Object Grammars

Compositional & Bidirectional Mapping Between Text and Graphs

Tijs van der Storm,William R. Cook,Alex Loh

ww “““““ o UNIVERSITEIT VAN AMSTERDAM 7‘(INRIA l l /\ /\ \

E - NORD-EUROPE

Monday, October 1, 12

ENSO

Don't Design Your Programs, Program Your Designs

http://www.enso-lang.org/

Monday, October 1, 12

http://enso-lang.org/
http://enso-lang.org/

twrn off / shutDown

turn on / startup fail
ilure

turn off
{ shutDown

failure

fallure

[e
:ardlnscﬂodl Tm T
/

entry / readCard ”
exit / ejectCard -

Serving Customer \

—— =) -0
ModalRoot el ' ®
P
DependsOn b 0)
4DesignedFor l -

* [OAI = ! ™
Customer = * Ccabolract>
- 2 Ordard $ Pan JobSep
idert rders 1 EndsWithy '
P . partident e ' ident a -
addeass - partName Nome
: e
H N
Osder l I l Iy -0
orderNum
orderDate MachineStep FinishStep
Gquoentty machneType fnishType
w programicant panColor

Monday, October 1, 12

Text to objects and back

start Opened
state Opened
on close go Closed
state Closed
on open go Opened
on lock go Locked
state Locked
on unlock go Closed

:Machine

start machine
states states states

:State

:State

:State

name: "Opened"

name: "Closed"

name: "Locked"

from’

out

A4

to

inv

from
out

:Transition

event: "open"

: Transition

to ¢
fro

event: "close"

to from
m .
Ig] out

:Transition

event: "unlock"

to

\L,in

: Transition

out

event: "lock"

Monday, October 1, 12

Object Grammars

® |nterleave grammar with data binding
® object construction
® field assignment
® predicates
® Bind to paths in to create cross references

® Formatting hints to guide pretty printing

Monday, October 1, 12

Points

P ::= [Point] "(" x:int "," y:1int ")"

Monday, October 1, 12

Points

P ::= [Point] "(" x:int "," y:int ")"

Monday, October 1, 12

Points

Field binding

P ::= [Point] "(" x:int "," y:int ")"

Monday, October 1, 12

Points

Field binding Built-in primitives

P ::= [Point] "(" x:int "," y:int ")"

Monday, October 1, 12

Points

Field binding Built-in primitives

P ::= [Point] "(" x:int "," y:int ")"

T — B

Monday, October 1, 12

Points

Field binding Built-in primitives

§
T — B

Monday, October 1, 12

Points

Field binding Built-in primitives

* ‘v
B — T —

Monday, October 1, 12

Points

Field binding Built-in primitives

P ::= [Point] "(" x:1int "," y:int ")"

< \/ v
class Point x: int vy: 1int
T — T

Monday, October 1, 12

ExXp ::

Expressions

Binary] lhs:Exp op:
Binary] lhs:Exp op:

Const] value:int
11 (]| EXp]|)]|

"+" rhs:Exp
"x" rhs:Exp

class Exp

class Binary < Exp
op: str
lhs: Exp
rhs: Exp

class Const < Exp
value: int

Monday, October 1, 12

Expressions

Both + and * become

Binary objects

Exp ::= [Binary] lhs:Exp op:"+" rhs:Exp

Binary] lhs:Exp op:"*" rhs:Exp

‘Const] value:int

] (] EXp 11) 11 C'Lass EXp

class Binary < Exp
op: str
lhs: Exp
rhs: Exp

class Const < Exp

value: int

I ———

Monday, October 1, 12

Expressions

Both + and * become

EXp ::

Binary objects

Binary] lhs:Exp op:"+" rhs:Exp
Binary] lhs:Exp op:"*" rhs:Exp

‘Const] value:int

] (] EXp 11) 11 c1ass EXp

class Binary < Exp
op: str
lhs: Exp
introduce objects rhs: Exp

class Const < Exp

Parentheses don’t

value: int

B —

Monday, October 1, 12

Expressions

Refactored grammar

for disambiguation

Term ::= [Binary] lhs:Term op:"+" rhs:Fact
| Fact
Fact ::= [Binary] Llhs:Fact op:"x" rhs:Prim
| Prim
_] class Exp
Prim ::= [Const] value:int class Binary < Exp
| ||(|| Term ||)|| op: str
lhs: Exp
rhs: Exp

class Const < Exp
value: 1int

B ——

Monday, October 1, 12

State

start Opened
state Opened

on close go Closed
state Closed

on open go Opened

on lock go Locked
state Locked

on unlock go Closed

machines

:Machine
start machine
states states states
:State :State :State

name: "Opened"

name: "Closed"

name: "Locked"

romd O from¢$ |to ? to fom | 1o
from \
iny out in out
:Transition :Transition
event: "open" event: "unlock"
out .
Q in
: Transition : Transition

event: "close"

out | event: "lock"

