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ENSO

Don't Design Your Programs, Program Your Designs

http://www.enso-lang.org/
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Text to objects and back

start Opened
state Opened
on close go Closed
state Closed
on open go Opened
on lock go Locked
state Locked
on unlock go Closed

:Machine

start machine
states states states

:State

:State

:State

name: "Opened"

name: "Closed"

name: "Locked"

from’

out

A4

to

inv

from
out

:Transition

event: "open"

: Transition

to ¢
fro

event: "close"

to from
m .
Ig] out

:Transition

event: "unlock"

to

\L,in

: Transition

out

event: "lock"
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Object Grammars

® |nterleave grammar with data binding
® object construction
® field assignment
® predicates
® Bind to paths in to create cross references

® Formatting hints to guide pretty printing
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Points

P ::= [Point] "(" x:int "," y:1int ")"
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Points

P ::= [Point] "(" x:int "," y:int ")"
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Points

Field binding

P ::= [Point] "(" x:int "," y:int ")"
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Points

Field binding Built-in primitives

P ::= [Point] "(" x:int "," y:int ")"
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Points

Field binding Built-in primitives

P ::= [Point] "(" x:int "," y:int ")"

T — B
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Points

Field binding Built-in primitives

§
T — B
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Points

Field binding Built-in primitives

\* ‘v
B — T —
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Points

Field binding Built-in primitives

P ::= [Point] "(" x:1int "," y:int ")"

< \/ v
class Point x: int vy: 1int
T — T
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ExXp ::

Expressions

Binary] lhs:Exp op:
Binary] lhs:Exp op:

Const] value:int
11 ( ]| EXp ]| ) ]|

"+" rhs:Exp
"x" rhs:Exp

class Exp

class Binary < Exp
op: str
lhs: Exp
rhs: Exp

class Const < Exp
value: int
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Expressions

Both + and * become

Binary objects

Exp ::= [Binary] lhs:Exp op:"+" rhs:Exp

Binary] lhs:Exp op:"*" rhs:Exp

‘Const] value:int

] ( ] EXp 11 ) 11 C'Lass EXp

class Binary < Exp
op: str
lhs: Exp
rhs: Exp

class Const < Exp

value: int

I ———
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Expressions

Both + and * become

EXp ::

Binary objects

Binary] lhs:Exp op:"+" rhs:Exp
Binary] lhs:Exp op:"*" rhs:Exp

‘Const] value:int

] ( ] EXp 11 ) 11 c1ass EXp

class Binary < Exp
op: str
lhs: Exp
introduce objects rhs: Exp

class Const < Exp

Parentheses don’t

value: int

B —
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Expressions

Refactored grammar

for disambiguation

Term ::= [Binary] lhs:Term op:"+" rhs:Fact
| Fact
Fact ::= [Binary] Llhs:Fact op:"x" rhs:Prim
|  Prim
_ ] class Exp
Prim ::= [Const] value:int class Binary < Exp
| ||(|| Term ||)|| op: str
lhs: Exp
rhs: Exp

class Const < Exp
value: 1int

B ——
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State

start Opened
state Opened

on close go Closed
state Closed

on open go Opened

on lock go Locked
state Locked

on unlock go Closed

machines

:Machine
start machine
states states states
:State :State :State

name: "Opened"

name: "Closed"

name: "Locked"

romd O from¢$  |to ? to fom | 1o
from \
iny out in out
:Transition :Transition
event: "open" event: "unlock"
out .
Q in
: Transition : Transition

event: "close"

out | event: "lock"
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The object grammar

M ::= [Machine] "start" start:</states[it]> states:Sx
S ::= [State] "state" name:sym out:Tx

T ::= [Transition] "on" event:sym "go" to:</states[1it]>
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Creating the spine

start Opened
state Opened
on close go Closed
state Closed
on open go Opened
on lock go Locked
state Locked
on unlock go Closed

:Machine

:State

:State

machine
states states states

-State

name: "Opened"

name: "Closed"

name: "Locked"

from’ from ¢ from
from
out out
:Transition :Transition
event: "open" event: "unlock"
out
\4
: Transition : Transition
>
event: "close" out | event: "lock"
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Creating the spine

start Opened
state Opened
on close go Closed
state Closed
on open go Opened
on lock go Locked
state Locked
on unlock go Closed

h maChIne
states states states

:Machine

:State

:State

-State

name: "Opened"

name: "Closed"

name: "Locked"

from’ from ¢ from
from
out out
:Transition :Transition
event: "open" event: "unlock"
out
\4
: Transition : Transition
>
event: "close" out | event: "lock"
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Creating the spine

