
ChromaKey: Towards Extensible Reflective Architectures

Pablo Inostroza
Centrum Wiskunde & Informatica, The Netherlands

pvaldera@cwi.nl

Tijs van der Storm
Centrum Wiskunde & Informatica, The Netherlands

storm@cwi.nl

Abstract
Reflection allows programmers to inspect and modify the
structural and runtime properties of a software system. Tra-
ditionally, the architecture of a reflective system has been
a monolithic part of the runtime system, featuring a fixed
semantics. Mirror-based reflective architectures decouple the
base-level entities from their meta-level counterparts. In this
work, we explore ChromaKey, a design to go yet one step
further. ChromaKey enables the user to extend the reflective
system in two dimensions: the semantics of reflective objects
and reflection on syntax extensions of the host language. The
first axis decouples the reflective system from a specific mir-
ror interface. The second axis allows existing hierarchies of
reflective objects to be extended. The key component is a
generic reflecting component that “parses” class definitions
according to a given semantics, specified by generic factories
(Object Algebras).

1. Introduction
Reflection allows programmers to inspect and modify the
structure and behavior of programs. In object-oriented sys-
tems, this applies to the structure of objects and classes (field,
methods), and operations on objects (field access, field update,
method invocation).

Well-known reflective architectures couple base-level ob-
jects with their meta-level counterparts. In Java, for instance,
the getClass() method (that gives access to a reified class,
and through it, to Java’s reflective facilities) is part of the
interface of an Object. In 2004, Bracha and Ungar proposed
mirror-based architectures to decouple the base level from the
reflective meta level. This allows VM programmers to pro-
vide different implementations for the reflective capabilities,
as long as they conform to the mirror interfaces.

In this paper we explore ChromaKey, a mirror-based de-
sign that goes one step further, by decoupling the reflective
system from predefined mirror interface. This allows pro-
grammers to supplant the reflective system with completely
new hierarchies of “mirror”-like objects, for purposes that
may go beyond the traditional use cases of reflection.

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0).

Meta’16 October 30, 2016, Amsterdam, Netherlands
Copyright c© 2016 held by owner/author(s).

Code example #i
fa

ce

#i
m

pl

E
xt

en
si

bl
e?

Standard Class cls=
object.getClass(); 1 1 no

Mirrors
ClassMirror clsMir =
Ref.reflectCls(cls); 1 n no

ChromaKey MyClassMir chrKey=
Ref.reflectCls(cls, sem); n n yes

Table 1. Comparison of different reflective architectural
styles, showing a code snippet for reifying a class; the
number of different interfaces that a reification can produce;
the number of supported implementations; and whether the
design supports reflecting upon language extensions.

This flexbility is summarized in Table 1. The two upper
rows of table show how the Java standard reflection model
compares to mirror-based architectures. The code snippet
in the second column shows how to obtain the reified rep-
resentation of a class. In traditional reflection, the number
of interfaces and implementations is fixed. In the case of
mirror-based interfaces, the number of implementations is
open-ended, but there still is a single interface.

The third row of Table 1 exemplifies ChromaKey. The
mirror-style reflectCls operation receives an additional factory
argument sem representing the custom semantics. The result-
ing reification can be of arbitrary type and does conform to
the mirror interface provided by the language. Thus, in addi-
tion to decoupling the implementation of meta objects from
the base level (as in mirror-based architectures), ChromaKey
also allows the interfaces of the reified objects to be changed.

Apart from decoupling the reflective system from a con-
crete interface hierarchy, ChromaKey supports a powerful
form of extensibility of reflective hierarchies. This has ap-
plications for extensible programming languages where the
built-in reflective system cannot anticipate all language con-
structs a programmer might want to reflect upon.

