Continuous Release and Upgrade of
Component-Based Software*

Tijs van der Storm

Centrum voor Wiskunde en Informatica (CWI)
P.O. Box 94079, 1090 GB Amsterdam
The Netherlands, storm@cwi.nl

Abstract. We show how under certain assumptions, the release and de-
livery of software updates can be automated in the context of component-
based systems. These updates allow features or fixes to be delivered to
users more quickly. Furthermore, user feedback is more accurate, thus
enabling quicker response to defects encountered in the field.

Based on a formal product model we extend the process of continuous
integration to enable the agile and automatic release of software compo-
nents component. From such releases traceable and incremental updates
are derived.

We have validated our solution with a prototype tool that computes and
delivers updates for a component-based software system developed at
CWL

1 Introduction

Software vendors are interested in delivering bug-free software to their customers
as soon as possible. Recently, ACM Queue devoted an issue to update manage-
ment. This can be seen as a sign of an increased awareness that software updates
can be a major competitive advantage. Moreover, the editorial of the issue [7],
raised the question of how to deliver updates in a component-based fashion. This
way, users only get the features they require and they do not have to engage in
obtaining large, monolithic, destabilizing updates.

We present and analyse a technique to automatically produce updates for
component-based systems from build and testing processes. Based on knowledge
extracted from these processes and formal reasoning it is possible to generate
incremental updates.

Updates are produced on a per-component basis. They contain fine-grained
bills of materials, recording version information and dependency information.
Users are free to choose whether they accept an upgrade or not within the
bounds of consistency. They can be up-to-date at any time without additional
overhead from development. Moreover, continuous upgrading enables continuous
user feedback, allowing development to respond more quickly to software bugs.

The contributions of this paper are:

* This work was sponsored in part by the Netherlands Organisation for Scientific
Research, NWO, Jacquard project DELIVER.

— An analysis of the technical aspects of component-based release and update
management.

— The formalisation of this problem domain using the relational calculus. The
result is a formal, versioned product model [4].

— The design of a continuous release and update system based on this formal-
isation

The organisation of this paper is as follows. In Section 2 we will elaborate
on the problem domain. The concepts of continuous release and upgrade are
motivated and we give an overview of our solution. Section 3 presents the for-
malisation of continuous integration and continuous release in the form of a
versioned product model. It will be used in the subsequent section to derive con-
tinuous updates (Section 4). Section 5 discusses the prototype tool that we have
developed to validate the product model in practice. In Section 6 we discuss links
to related work. Finally, we present a conclusion and list directions for future
work in Section 7.

2 Problem Statement

2.1 Motivation

Component-based releasing presumes that a component can be released only
if its dependencies are released [18]. Often, the version number of a released
component and its dependencies are specified in some file (such as an RPM
spec file [1]). If a component is released, the declaration of its version number
is updated, as well as the declaration of its dependencies, since such dependen-
cies always refer to released components as well. This makes component-based
releasing a recursive process.

There is an substantial cost associated with this way of releasing. The more
often a dependent component is released, the more often components depending
on it should be released to take advantage of the additional quality of func-
tionality contained in it. Furthermore, on every release of a dependency, all
components that use it should be integration tested with it, before they can be
released themselves.

We have observed that in practice the tendency is to not release components
in a component-based way, but instead release all components at once when
the largest composition is scheduled to be released. So instead of releasing each
component independently, as suggested by the independent evolution history of
each component, there implicitly exists a practice of big-bang releasing (which
inherits all the perils of big-bang integration?!).

One could argue, that such big-bang releases go against the philosophy of
component-based development. If all components are released at once as part of
a whole (the system or application), then it is unlikely that there ever are two
components that depend on different versions of the same component. Version

! See http://c2.com/cgi/wiki?IntegrationHell for a discussion.

—]
‘ Continuous Update Update
Release RKB Server Client

Fig. 1. Continuous Release Architecture

il

numbers of released components can thus be considered to be only informative
annotations that help users in interpreting the status of a release. They have no
distinguishing power, but nevertheless produce a lot of overhead when a release
is brought out.

So we face a dilemma: either we release each component separately and re-
lease costs go up (due to the recursive nature of component-based releasing). Or
we release all components at once, which is error-prone and tends to be carried
out much less frequently.