Monday, October 1, 12

The object grammar

M ::= [Machine] "start" start:</states[it]> states:Sx
S ::= [State] "state" name:sym out:Tx

T ::= [Transition] "on" event:sym "go" to:</states[1it]>

Monday, October 1, 12

Creating the spine

start Opened
state Opened
on close go Closed
state Closed
on open go Opened
on lock go Locked
state Locked
on unlock go Closed

:Machine

:State

:State

machine
states states states

-State

name: "Opened"

name: "Closed"

name: "Locked"

from’ from ¢ from
from
out out
:Transition :Transition
event: "open" event: "unlock"
out
\4
: Transition : Transition
>
event: "close" out | event: "lock"

Monday, October 1, 12

Creating the spine

start Opened
state Opened
on close go Closed
state Closed
on open go Opened
on lock go Locked
state Locked
on unlock go Closed

h maChIne
states states states

:Machine

:State

:State

-State

name: "Opened"

name: "Closed"

name: "Locked"

from’ from ¢ from
from
out out
:Transition :Transition
event: "open" event: "unlock"
out
\4
: Transition : Transition
>
event: "close" out | event: "lock"

Monday, October 1, 12

Creating the spine

4 N /_\ :Machine

start Opened %f machine
S t at e O p ene d states tates states

:State :State :State
on C-LOSG go C-LOSEd name: "Opened" name: "Closed" name: "Locked"
state Closed trom? ffomf f’ lfrom
rom
on open go Opened out out
:Transition :Transition
on lock go Locked —— ——
out event: "open event: "unlock
state Locked v
: iti : T iti
on unlock go Closed Transition _ ransition
event: "close" out | event: "lock"
g J

Monday, October 1, 12

Creating the spine

4 N /_\ :Machine

start Opened Jf machine
state O p ene d states tates states

:State :State :State
(OI‘I C-LOSG go C-LOSEd name: "Opened" name: "Closed" name: "Locked"
state Closed P ffomf f’ lfrom
rom
on open go Opened out out
:Transition :Transition
on lock go Locked —— ———
out event: "open event: "unlock
state Locked v
: iti : T iti
on unlock go Closed Transition o ransition
event: "close" out | event: "lock"
g J

Monday, October 1, 12

Creating the spine

-

start Opened

-

_

state Opened

(on close go Closed

:Machine

machine
StateS States

-

state Closed
on open go Opened
on lock go Locked

state Locked
on unlock go Closed

-State

-State

name: "Closed"

name: "Locked"

from ¢ from
from
out out
:Transition :Transition
event: "open" event: "unlock"
\4
: Transition : Transition
>

event: "close" out | event: "lock"

Monday, October 1, 12

Creating the spine

-

start Opened

-

_

state Opened

(on close go Closed

:Machine

machine
StateS States

-

state Closed
(on open go Opened:)

on lock go Locked

state Locked
on unlock go Closed

-State

-State

name: "Closed"

name: "Locked"

from ¢ from
from
out out
:Transition :Transition
event: "open" event: "unlock"
: Transition : Transition
>

event: "close" out | event: "lock"

Monday, October 1, 12

-

start Opened

‘state Opened

L (bn close go Closed

state Closed

(on open go Opened:)

_ (on lock go Locked)

state Locked
on unlock go Closed

Creating the spine

/_\ :Machine

machine
states states

-State

-State

name: "Closed"

fro

m ¢
from
out

:Transition

from
out

nt: "open"”

: Transition

event: "close"

:Transition

event: "unlock"

name: "Locked"

: Transition

out

event: "lock"

Monday, October 1, 12

Creating the spine

P
start Opened

_—

:Machine

f machine
tates states

- states
state 0 PENE d :State \ :State :State
(OI‘I C-LOSG go C-LOSEd name=&pened" ' name; osed" name: "Locked"
‘state Closed trom fro f’ ymm
rom
(on open go Opened:) out
-' :Transition :Transition
(on lock go Locked:)
N\ avent: "open” event: "unlock"
(state Locked “
: iti : T iti
on unlock go ClOSGd Transition o ransition
. J event: "close" out | event: "lock"
g

Monday, October 1, 12

Creating the spine

-

start Opened

‘state Opened

(bn close go Closed

state Closed

(on open go Opened:)

_ (on lock go Locked:)

state Locked

(on unlock go Closed

J

_—

:Machine

f machine
tates states

states
:State \ :State :State
-1/
nameg®&pened" name; osed" name: "Locked"
from fro ? from
from
out

-' :Transition
m avent: "opeps

: Transition

event: "close"

:Transition

event: "unlock"

: Transition

out

event: "lock"

Monday, October 1, 12

Cross links

start Opened

p
state Opened

_ (on close go Closed:)
state Closed
(on open go Opened

_ (on lock go Locked
'state Locked
(on unlock go Closed)