4 N /_\ :Machine

start Opened %f machine
S t at e O p ene d states tates states

:State :State :State
on C-LOSG go C-LOSEd name: "Opened" name: "Closed" name: "Locked"
state Closed trom? ffomf f’ lfrom
rom
on open go Opened out out
:Transition :Transition
on lock go Locked —— ——
out event: "open event: "unlock
state Locked v
: iti : T iti
on unlock go Closed Transition _ ransition
event: "close" out | event: "lock"
g J
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Creating the spine

4 N /_\ :Machine

start Opened Jf machine
state O p ene d states tates states

:State :State :State
(OI‘I C-LOSG go C-LOSEd name: "Opened" name: "Closed" name: "Locked"
state Closed P ffomf f’ lfrom
rom
on open go Opened out out
:Transition :Transition
on lock go Locked —— ———
out event: "open event: "unlock
state Locked v
: iti : T iti
on unlock go Closed Transition o ransition
event: "close" out | event: "lock"
g J
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Creating the spine

-

start Opened

-

\_

state Opened

(on close go Closed

:Machine

machine
StateS States

-

state Closed
on open go Opened
on lock go Locked

state Locked
on unlock go Closed

-State

-State

name: "Closed"

name: "Locked"

from ¢ from
from
out out
:Transition :Transition
event: "open" event: "unlock"
\4
: Transition : Transition
>

event: "close" out | event: "lock"
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Creating the spine

-

start Opened

-

\_

state Opened

(on close go Closed

:Machine

machine
StateS States

-

state Closed
(on open go Opened:)

on lock go Locked

state Locked
on unlock go Closed

-State

-State

name: "Closed"

name: "Locked"

from ¢ from
from
out out
:Transition :Transition
event: "open" event: "unlock"
: Transition : Transition
>

event: "close" out | event: "lock"

Monday, October 1, 12



-

start Opened

‘state Opened

L (bn close go Closed

state Closed

(on open go Opened:)

_ (on lock go Locked )

state Locked
on unlock go Closed

Creating the spine

/_\ :Machine

machine
states states

-State

-State

name: "Closed"

fro

m ¢
from
out

:Transition

from
out

nt: "open"”

: Transition

event: "close"

:Transition

event: "unlock"

name: "Locked"

: Transition

out

event: "lock"
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Creating the spine

P
start Opened

_—

:Machine

f machine
tates states

- states
state 0 PENE d :State \ :State :State
(OI‘I C-LOSG go C-LOSEd name=&pened" ' name; osed" name: "Locked"
‘state Closed trom fro f’ ymm
rom
(on open go Opened:) out
-' :Transition :Transition
(on lock go Locked:)
N\ avent: "open” event: "unlock"
(state Locked “
: iti : T iti
on unlock go ClOSGd Transition o ransition
. J event: "close" out | event: "lock"
g

Monday, October 1, 12




Creating the spine

-

start Opened

‘state Opened

(bn close go Closed

state Closed

(on open go Opened:)

_ (on lock go Locked:)

state Locked

(on unlock go Closed

J

_—

:Machine

f machine
tates states

states
:State \ :State :State
-1/
nameg®&pened" name; osed" name: "Locked"
from fro ? from
from
out

-' :Transition
m avent: "opeps

: Transition

event: "close"

:Transition

event: "unlock"

: Transition

out

event: "lock"
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Cross links

start Opened

p
state Opened

_ (on close go Closed:)
state Closed
(on open go Opened

_ (on lock go Locked
'state Locked
(on unlock go Closed)

~N

J
N
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Cross links

start Opened ™
state Opened

_ (on close go Closed:)
state Closed
(on open go Opened

_ (on lock go Locked
'state Locked
(on unlock go Closed)

~N

J
N
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Cross links

start Opened ™

p
state Opened

J

_ (on close go Closed

AN

‘state Closed

(on open go Opened

_ (on lock go Locked

VAN

‘state Locked

)

(on unlock go Closed

J
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Cross links

start Opened ™

p
state Opened

~N

_ (on close go Closed )

‘state Closed

_ (on lock go Locked)

(on open go Opened-—

J

‘state Locked

~N

)

(on unlock go Closed

J
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Cross links

start Opened ™
state Opened

~N

_ (on close go Closed )
'state Closed )
(on open go Opened-—
\» (on lock go Locked9\>
'state Locked