Our aim in this paper is to explore a technical solution to arrive at feasible
compromise. This means that we sacrifice the ability to maintain different ver-
sions of a component in parallel, for a more agile, less error-prone release process.
The assumption of one relevant version, the current one, allows us to automate
the release process by a continuous integration system. Every time a component
changes it is integrated and released. From these releases we are then able to
compute incremental updates.

2.2 Solution Overview

The basic architecture of our solution is depicted in Fig. 1. We assume the
presence of a version control system (VCS). This system is polled for changes
by the continuous release system. Every time there is a change, it builds and
tests the components that are affected by the change. As such the continuous
release process subsumes continuous integration [6]. In this paper, we mean by
“integration” the process of building and testing a set of related components.

Every component revision that passes integration is released. Its version is
simply its revision number in the version control system. The dependencies of a
released component are also released revisions. The system explicitly keeps track
of against which revisions of its declared dependencies it passed the integration.
This knowledge is stored in a release knowledge base (RKB). Note that integrated
component revisions could pass through one or more quality assurance stages
before they are delivered to users. Such policies can easily be superimposed on
the continuous release system described in this paper.

The RKB is queried by the update server to compute updates from releases.
Such updates are incremental relative to a certain user configuration. The up-
dates are then delivered to users over the internet.

Requires

*

Attempt Revision Component

T I

*

Success j History

Integration

Fig. 2. Continuous Integration Component Model

3 Continuous Release

3.1 Component Model

Our formalisation is based on the calculus of binary relations [16]. This means
that essential concepts are modelled as sets and relations between these sets.
Reasoning is applied by evaluating standard set operations and relational oper-
ations.

We will now present the sets and relations that model the evolution and
dependencies of a set of components. In the second part of this section we will
present the continuous release algorithm that takes this versioned product model
as input. As a reference, the complete model is displayed in a UML like notation
in Fig. 2.

The most basic set is the set of components Component. It contains an ele-
ment for each component that is developed by a certain organisation or team.
Note that we abstract from the fact that this set is not stable over time; new
components may be created and existing components may be retired.

To model the evolution of each component we define the set of component
revisions as follows:

Revision C Component x N

This set contains tuples (C, i) where C' is a component and ¢ is a revision iden-
tifier. What such an identifier looks like depends on the Version Control System
(VCS) that is used to store the sources of the components. For instance, in the
case of CVS this will be a date identifying the moment in time that the last com-
mit occurred on the module containing the component’s sources. If Subversion
is used, however, this identifier will be a plain integer identifying the revision
of one whole source tree. To abstract from implementation details we will use
natural numbers as revision identifiers. A tuple (C,) is called a “(component)
revision”.

A revision records the state of a component. It identifies the sources of a
component during a period of time. Since it is necessary to know when a certain
component has changed, and we want to abstract from the specific form of

revision identifiers, we model the history of a component explicitly. This is done
using the relation History, which records the revision a component has at a
certain moment in time:

History C Time x (Component x Revision)

This relation is used to determine the state of a set of components at a certain
moment in time. By taking the image of this relation for a certain time, we get
for each component in Component the revision it had at that time.

Components may have dependencies which may evolve because they are part
of the component. We assume that the dependencies are specified in a designated
file within the source tree of a component. As a consequence, whenever this file
is changed (e.g., a dependency is added), then, by implication, the component
as a whole changes.

The dependencies in the dependency file do not contain version information.
If they would, then, every time a dependency component changes, the declaration
of this dependency would have to be changed; this is not feasible in practice.
Moreover, since the package file is part of the source tree of a component, such
changes quickly ripple through the complete set of components, increasing the
effort to keep versioned dependencies in sync.

The dependency relation that can be derived from the dependency files is a
relation between component revisions and components:

Requires C Revision x Component

Requires has Revision as its domain, since dependencies are part of the evolution
history of a component; they may change between revisions. For a single revision,
however, the set of dependencies is always the same.

The final relation that is needed, is a relation between revisions, denoting the
actual dependency graph at certain moment in time. It can be computed from
Requires and History. It relates a moment in time and two revisions:

Depends C Time x (Revision x Revision)

A tuple (¢, (4;, B;)) € Depends means that at point in time ¢, the dependency
of A; on B referred to Bj; that is: (4;, B) € Requires and (¢, (B, B;)) € History.