We first introduce the ChromaKey design (§2) to make
reflection more flexible by removing the “one-interface”
constraint of mirror-based architectures. We show how mirror-

http://creativecommons.org/licenses/by-nd/4.0/


// entry point for reflecting classes
<C,M,F,B> C reflect(Class c, ClassAlg<C, M, F, B> sem);

// type of "semantics factories" (Object Algebra)
interface ClassAlg<C, M, F, B> {
C Class(String name, List<M> members);
M Method(F formal, List<F> params, B body);
M Field(F formal);
F Formal(String name, Class type);
B Method(java.lang.reflect.Method m);

}

Figure 1. ChromaKey: generic reflect, parameterized by an
Object Algebra

based reflection falls out of the design, simply by instantiating
ChromaKey to produce mirror objects. After introducing the
architecture, we discuss examples of how custom semantics
enable different object structures for the reification (§2.2,
§2.3). In §2.4 we describe how ChromaKey provides for
reflection on language extensions. Finally we describe an
application of ChromaKey in §3, implementing Managed
Data in Java (Loh et al. 2012; Zacharopoulos et al. 2016).

2. ChromaKey
2.1 Design
The core idea behind ChromaKey is semantics-parametric
reflection, expressed by the definitions in Figure 1.

The reflect static method takes two parameters: the first
corresponds to the class that is being reflected, and the second
represents a generic factory object representing the semantics
that the reflection process uses when traversing the class
definition. The semantics is specified by implementing the
Object Algebra interface ClassAlg shown at the bottom (see
Oliveira and Cook 2012).

The methods of ClassAlg are called when constructing the
reflective representation of the class in question. The reflect
method acts as a custom “parser” of Java class definitions,
that outputs specific objects, depending on the semantics
specified by an implementation of the algebra. Because the
method reflect is generic, it represents a semantics-parametric
reifier. The implementation details of reflect are outside of
the scope of this paper. The following section gives examples
of how this design affords additional flexibility.

2.2 Regaining Original Mirrors
Using ChromaKey, it is naturally possible to regain the
original mirror-based design by implementing the ClassAlg in
such a way that mirror objects are produced that conform to
the existing mirror interface:

class JavaMirrors
implements ClassAlg<ClassMirror, MemberMirror,

FormalMirror, BodyMirror> {
...

}

JavaMirrors instantiates the generic interface ClassAlg to re-
turn objects conforming to the mirror interfaces (e.g., ClassMirror).
Given that the VM would provided causally connected im-
plementations of the mirror interfaces, it is now possible to
get mirror-based reflection facilities:

mirror = reflect(Point.class, new JavaMirrors());.

2.3 Alternative Semantics: Reflecting onto Strings
Since the semantics of reflection is now arbitrary, it is possible
to use the same generic infrastructure to “reflect” classes into
different kinds of object structure, possibly defined by the
programmer. For instance, classes could be reflected onto
text to inspect their syntactic contents. The following algebra
would achieve this:

class ToString implements ClassAlg<String,String,String,String> {
public String Class(String name, List<String> members) {
return "class " + name + "{" + ... + "}";

}
...

}

The following client code outputs a textual representation
of the class Point.

String s = reflect(Point.class, new ToString());
System.output.println(s) // outputs "class Point{ ... }"

2.4 Reflection in the Presence of Syntax Extension
As we have pointed out, the ChromaKey reflect method
supports a form of custom “parsing” of Java classes or
interfaces.

Consider, for instance, this hypothetical Java extension for
primary key fields:

class Person{
key String email;
String name;

}

In this class, the email field is tagged with the key modifier, but
this is a (user level) language extension. The base reflection
system does not know about this construct, so reflecting
Person would lead to an incorrect representation of the classes,
or worse, an error would be thrown.

ChromaKey leverages the extensibility of Object Algebras
to address this situation. First, we assume that reflect will map
unknown constructs (such as key) to specific methods in the
provided algebra. Second, both the algebraic interface (i.e.,
ClassAlg) and the factories need to be extended to deal with
the new construct.

First, the signature:

interface KeyAlg<C, M, F, B> extends ClassAlg<C, M, F, B> {
M Key(F formal);

}



Given this new interface, existing semantic factories can
be modularly extended as well. For instance, the ToString
factory is extended as follows:

class KeyToString extends ToString
implements KeyAlg<String, String, String, String> {

public String Key(String formal) {
return "key " + formal + ";";

}
}

Since KeyToString is a subtype of ClassAlg, it can be passed
to reflect:

String s = reflect(Person.class, new KeyToString());
// s = "class Person{ key String email; ... }"

In our proof-of-concept implementation of ChromaKey,
syntax extensions are realized through Java annotations. For
instance, the key modifier is represented as a @Key annotation.
Our reflect method interprets these annotations and calls the
Object Algebra methods using reflection. In future work we
will explore approaches where the reflect “parser” can be
made extensible as well, in the style of Biboudis et al. (2016).