(on unlock go Closed)
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Cross links

start Opened ™

p
state Opened

~N

_ (on close go Closed )

‘state Closed

\

(on open go Opened-—
(on lock go Locked9\>

‘state Locked

(on unlock go Closed

J
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Object path to find

the start state with
name It

[Machine] "start" \start:g/states[iti} states:Sx

=
Il

S ::= [State] "state" name:sym out:Tx

T ::= [Transition] "on" event:sym "go" to:e/states[iti}
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Paths

® Navigate the resulting model along
® Fields
® Collections (keyed, positional)

® NB: model may not be finished yet
® Paths may traverse cross links too

® |terative fix point

Monday, October 1, 12



A path

use the parsed
identifier as key

navigate

start at :
INtOo states

/states[1t]

the root

Paths can also start at current object (.) or parent (..)

e e




Creating cross links

start Opened
state Opened
on close go Closed
state Closed
on open go Opened
on lock go Locked
state Locked
on unlock go Closed

:Machine

start machine
states states states

:State :State :State
name: "Opened" name: "Closed" name: "Locked"
¢
from’ to from to to from o
_ from \
Ny out In out
:Transition :Transition
event: "open" event: "unlock"
out in
\4 \4
: Transition : Transition
< >
event: "close" in out | event: "lock"
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Creating cross links

start (Opened)
state Opened

on close go Closed
state Closed

on open go Opened

on lock go Locked
state Locked

on unlock go Closed

:Machine

start machine
states states states

:State :State :State
name: "Opened" name: "Closed" name: "Locked"
¢
from’ to from to to from o
_ from \
Ny out In out
:Transition :Transition
event: "open" event: "unlock"
out in
\4 \4
: Transition : Transition
< >
event: "close" in out | event: "lock"
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Creating cross links

.........................................................

state Opened

on close go Closed
state Closed

on open go Opened

on lock go Locked
state Locked

on unlock go Closed

start
states

:Machine

machine
StateS states

:State

:State

:State

name: "Opened"

name: "Closed"

name: "Locked"

¢

from to from to to from o
_ from \
Iny out In out

:Transition :Transition

event: "open" event: "unlock"

out in

\2 \4
: Transition : Transition
< >
event: "close" in out | event: "lock"
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Creating cross links

.........................................................

state Opened

on close go Closed
state Closed

on open go Opened

on lock go Locked
state Locked

on unlock go Closed

el machine
StateS states

:State

:State

name: "Opened"

name: "Closed"

name: "Locked"

¢
from to from to to from o
from \
iny out in out
:Transition :Transition
event: "open" event: "unlock"
out in
\2 \4
: Transition : Transition
< >
event: "close" in out | event: "lock"
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Creating cross links

.........................................................

state Opened

on close go Closed
state Closed

on open go Opened

on lock go Locked
state Locked

on unlock go Closed

machine
StateS states

start —iill
statge

:State

:State

name: "Opened"

name: "Closed"

name: "Locked"

from

out

/

to from
inV out

:Transition

event: "open"

: Transition

to

event: "close" in

fr

? \to from | to
m .
I out
:Transition
event: "unlock"
: Transition
out | event: "lock"
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Creating cross links

.........................................................

state Opened

on close go Closed
state Closed

on open go Opened

on lock go Locked
state Locked

on unlock go Closed

start
states

:Machine

machine
StateS states

:State

:State

:State

name: "Opened"

name: "Closed"

name: "Locked"

¢

from to from to to from o
_ from \
Iny out In out

:Transition :Transition

event: "open" event: "unlock"

out in

\2 \4
: Transition : Transition
< >
event: "close" in out | event: "lock"
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Creating cross links

.........................................................

state Opened

on close go (Closed)
state Closed

on open go Opened

on lock go Locked
state Locked

on unlock go Closed

start
states

:Machine

machine
StateS states

:State

:State

:State

name: "Opened"

name: "Closed"

name: "Locked"

¢

from to from to to from o
_ from \
Iny out In out

:Transition :Transition

event: "open" event: "unlock"

out in

\2 \4
: Transition : Transition
< >
event: "close" in out | event: "lock"
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Creating cross links

.........................................................

state Closed
on open go Opened
on lock go Locked
state Locked
on unlock go Closed

start
states

:Machine

machine
StateS states

:State

:State

:State

name: "Opened"

name: "Closed"

name: "Locked"

from

out
\4

to from
inV out

:Transition

event: "open"