3.2 Towards Continuous Release

A continuous integration system polls the version control system for recent com-
mits and if something has changed, builds all components that are affected by it.
After each integration, the system usually generates a website containing results
and statistics. In this section we formalise and extend the concept of continuous
integration to obtain a continuous release system.

The continuous release system operates by populating three relations. The
first two are relations between a number identifying an integration attempt and

Algorithm 1 Continuous Integration
1: procedure INTEGRATECONTINUOUSLY

2: 1:=0

3 loop

4 deps := Depends[now]

5: changed := carrier(deps) \ range(Attempt)
6: if changed # {} then

7 todo := deps™'*[changed)

8: order := reverse(topsort(deps)) N todo
9: INTEGRATEMANY (4, order, deps)

10: 1:=1+1

11: end if

12: end loop
13: end procedure

a component revision:

Attempt C N x Revision
Success C Attempt

Elements in Success indicate successful integrations of component revisions,
whereas Attempt records attempts at integration that may have failed. Note
that Success is included in Attempt.

The second relation records how a component was integrated:

Integration C Success x Success

Integration is a dependency relation between successful integrations. A tuple
({(z,7), (j,s)) means that revision r was successfully integrated in iteration i
against s, which, at the time of ¢ was a dependency of r. Revision s was success-
fully integrated in iteration j < i. The fact that j < i conveys the intuition that
a component can never be integrated against dependencies that have been inte-
grated later. However, it is possible that a previous integration of a dependency
can be reused. Consider the situation that there are two component revisions A
and A’ which both depend on B in iterations 7 and ¢ + 1. First A is integrated
against the successful integration of B in iteration . Then, in iteration i+ 1, we
only have to integrate A’ because B did not change in between ¢ and 7 + 1. This
means that the integration of B in iteration ¢ can be reused.

We will now present the algorithms to compute Success, Attempt and Integration.
In these algorithms all capitalised variables are considered to be global; perhaps
it is most intuitive to view them as part of a persistent database, the RKB.

Algorithm 1 displays the top-level continuous integration algorithm in pseudo-
code. Since continuous integration is assumed to run forever, the main part of
the procedure is a single infinite loop.

The first part of the loop is concerned with determining what has changed.
We first determine the dependency graph at the current moment in time. This

Algorithm 2 Integrate components

1: procedure INTEGRATEMANY (i, order, deps)
2: for each r in order do

3: D := {(i,d) € Attempt | d € deps[r],~3(j,d) € Attempt : j > i}
4: if D C Success then

5: if INTEGRATEONE(r, D) = success then

6: Success := Success U {(7, r)}

7 Integration := Integration U ({(¢, r)} x D)

8: end if

9: end if

10: Attempt := Attempt U {(¢, r)}

11: end for
12: end procedure

is done by taking the (right) image of relation Depends for the current moment
of time (indicated by now). The variable deps represents the current depen-
dency graph; it is a relation between component revisions. Then, to compute
the set of changed components in changed, all component revisions occurring in
the dependency graph for which integration previously has been attempted, are
filtered out at line 5. Recall that Attempt is a relation between integers (integra-
tion identifiers) and revisions. Therefore, taking the range of Attempt gives us
all revisions that have successfully or unsuccessfully been integrated before.

If no component has changed in between the previous iteration and the cur-
rent one, all nodes in the current dependency graph (deps) will be in the range of
Attempt. As a consequence changed will be empty, and nothing has to be done.
If a change in some component did occur, we are left with all revisions for which
integration never has been attempted before.

If the set changed is non-empty, we determine the set of component revi-
sions that have to be (re)integrated at line 7. The set changed contains all
revisions that have changed themselves, but all current revisions that depend
on the revisions in changed should be integrated again as well. These so-called
co-dependencies are computed by taking the image of changed on the transitive-
reflexive closure of the inverse dependency graph. Inverting the dependency
graph gives the co-dependency relation. Computing the transitive-reflexive clo-
sure of this relation and taking the image of changed gives all component revi-
sions that (transitively) depend on a revision in changed including the revisions
in changed themselves. The set todo thus contains all revisions that have to be
rebuilt.

