, i.e., the compo-
nents required by t (line 4). Additionally, the current work-
ingset w is initialized to be empty and a cursor within the
window will be 0 (i).

The inner loop (line 5) iterates over every successful
build in the current search window as long as todo is non-
empty. A successful build is retrieved by indexing Success
on cursor − i. If this index is below zero, however, we
have exhaustively searched through Success without finding
a suitable workingset, so we fail by returning the empty set
(line 6). Otherwise, b will contain the ith build in the current
search window (starting at cursor). If the component of this
build b (c) is in todo, it is added to the current workingset
w and c is removed from todo. Upon normal loop exit, todo
is empty and w represents a workingset candidate. If the ex-
tent of w through Integration is pure, the workingset candi-
date is valid and w is returned as the result of WORKINGSET
(line 14). Because the search window is moved downwards,
we postulate that if a workingset is found, it will be the most
recent one. Otherwise, if w is not valid, the search window
is moved down one position and the outer loop starts anew.

Figure 4. Automatically generated integration
graph of the pandora subsystem of the ASF+SDF
Meta-Environment

5. Evaluation

I have validated the simple form of backtracking in the con-
text of the Sisyphus continuous integration and release sys-
tem [20]. True backtracking has been implemented just re-
cently and as a consequence no interesting data is available
yet. However, the implementation of simple backtracking
has delivered fruitful results.

To evaluate simple backtracking, I have compared build
statistics derived from the database maintained by Sisyphus
over two consecutive periods of 32 weeks. During this pe-
riod Sisyphus continuously integrated the ASF+SDF Meta-
Environment [17]. The Meta-Environment is an integrated
development environment for developing source code analy-
sis and transformation tools. It consists of around 60 compo-
nents and is implemented in Java, C, and several domain spe-
cific languages. Figure 4 shows an example integration graph
of a subsystem of the Meta-Environment, called pandora.
The nodes represent successful builds, and the edges repre-
sent dependencies between those builds. The clusterering of
nodes indicate build cycles. The figure shows that certain
builds are used across build cycles.

General statistics about the two periods of time are col-
lected in Table 1. In this table I have counted the number
of revisions, the number of successful builds, the number
of failed build and the number “not tried” builds. The total
number of builds is shown as well. Although in the period
that simple backtracking was enabled, the number of com-
ponent revisions was one third fewer than in the previous

No backtracking Simple backtracking
#Revisions 1497 1025
#Success 11565 9391
#Failure 1074 507
#“Not tried” 4499 1163
#Builds 17138 11061

Table 1. Build statistics over two consecutive peri-
ods of time of 32 weeks

period, the number of failed builds has decreased by roughly
43% and the number of “not tried” builds has decreased even
stronger, by around 74%. These absolute numbers suggest
that on average the build feedback has improved consider-
ably.

The amount of not tried builds per component is depen-
dent on the component architecture of the system and how
the architecture evolves. For instance, a component that has
no dependencies will never be “not tried”. The consequence
of this is that “not tried”-ness has a cumulative effect if there
is no backtracking. If a component build fails, every com-
ponent requiring that build, transitively, will be assigned the
status of “not tried”. Clearly there is considerable gain if this
can be avoided.

To show the propagating effect of build failures I have
plotted the number of revisions, successes, failures, “not
trieds” and builds per component to see how these num-
bers relate to the position of a component in the dependency
graph. The plot for the first period—no backtracking—is
shown in Figure 5. The X-axis of this plot represents the
different components of the Meta-Environment. They are
sorted according to the total number of builds. This way of
ordering components is a raw estimate of position in the de-
pendency graph. If this dependency graph would have been
stable, this ordering corresponds to the topological sort of
the graph. However, components are added and removed,
and dependency relations may change in between integration
cycles. It would therefore make no sense to use the topolog-
ical sort. A similar plot for the second period of time, with
simple backtracking enabled, is displayed in Figure 6.

If we compare the two figures, what stands out the
most is that the number of builds (total, success, failed and
“not tried”) in the period without backtracking grows much
steeper than in the period of backtracking if the components
are higher up in the dependency graph. A second observa-
tion is the relative large and growing distance between the
number of total and successful builds. This is precisely the
cumulative effect of build failures.

In the period with simple backtracking, however, as dis-
played in Figure 6, the build figures grow much slower and
the distance between the total number of builds and the num-
ber of successful builds is more or less constant. In ad-

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30 35 40 45 50

C
o

u
n

t

Components

Revisions
Total

Success
Failed

Not tried

Figure 5. Build results without backtracking

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30 35 40 45 50

C
o

u
n

t

Components

Revisions
Total

Success
Failed

Not tried

Figure 6. Build results with simple backtracking

dition, the line indicated “not tried” builds is almost flat.
This means that even the simple form of backtracking al-
most completely eliminates the problem of build failure as
an impediment to delivery. These results do not say any-
thing about whether the actual integrations are optimal with
respect to up-to-dateness. Still, changes could be missed in
an integration.

6. Related Work & Conclusion

6.1. Related Work

Continuous integration has received very little attention from
the research community; we only know of Dolstra [6], who
describes the use of the deployment system Nix as a con-
tinuous integration system with similar goals as Sisyphus.
Additionally, Lippert et al. [11] describe the implementation

of a continuous integration system as means for realizing the
practice of continuous integration. The lack of attention is
surprising since there exists a host of continuous integra-
tion systems, both commercial and freely available. Unfortu-
nately no empirical data on the assumed merit of continuous
integration seems to be available as of today although it is
widely considered to be a best practice [2, 8, 13].