3. Application: Managed Data
ChromaKey provides flexibility to the programmer to im-
plement custom reflection systems. However, supporting be-
havioral and structural intercession requires support from
the VM. In this section we sketch an approach based on
ChromaKey, which circumvents this problem by focusing on
Java 8 interfaces and dynamic proxies to implement powerful
forms of reflection semantics. One application area is man-
aged data, where the behavior of data objects is determined
by runtime interpreters of data descriptions (Loh et al. 2012;
Zacharopoulos et al. 2016).

For instance, a simple Point “class” could then be defined
as follows:

interface Point {
int x(int ...x);
int y(int ...y);

}

The x and y methods are intended as fields: calling them with
zero arguments is interpreted as field access, while calling
them with exactly one argument is interpreted as field update.

Managed Data interprets an interface like this as a descrip-
tion of a data structure, which is provided with an implemen-
tation by interpreting it at runtime. A simplified ChromaKey
implementation is shown in Figure 2. The interface Class is
the carrier type for class reflection; it declares a single method
New to create new objects. The class Managed implements
the ClassAlg binding the generic type parameters C and M to
Clazz and Member (which is not shown).

Whenever a class is reflected through Class a new Clazz
is returned which realizes New by creating a new proxy
for the Java class corresponding to name. The invocation

interface Clazz { Object New(Object ...args); }

class Managed implements ClassAlg<Clazz, Member, ...> {
public Clazz Class(String name, List<Member> members) {
Class cls = Class.forName(this.name);
return new Clazz() {

public Object New(Object ...args) {
return Proxy.newProxyInstance(cls.getClassLoader(),

new Class[] {cls}, manager(args, name, members));
}

};
}
...
protected InvocationHandler

manager(Object[] args, String n, List<Member> ms) {
return new DefaultManager(args, n, ms);

}
}

class DefaultManager implements InvocationHandler {
...
@Override
public Object invoke(Object p, Method m, Object[] args) {
... // emulate method invocation.

}
protected void setField(String x, Object val) {...}

}

Figure 2. Instantiating ChromaKey to implement Managed
Data

handler is obtained through the extension point manager,
which in this case returns a DefaultManager.DefaultManager
implements the InvocationHandler interface to intercept any
method invocation. It will parse the requests and then delegate
to various helper methods such as setField. This architecture
resembles the design of mirages (Mostinckx et al. 2007),
which are base objects whose semantics are defined by
mirrors. In our case, the proxy acts as the base object which
is backed by a mirror-like manager that defines the runtime
semantics.

Here is an example of how to create a simulated Point
object using this infrastructure:

Clazz point = reflect(Point.class, new Managed());
Point p = (Point)point.New();
p.x(3) // Assigns 3 to the simulated field x

Simply emulating default Java behavior via interfaces and
proxies, however, does not provide much benefit. The point
is that the factories can be extended and modified through
inheritance. For instance, the following manager instruments
the setField method to log all assignments.

class LoggingManager extends DefaultManager {
@Override
protected void setField(String x, Object val) {
System.out.println("Assigning " + x);
super.setField(x, val);



}
}

This custom data manager can be inserted into ChromaKey
by override the manager method of Managed. For instance,
the above client code can be modified as follows in order to
produce a point object which log their field assignments:

Clazz point = reflect(Point.class, new Managed() {
protected InvocationHandler manager(...) {
return new LoggingManager(...);

}
});
Point p = (Point)point.New();
p.x(3) // Assigns 3 to x, and logs "Assigning x"

ChromaKey allows us to go yet one step further by
combining managed data with syntax extension as introduced
in §2.4. Let’s assume we want to support immutable fields,
which would be declared as follows:

interface Point2 {
immutable int x(int ...x);
immutable int y(int ...y);

}

The data manager should now reject assignment to the fields
x and y after they have been initialized. The pattern to
implement this, is a combination of a key-like extension of
ClassAlg (see §2.4) and overriding the setField method.