: Transition

to

event: "close" in

¢

fr

to from | to
m .
I out
:Transition
event: "unlock"

: Transition

~

out | event: "lock"
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Creating cross links

.........................................................

state Closed
on open go Opened
on lock go Locked
state Locked
on unlock go Closed

start
states

:State

:Machine

machine

states

-State

:State

name: "Opened"

name: "Closed"

name: "Locked"

from to

out
\4

from
inV out

:Transition

event: "open"

: Transition

to

event: "close"

? \to from | to
from \
I out
:Transition
event: "unlock"
: Transition
out | event: "lock"
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Creating cross links

.........................................................

state Closed
on open go Opened
on lock go Locked
state Locked
on unlock go Closed

start
states

:Machine

machine

states

:State

/

name: "Closed"

name: "Locked"

:Transition

event: "open"

: Transition

~

event: "close" in

to from | to
m .
I out
:Transition
event: "unlock"

: Transition

out | event: "lock"
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Creating cross links

.........................................................

start (Opened) | start:</states[“Opened”]> | —>l8tart

state Opened

state Closed
on open go Opened
on lock go Locked
state Locked
on unlock go Closed

:Machine

/ ‘&chme
tates states

:State

name: "Closed"

name: "Locked"

:Transition

event: "open"

: Transition

event: "close" in

to from | to
m .
I out
:Transition
event: "unlock"
: Transition
t | event: "lock"
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Creating cross links

.........................................................

start (Opened) | start:</states[“Opened”]> | —>l8tart

state Opened

state Closed nm#

on open go (Opened)

on lock go Locked
state Locked
on unlock go Closed

:Machine

/ ‘&chme
tates states

:State

:State

name: "Closed"

name: "Locked"

:Transition

event: "open"

out

\4

: Transition

to

event: "close" in

¢
fr

to from
m .
I out

:Transition

event: "unlock"

to

Vin

: Transition

ou

~V

event: "lock"
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Creating cross links

.........................................................

start (Opened) start:</states[“Opened”]> —— lStart
state

on lock go Locked
state Locked
on unlock go Closed

:Machine

:State

:State

machine
StateS states

:State

S
d" name: "Closed"

name: "Locked"

:Transition

event: "open"

out

\4

: Transition

to

event: "close" in

¢
fr

to from
m .
I out

:Transition

ev

ent: "unlock"

~

to

Vin

: Transition

out

event: "lock"
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Creating cross links

.........................................................

start (Opened)  start:</states[“Opened”]> | —— lStart

on lock go Locked
state Locked
on unlock go Closed

- machine
StateS states

:State

:State

name: "Closed"

name: "Locked"

:Transition

event: "open"

out

\4

: Transition

to

event: "close" in

¢
fr

to from
m .
I out

:Transition

ev

ent: "unlock"

~

to

Vin

: Transition

out

event: "lock"
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Creating cross links

.........................................................

start (Opened)  start:</states[“Opened”]> | —— lStart

on lock go Locked
state Locked
on unlock go Closed

- machine
StateS states

:State

:State

name: "Closed"

name: "Locked"

:Transition

event: "open"

: Transition

to

event: "close" in

¢
fr

to from
m .
I out

:Transition

ev

ent: "unlock"

~

to

Vin

: Transition

out

event: "lock"

Monday, October 1, 12



Creating cross links

.........................................................

start (Opened) start:</states[“Opened”]> —— lStart
state

on lock go Locked
state Locked
on unlock go Closed

:Machine

:State

:State

machine
StateS states

:State

S
d" name: "Closed"

name: "Locked"

:Transition

event: "open"

: Transition

to

event: "close" in

¢
fr

to from
m .
I out

:Transition

ev

ent: "unlock"

~

to

Vin

: Transition

out

event: "lock"
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Creating cross links

.........................................................

start (Opened) | start:</states[“Opened”]> | —>\L8tart

state Opened

on lock go(Locked)

state Locked
on unlock go Closed

:Machine

/ ‘&chme
tates states

:State

:State

name: "Closed"

name: "Locked"

:Transition

out

event: "open"

\4

: Transition

to

event: "close"

¢
fr

to from
m .
I out

:Transition

event: "unlock"

to

Vin

: Transition

ou

~V

event: "lock"
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Creating cross links

.........................................................