The order of integrating the component revisions in todo is determined by the
topological sort of the dependency graph deps. For any directed acyclic graph
the topological sort (topsort in the algorithm) gives a partial order on the nodes
of the graph such that, if there is an edge (z,y), then z will come before y. Since
dependencies should be integrated before the revisions that depends on them,
the order produced by topsort is reversed.

Fig. 3. Six iterations of integration

The topological order of the dependency graph contains all revisions partic-
ipating in it. Since we only have to integrate the ones in todo, the order is (list)
intersected with it. So, at line 8, the list order contains each revision in todo in
the proper integration order.

Finally, at line 9, the function INTEGRATEMANY is invoked which performs
the actual integration of each revision in order. After INTEGRATEMANY finishes,
the iteration counter i is incremented.

The procedure INTEGRATEMANY, displayed as Alg. 2, receives the current
iteration %, the ordered list of revisions to be integrated and the current depen-
dency graph. The procedure loops over each consecutive revision r in order, and
tries to integrate r with the most recently attempted integrations of the depen-
dencies of . These dependencies are computed from deps at line 3. There may
be multiple integration attempts for these dependencies, so we take the ones
with the highest 4, that is: from the most recent iteration.

At line 4 the actual integration of a single revision starts, but only if the
set D is contained in Success, since it is useless to start the integration if some
of the dependencies failed to integrate. If there are successful integrations of all
dependencies, the function INTEGRATEONE takes care for the actual integration
(i.e. build, smoke, test etc.). We don’t show the definition of INTEGRATEONE
since it is specific to one’s build setup (e.g. build tools, programming language,
platform, searchpaths etc.). If the integration of r turns out to be successful, the
relations Success and Integration are updated.

3.3 A Sample Run

To illustrate how the algorithm works, and what kind of information is recorded
in Integration, let’s consider an example. Assume there are three components,
A, B,C. The dependencies are so that A depends on B and C, and B depends
on C. Assume further that these dependencies do not evolve.

Figure 3 shows six iterations of INTEGRATECONTINUOUSLY, indicated by the
vertical swimlanes. In the figure, a dashed circle means that a component has
evolved in between swimlanes, and therefore needs to be integrated. Shaded
circles and dashed arrows indicate that the integration of a revision has failed.

So, in the first iteration, the current revisions of A, B, and C have to be
integrated, since there is no earlier integration. In the second iteration, however,
component C' has changed into C’, and both A and B have remained the same.
Since A and B depend on C’, both have to be reintegrated.

The third iteration introduces a change in A. Since no component depends
on A’ at this point, only A’ has to be reintegrated. In this case, the integrations
of B and C in the previous iteration are reused.

Then, between the third and the fourth iteration B evolves into B’. Since
A’ depends on B’, it should be reintegrated, but still the earlier integration of
C' can be reused. In the next iteration B’ evolves into B”. Again, A’ should
be reintegrated, but now it fails. The trigger of the failure is in B’ or in the
interaction of B’ and C’. We cannot be sure that the bug that triggered the
failure is in the changed component B”. It might be so, that a valid change in
B might produce a bug in A’ due to unexpected interaction with C’. Therefore,
only complete integrations can be reused.

Finally, in the last iteration, it was found out that the bug was in A’, due to
an invalid assumption. This has been fixed, and now A" successfully integrates
with B” and C’.

4 Continuous Upgrade

4.1 Release Packages

In this section we will describe how to derive incremental updates from the sets
Success and Integration. Every element (i,r) € Success represents a release i of
revision 7. The set of revisions that go into an update derived from a release,
the release package, is defined as:

package(s) = range(Integration™[s])

This function returns the bill of materials for a release s € Success.

As an example, consider Fig. 4. It shows the two release packages for com-
ponent A’. They differ in the choice between revisions B and B’. Since a release
package contains accurate revision information it is possible to compare a re-
lease package to an installed configuration and compute the difference between
the current state (user configuration) and the desired state (a release package).

If ugrades are to be delivered automatically they have to satisfy a number
of properties. We will discuss each property in turn and assert that the release
packages derived from the RKB satisfy it.

Correctness Releases should contain software that is correct according to some
criterion. In this paper we used integration testing as a criterion. It can be seen
from the algorithm INTEGRATEMANY that only successfully integrated compo-
nents are released.