The following code shows how the simulation of const
works in practice:

Clazz point = reflect(Point2.class, new ImmManaged());
Point2 p = (Point2)point.New();
p.x(2) // initializes x to 2
p.x(3) // throws exception since "field" is immutable

4. Open Questions
Reflecting on Objects Mirror-based reflection architecture
also support the creation of object mirrors, obtained directly
from an object. Object mirrors are an aspect of mirror systems
that is orthogonal to ChromaKey. In essence, ChromaKey
requires some base, “source like” representation, the structure
of which is defined in the Object Algebra interface. It is
currently unclear whether this makes sense to do for the
structure of an actual object as well.

Type safety and Generic Mirrors Looking at the signature
of reflect one may observe that the types do not track the
actual type of the the class that is reflected on. Unfortunately,
Java’s type system lacks type constructor polymorphism
which is needed to accurately represent this. In pseudo-
notation, the signature would then be:

<T, C<_>, M, F, B> C<T> reflect(Class<T> c,
ClassAlg<C<T>, M, F, B> alg);

An additional consequence is that our implementation of
managed data requires down-casts when invoking the New

method. We are currently experimenting with a technique
to simulate higher-kinded polymorphism in Java (Biboudis
et al. 2015), which provides type safety at the cost of con-
siderably boilerplate. Further research is needed to explore
the ramifications of this encoding for the other aspects of
ChromaKey, such as extensibility.

Applications Our primary goal is to design reflective capa-
bilities for extensible languages where the runtime behavior
of objects can be (re)defined by the programmer. It is instruc-
tive to ponder whether ChromaKey has other applications,
besides managed data. Arguably, reflecting class definitions
on to text might not be very useful. We expect, however,
that reflecting on to different class hierarchies has numerous
applications in defining custom views, translations, or edi-
tors for class definitions. A key question, however, is how
much causality the host language would allow in order to
manipulate class definitions through these derived views.

5. Conclusion
We have introduced ChromaKey, an extensible design for
mirror-based reflection APIs. ChromaKey allows program-
mers to define a custom canvas for reflecting classes on.
Instantiating ChromaKey using a given mirror hierarchy
produces the regular, mirror-based reflection design. Thus,
mirror-based reflection can be seen as but a special case
of ChromaKey. In addition to decoupling the reflective sys-
tem from the meta object type hierarchy, the pattern sup-
ports reflecting on classes which use language construct not
anticipated by the built-in reflection. As such, ChromaKey
can be seen as first step toward reflection for (user) exten-
sible languages. The key component behind ChromaKey is
a semantics-parametric reifier that generically builds class
representations based on factories (Object Algebras).

References
A. Biboudis, N. Palladinos, G. Fourtounis, and Y. Smaragdakis.

Streams a la carte: Extensible pipelines with object algebras. In
ECOOP, pages 591–613, 2015.

A. Biboudis, P. Inostroza, and T. van der Storm. Recaf: Java dialects
as libraries. In GPCE. ACM, 2016.

G. Bracha and D. Ungar. Mirrors: design principles for meta-level
facilities of object-oriented programming languages. In OOPSLA,
pages 331–344, 2004.

A. Loh, T. van der Storm, and W. R. Cook. Managed data: modular
strategies for data abstraction. In Onward!, pages 179–194.
ACM, 2012.

S. Mostinckx, T. Van Cutsem, S. Timbermont, and E. Tanter.
Mirages: Behavioral intercession in a mirror-based architecture.
DLS ’07. ACM, 2007.

B. C. d. S. Oliveira and W. R. Cook. Extensibility for the masses:
practical extensibility with Object Algebras. In ECOOP, pages
2–27. Springer, 2012.

T. Zacharopoulos, P. Inostroza, and T. van der Storm. Extensible
modeling with managed data in Java. In GPCE. ACM, 2016.


	Introduction
	ChromaKey
	Design
	Regaining Original Mirrors
	Alternative Semantics: Reflecting onto Strings
	Reflection in the Presence of Syntax Extension

	Application: Managed Data
	Open Questions
	Conclusion