start (Opened) | start:</states[“Opened”]> | —>\L8tart

state Opened

state Locked
on unlock go Closed

:Machine

/ ‘&chme
tates states

:State

:State

name: "Closed"

name: "Locked"

:Transition

event: "open"

\4

: Transition

to

event: "close"

¢
fr

to from
m .
I out

:Transition

event: "unlock"

to

Vin

: Transition

ou

~V

event: "lock"
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Creating cross links

.........................................................

start (Opened) | start:</states[“Opened”]> | —>\L8tart

state Opened

:Machine

f[ates gl

:State

machine

name: "Closed"

name: "Locked"

"""""""""""""""""""""""""""""" :Transition

on lock go (Locked ﬁ&!@@é&%&&&%ﬁ | ovent. "open"
__________________________________________________ o

state Locked Y —
: Transition

to ¢ \to from
from
in out

:Transition

event: "unlock"

on unlock go Closed event: "close”

to

Vin

: Transition

~V

ou

event: "lock"
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Creating cross links

.........................................................

start (Opened) | start:</states[“Opened”]> | —»lStart

state Opened

:Machine
machine

fcates T A

:State . State

name: "Closed"

name: "Locked"

state Locked —
: Transition

to ¢ \to from
from
in out

event: "unlock"

to

Vin

on unlock go Closed event: "close”

: Transition

~V

out | event: "lock"
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Creating cross links

.........................................................

start (Opened) | start:</states[“Opened”]> | —>\L8tart

state Opened

:Machine

/ ‘Qchme
tates states

:State

:State

name: "Closed"

name: "Locked"

state Locked —
: Transition

to

on unlock go Closed event: "close”

¢
fr

to from | to
m .
I out
event: "unlock"

: Transition

~V

out | event: "lock"
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Creating cross links

.........................................................

start (Opened) | start:</states[“Opened”]> | —>\L8tart

state Opened

:Machine

/ ‘Qchme
tates states

:State

:State

name: "Closed"

name: "Locked"

state Locked —
: Transition

to

on unlock go (Closed) event: "close”

¢
fr

to from | to
m .
I out
event: "unlock"

: Transition

~V

out | event: "lock"
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Creating cross links

_________________________________________________________ :Machine

start (ODGHGCD i start: </states[“0pened”:|>§ —*\LStart / ‘%Chme
state Opened tates

states
:State :State :State

name: "Closed" name: "Locked"

state Closed from’ to ’mY lfrom o
in

fr

out

event: "unlock"

state Locked = = y in

' to: </states[“Closed”]> : Transition : Transition

on unlock go (Closed) event: "close” in out

~V

event: "lock"
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Creating cross links

.........................................................

start (Opened)  start:</states[“Opened”]> | —— lStart

State LOCked : ’
Ito</states[“Closed”]>

:Machine

[ machine
Rakiates states

.State

:State

name: "Closed"

name: "Locked"

: Transition

event: "close"

to from | to
m .
I out
event: "unlock"

/

: Transition

out

event: "lock"
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Creating cross links

________________________________________________________ :Machine
start (Opened) start:</states[“0pened”]>E —letart f”., ‘Qchine
L ;; ot
state Opened states il states
:State :State :State

name: "Closed" name: "Locked"

state Closed from? Y lfrom o

event: "unlock"

state Locked = = 0

?to:</states[“Closed”]>E : Transition

on un -l. OC k go (C -l. 0S ed) event: "close" in out/ event: "lock"
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Creating cross links

_________________________________________________________ :Machine

start (ODGHGCD i start: </states[“0pened”:|>§ —»ls"art / ‘%Chme
state Opened tates

states
:State :State :State

name: "Closed" name: "Locked"

state Closed from’ Y lfrom o

event: "unlock"

state Locked = = 0

 to: </states[“Closed”]> -
on unlock go (C-l-osed) event: "close" in out

: Transition

~V

event: "lock"
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Assessment

® Bi-directional & compositional
® Flexible:
® interleaved data binding
® path-based references & predicates

® formatting hints

® Self-described
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Composition in EnsO

| Path | Expr | > Command | | xmL |
l r I N i\ \l

‘ Grammar H Schema H Auth H Controller ‘ Stencil ‘ Web ‘
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Conclusion

® Object grammars: mapping text to objects
and vice versa

® Declarative paths for resolving cross-
references

® Flexible, bi-directional and compositional

® Foundation of EnsO
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ENSO

Don't Design Your Programs, Program Your Designs

http://www.enso-lang.org/
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