Fig. 4. Two release packages for A’

Completeness A component release should contain all updates of its dependen-
cies if they are required according to the correctness criterion. In our compo-
nent model, the source tree of each component contains a special file explicitly
declaring the dependencies of that component. If a dependency is missed, the
integration of the component will fail. Therefore, every release will reference all
of its released dependencies in Integration.

Traceability It should be possible to relate a release to what is installed at the
user’s site in a precise way. It is for this reason that release version numbers
are equated with revision numbers. Thus, every installed release can be traced
back to the sources it was built from. Tracing release to source code enables the
derivation of incremental updates.

Determinism Updating a component should be unambiguous; this means that
they can be applied without user intervention. This implies that there cannot
be two revisions of the same component in one release package. More formally,
this can be stated as a knowledge base invariant. First, let:

components(s) = domain(package(s))
The invariant that should be maintained now reads:
Vs € Success : |package(s)| = |components(s)]
We have empirically verified that our continuous release algorithm preserves this

invariant. Proving this is left as future work.

4.2 Deriving Updates

The basic use case for updating a component is as follows. The sofware vendor
advertises to its customers that a new release of a product is available [9]. De-
pending on certain considerations (e.g. added features, criticality, licensing etc.)

the customer can decide to update to this new release. This generally means
downloading a package or a patch associated to the release and installing it.

In our setting, a release of a product is identified by a successful integration
of a top component. There may be multiple releases for a single revision r due
to the evolution of dependencies of r. The user can decide to obtain the new
release based on the changes that a component (or one of its dependencies) has
gone through. So, a release of an application component is best described by the
changes in all its (transitive) dependencies.

To update a user installation one has to find a suitable release. If we start
with the set of all releases (Success), we can apply a number of constraints to
reduce this set to (eventually) a singleton that fits the requirements of a user.

For instance, assume the user has installed the release identified by the first
iteration in Fig. 3. This entails that she has component revisions A, B, and C
installed at her site.

The set of all releases is {1,2,3,4,5,6}. The following kinds of constraints
express policy decisions that guide the search for a suitable release.

— State constraints: newer or older than some date or version. In the example:
“newer than A”. This leaves us with: {3,4,5,6}.

— Update constraints: never remove, or patch, or a add, a certain (set of)
component(s). For example: “preserve the A component”. The set reduces
to: {3,4,6}.

— Trade-offs: conservative or progressive updates, minimizing bandwidth and
maximizing up-to-dateness respectively. If the conservative update is chosen,
release 3 will be used,—otherwise 6.

If release 3 is used, only the patch between C' and C’ has to be transferred
and applied. On the other hand, if release 6 is chosen, patches from B to B”
and A to A” have to be deployed as well.

5 Implementation

We have validated our formalisation of continuous release in the context the
AsF+SDF Meta-Environment [17], developed within our group SEN1 at CWL
The Meta-Environment is a software system for the definition of programming
languages and generic software transformations. It consists of around 25 com-
ponents, implemented in C, Java and several domain specific languages. The
validation was done by implementing a prototype tool called Sisyphus. It is im-
plemented in Ruby? and consists of approximately 1000 source lines of code,
including the SQL schema for the RKB.

In the first stage Sisyphus polls the CVS repository for changes. If the repos-
itory has changed since the last iteration, it computes the Depends relation
based on the current state of the repository. This relation is stored in a SQLite?
database.

2 www.ruby-lang.org
3 www.sqlite.org

The second stage consists of running the algorithm described in Sect. 3. Every
component that needs integration is built and tested. Updates to the relations
Attempt, Succes and Integration are stored in the database.

We let Sisyphus reproduce a part of the build history of a sub-component
of the AsF+SDF Meta-Environment: a generic pretty-printer called pandora.
This tool consists of eight components that are maintained in our group. The
approximate size of pandora including its dependencies is =190 KLOC. The
Sisyphus system integrated the components on a weekly basis over the period of
one year (2004). From the database we were then able to generate a graphical
depiction of all release packages. In the future we plan to deploy the Sisyphus
system to build and release the complete ASF+SDF Meta-Environement.

A snapshot of the generated graph is depicted in Fig. 5. The graph is similar
to Fig. 3, only it abstracts from version information. Shown are three integration
iterations, 22, 23, and 24. In each column, the bottom component designates the
minimum changeset inbetween iterations.