Incremental building, or selective recompilation, goes
back to Make [7] and has been researched quite vigorously;
see e.g. [4, 10]. This work, however, mostly considers de-
pendencies on the level of files. Determining whether a file
requires recompilation mostly involves checking timestamps
of cryptographic hashes. In this work, however, we com-
pare actual revisions of version control system (VCS) to a
database storing accurate bills of materials of all past builds.

Build optimization is another area of related work.
Caching builds [16], distributing builds [14] and build par-
alellization [1], header restructuring [21] and precompila-
tion [22] mostly optimize towards minimizing resource con-
sumption. In this paper I try to optimize towards improved
feedback and maximum release opportunity. Of course, both
goals are not mutually exclusive.

6.2. Conclusion
The subject of this paper is to improve automatic continu-
ous integration in component-based development settings in
order to maximize feedback and maximize release opportu-
nity. I introduced an algorithm for incremental continuous
integration and subsequently extended it with “simple back-
tracking” and “true backtracking” to make the integration
process more resilient with respect to build failures. Finally
I discussed some empirical results that were obtained from
a running implementation of simple backtracking. These re-
sults show that even the simple backtracking algorithm al-
most completely neutralizes the cumulative effect of build
failures. Future work will have to show how true backtrack-
ing improves this situation. The true backtracking algorithm
is still highly experimental and will require further study in
order to positively claim that it behaves as expected. Addi-
tionally, it is not clear what the worst-case complexity of the
algorithm is.

References
[1] E. H. Baalbergen. Design and implementation of parallel make. Com-

puting Systems, 1(2):135–158, 1988.

[2] K. Beck and C. Andres. Extreme Programming Explained: Embrace
Change (2nd Edition). Addison-Wesley, 2004.

[3] D. E. Bellagio and T. J. Milligan. Software Configuration Manage-
ment Strategies and IBM Rational ClearCase. A Practical Introduc-
tion. IBM Press, 2nd edition, 2005.

[4] E. Borison. A model of software manufacture. In Proceedings of
the IFIP International Workshop on Advanced Programming Environ-
ments, pages 197–220, Trondheim, Norway, June 1987.

[5] B. Collins-Sussman, B. W. Fitzpatrick, and C. M. Pilato. Version
Control with Subversion. O’Reilly Media, 2004. Online: http:
//svnbook.red-bean.com/.

[6] E. Dolstra. The Purely Functional Software Deployment Model. PhD
thesis, Faculty of Science, University of Utrecht, 2006.

[7] S. I. Feldman. Make – A program for maintaining computer programs.
Software – Practice and Experience, 9(3):255–265, Mar. 1979.

[8] M. Fowler and M. Foemmel. Continuous integration. Online:
http://martinfowler.com/articles/continuousIntegration.html, February
2007.

[9] J. Henstridge and H. Pennington. Pkgconfig. Online: http://
pkgconfig.freedesktop.org (May 2007).

[10] D. A. Lamb. Relations in software manufacture. Technical report, De-
partment of Computing and Information Science, Queen’s University,
Kingston, Ontario K7L 3N6, october 1994.

[11] M. Lippert, S. Roock, R. Tunkel, and H. Wolf. Extreme Programming
Perspectives, chapter Stabilizing the XP Process Using Specialized
Tools. XP Series. Addison-Wesley, 2002.

[12] H. Mather. Bills of Materials. Dow Jones-Irwin, 1987.

[13] S. McConnell. Daily build and smoke test. IEEE Software, 13(4), July
1996.

[14] M. Pool. DistCC, a fast free distributed compiler. In Proceedings of
linux.conf.au, 2004.

[15] D. E. Rogerson. Inside COM. Microsoft’s Component Object Model.
Microsoft Press, 1997.

[16] E. Thiele. CompilerCache. http://www.erikyyy.de/
compilercache.

[17] M. van den Brand, M. Bruntink, G. Economopoulos, H. de Jong,
P. Klint, T. Kooiker, T. van der Storm, and J. Vinju. Using The Meta-
environment for Maintenance and Renovation. In Proceedings of the
Conference on Software Maintenance and Reengineering (CSMR’07).
IEEE Computer Society Press, 2007.

[18] M. van den Brand, A. Kooiker, J. Vinju, and N. Veerman. A Language
Independent Framework for Context-sensitive Formatting. In CSMR
’06: Proceedings of the Conference on Software Maintenance and
Reengineering, pages 103–112, Washington, DC, USA, 2006. IEEE
Computer Society Press.

[19] T. van der Storm. Continuous release and upgrade of component-
based software. In E. J. Whitehead, Jr. and A. P. Dahlqvist, editors,
Proceedings of the 12th International Workshop on Software Configu-
ration Management (SCM-12), pages 41–57, 2005.

[20] T. van der Storm. The Sisyphus continuous integration system. In
Proceedings of the Conference on Software Maintenance and Reengi-
neering (CSMR’07), pages 335–336. IEEE Computer Society Press,
2007.

[21] Y. Yu, H. Dayani-Fard, and J. Mylopoulos. Removing false code de-
pendencies to speedup software build processes. In Proceedings of the
2003 conference of the Centre for Advanced Studies on Collaborative
Research (CASCON), pages 343–352, 2003.

[22] Y. Yu, H. Dayani-Fard, J. Mylopoulos, and P. Andritsos. Reduc-
ing build time through precompilations for evolving large software.
In 21st IEEE International Conference on Software Maintenance
(ICSM), pages 59–68, 2005.