Iteration 22 shows a complete integration of all components, triggered by
a change in the bottom component aterm. In iteration 23 we see that only
pt-support and components that depend on it have been rebuilt, reusing the
integration of error-support, tide-support, toolbuslib and aterm.

The third iteration (24) reuses some of these component integrations, namely:
tide-support, toolbuslib and aterm. The integration of component error-
support is not reused because it evolved in between iteration 23 and 24. Note
that the integration of pt-support from iteration 23 cannot be reused here since
it depends on the changed component error-support.

6 Related Work

6.1 Update Management

Our work clearly belongs to the area of update management. For an overview
of existing tools and techniques we refer to [9]. Our approach differs from the
techniques surveyed in that paper, mainly in the way how component releases
and the updates derived from them are linked to a continuous integration process.

The package deployment system Nix [3] also automatically produces updates
for components. This system uses cryptographic hashes on all inputs (including
compilers, operating system, processor architecture etc.) to the build process to
identify the state of a component. In fact this more aggressive than our approach,
since we only use revision identifiers.

Another difference is that Nix is a generic deployment system similar to De-
bian’s Advanced Package Tool [15], Redhat’s RPM [1] and the Gentoo/BSD
ports [14,20] systems. This means that it works best if all software is deployed
using it. Our approach does not prohibit that different deployment models peace-
fully coexist, although not across compositions.

Updates produced by Nix are always non-destructive. This means that an
update will never break installed components by overwriting a dependency. A

24

error-support error-support

Fig. 5. Three weekly releases of the pandora pretty printing component in 2004

consequence of this is that the deployment model is more invasive. Our updates
are always destructive, and therefore the reasoning needed to guarantee the
preservation of certain properties of the user configuration is more complex.
Nevertheless, this makes the deployment of updates simpler since no side-by-
side installation of different versions of the same component is needed.

6.2 Relation Calculus

The relational calculus [16] has been used in the context of program under-
standing (e.g. [10,12]), analysis of software architecture [8, 5], and configuration
management [11, 2]. However, we think that use of the relational calculus for the
formalisation of continuous integration and release is novel.

Our approach is closest to Bertrand Meyer’s proposal to use the calculus
for a software knowledge base (SKB). In [13] he proposes to store relations
among programming artifacts (e.g., sources, functions) in an SKB to support the
software process. Many of the relations he considers can be derived by analyzing
software artifacts. Our approach differs in that respect that only a minimum of
artifacts have to be analyzed: the dependencies between components that are
specified somewhere. Another distinction is that our SKB is populated by a
software program. Apart from the specification of dependencies, no intervention
from development is needed.

7 Conclusion and Future Work

Proper update management can be a serious advantage of software vendors
over their comptetitors. In this paper we have analysed how to successfully and
quickly produce and deploy such updates, without incurring additional overhead
for development or release managers.

We have analysed technical aspects of continuous integration in a setting of
component-based development. This formalisation is the starting point for con-
tinously releasing components and deriving updates from it that are guaranteed
to have passed integration testing.

Finally we have developed a prototype tool to validate the approach against
the component repository of a medium-sized software system, the ASF+SDF
Meta-Environment. It proved that the releases produced are correct with respect
to the integration predicate.

As future work we will consider making our approach more expressive and
flexible, by adding dimensions of complexity. First, the approach discussed in this
paper assumes that all components are developed in-house. It would be inter-
esting to be able to transparently deal with third-party components, especially
in the context of open source software.

Another interesting direction concerns the notion of variability. Software com-
ponents that expose variability can be configured in different ways according to
different requirements [19]. The question is how this interacts with automatic
component releases. The configuration space may be very large, and the inte-
gration process must take the binding variation points into account. Adding
variation to our approach would, however, enable the delivery of updates for
product families.

Finally, in many cases it is desirable that different users or departments use
different kinds of releases. One could imagine discerning different levels of release,
such as alpha, beta, testing, stable etc. Such stages could direct component
revisions through an organisation, starting with development, and ending with
actual users. We conjecture that our formalisation and method of formalisation
are good starting points for more elaborate component life cycle management.

Acknowledgements Gratitude goes to Paul Klint, Jurgen Vinju and Gerco
Ballintijn, who suggested important improvements to drafts of this paper. We
thank the anonymous referees for providing many insightful comments.

References

1. E. C. Bailey. Mazimum RPM. Taking the Red Hat Package Manager to the Limit.
Red Hat, Inc., 2000. Online: http://www.rpm.org/max-rpm (August 2005).

2. E. Borison. A model of software manufacture. In Proceedings of the IFIP In-
ternational Workshop on Advanced Programming Environments, pages 197-220,
Trondheim, Norway, June 1987.

=~

10.

11.

12.

13.

14.
15.

16.
17.

18.

19.

20.

. E. Dolstra, M. de Jonge, and E. Visser. Nix: A safe and policy-free system for soft-

ware deployment. In Lee Damon, editor, 18th Large Installation System Admin-
istration Conference (LISA ’04), pages 79-92, Atlanta, Georgia, USA, November
2004. USENIX.

J. Estublier, J.-M. Favre, and P. Morat. Toward SCM / PDM integration? In
Proceedings of the Eighth International Symposium on System Configuration Man-
agement (SCM-8), 1998.

L. Feijs, R. Krikhaar, and R. van Ommering. A relational approach to support
software architecture analysis. Software Practice and Ezperience, 4(28):371-400,
April 1998.

M. Fowler and M. Foemmel. Continuous integration. Available at: http://www.
martinfowler.com/articles/continuousIntegration.html (February 2005).

E. Grossman. An update on software updates. ACM Queue, March 2005.

R. C. Holt. Structural manipulations of software architecture using tarski rela-
tional algebra. In Proceedings of the Working Conference on Reverse Engineering
(WCRE’98), 1998.

S. Jansen, G. Ballintijn, and S. Brinkkemper. A process framework and typology for
software product updaters. In 9th European Conference on Software Maintenance
and Reengineering (CSMR), 2005.

P. Klint. How understanding and restructuring differ from compiling—a rewriting
perspective. In Proc. of the 11th International Workshop on Program Comprehen-
sion (IWPC03), pages 2-12. IEEE Computer Society, 2003.

D. A. Lamb. Relations in software manufacture. Technical report, Department of
Computing and Information Science, Queen’s University, Kingston, Ontario K7L
3N6, october 1994.

M. A. Linton. Implementing relational views of programs. In P. Henderson, editor,
Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium
on Practical Software Development Environments, pages 132—-140, Pittsburgh, PA,
May 1984. Association for Computing Machinery, Association for Computing Ma-
chinery.

B. Meyer. The software knowledge base. In Proc. of the 8th Intl. Conf. on Software
Engineering, pages 158-165. IEEE Computer Society Press, 1985.

FreeBSD Ports. Online: http://www.freebsd.org/ports (August 2005).

G. Noronha Silva. APT HOWTO. Debian, 2004. Online: http://www.debian.
org/doc/manuals/apt-howto/index.en.html (August 2005).

A. Tarski. On the calculus of relations. J. Symbolic Logic, 6:73-89, 1941.

M. G. J. van den Brand, A. van Deursen, J. Heering, H. A. de Jong, M. de Jonge,
T. Kuipers, P. Klint, L. Moonen, P. A. Olivier, J. Scheerder, J. J. Vinju, E. Visser,
and J. Visser. The ASF+SDF Meta-Environment: a Component-Based Language
Development Environment. In R. Wilhelm, editor, Compiler Construction (CC
’01), volume 2027 of Lecture Notes in Computer Science, pages 365-370. Springer-
Verlag, 2001.

A. van der Hoek and A. L. Wolf. Software release management for component-
based software. Software— Practice and Ezxperience, 33(1):77-98, 2003.

T. van der Storm. Variability and component composition. In J. Bosch and
C. Krueger, editors, Software Reuse: Methods, Techniques and Tools: 8th Interna-
tional Conference (ICSR-8), volume 3107 of Lecture Notes in Computer Science,
pages 86—-100. Springer, June 2004.

S. Vermeulen, R. Marples, D. Robbins, C. Houser, and J. Alexandratos. Work-
ing with Portage. Gentoo. Online: http://www.gentoo.org/doc/en/handbook/
handbook-x86.xml?part=3 (August 2005).