~N

J
N

Monday, October 1, 12

Cross links

start Opened ™
state Opened

_ (on close go Closed:)
state Closed
(on open go Opened

_ (on lock go Locked
'state Locked
(on unlock go Closed)

~N

J
N

Monday, October 1, 12

Cross links

start Opened ™

p
state Opened

J

_ (on close go Closed

AN

‘state Closed

(on open go Opened

_ (on lock go Locked

VAN

‘state Locked

)

(on unlock go Closed

J

Monday, October 1, 12

Cross links

start Opened ™

p
state Opened

~N

_ (on close go Closed)

‘state Closed

_ (on lock go Locked)

(on open go Opened-—

J

‘state Locked

~N

)

(on unlock go Closed

J

Monday, October 1, 12

Cross links

start Opened ™
state Opened

~N

_ (on close go Closed)
'state Closed)
(on open go Opened-—
\» (on lock go Locked9\>
'state Locked

(on unlock go Closed)

Monday, October 1, 12

Cross links

start Opened ™

p
state Opened

~N

_ (on close go Closed)

‘state Closed

\

(on open go Opened-—
(on lock go Locked9\>

‘state Locked

(on unlock go Closed

J

Monday, October 1, 12

Object path to find

the start state with
name It

[Machine] "start" \start:g/states[iti} states:Sx

=
Il

S ::= [State] "state" name:sym out:Tx

T ::= [Transition] "on" event:sym "go" to:e/states[iti}

Monday, October 1, 12

Paths

® Navigate the resulting model along
® Fields
® Collections (keyed, positional)

® NB: model may not be finished yet
® Paths may traverse cross links too

® |terative fix point

Monday, October 1, 12

A path

use the parsed
identifier as key

navigate

start at :
INtOo states

/states[1t]

the root

Paths can also start at current object (.) or parent (..)

e e

Creating cross links

start Opened
state Opened
on close go Closed
state Closed
on open go Opened
on lock go Locked
state Locked
on unlock go Closed

:Machine

start machine
states states states

:State :State :State
name: "Opened" name: "Closed" name: "Locked"
¢
from’ to from to to from o
_ from \
Ny out In out
:Transition :Transition
event: "open" event: "unlock"
out in
\4 \4
: Transition : Transition
< >
event: "close" in out | event: "lock"

Monday, October 1, 12

Creating cross links

start (Opened)
state Opened

on close go Closed
state Closed

on open go Opened

on lock go Locked
state Locked

on unlock go Closed

:Machine

start machine
states states states

:State :State :State
name: "Opened" name: "Closed" name: "Locked"
¢
from’ to from to to from o
_ from \
Ny out In out
:Transition :Transition
event: "open" event: "unlock"
out in
\4 \4
: Transition : Transition
< >
event: "close" in out | event: "lock"

Monday, October 1, 12

Creating cross links

...

state Opened

on close go Closed
state Closed

on open go Opened

on lock go Locked
state Locked

on unlock go Closed

start
states

:Machine

machine
StateS states

:State

:State

:State

name: "Opened"

name: "Closed"

name: "Locked"

¢

from to from to to from o
_ from \
Iny out In out

:Transition :Transition

event: "open" event: "unlock"

out in

\2 \4
: Transition : Transition
< >
event: "close" in out | event: "lock"

Monday, October 1, 12

Creating cross links

...

state Opened

on close go Closed
state Closed

on open go Opened

on lock go Locked
state Locked

on unlock go Closed

el machine
StateS states

:State

:State

name: "Opened"

name: "Closed"

name: "Locked"

¢
from to from to to from o
from \
iny out in out
:Transition :Transition
event: "open" event: "unlock"
out in
\2 \4
: Transition : Transition
< >
event: "close" in out | event: "lock"

Monday, October 1, 12

Creating cross links

...

state Opened

on close go Closed
state Closed

on open go Opened

on lock go Locked
state Locked

on unlock go Closed

machine
StateS states

start —iill
statge

:State

:State

name: "Opened"

name: "Closed"

name: "Locked"

from

out

/

to from
inV out

:Transition

event: "open"

: Transition

to

event: "close" in

fr

? \to from | to
m .
I out
:Transition
event: "unlock"
: Transition
out | event: "lock"

Monday, October 1, 12

Creating cross links

...

state Opened

on close go Closed
state Closed

on open go Opened

on lock go Locked
state Locked

on unlock go Closed

start
states

:Machine

machine
StateS states

:State

:State

:State

name: "Opened"

name: "Closed"

name: "Locked"

¢

from to from to to from o
_ from \
Iny out In out

:Transition :Transition

event: "open" event: "unlock"

out in

\2 \4
: Transition : Transition
< >
event: "close" in out | event: "lock"

Monday, October 1, 12

Creating cross links

...

state Opened

on close go (Closed)
state Closed

on open go Opened

on lock go Locked
state Locked

on unlock go Closed

start
states

:Machine

machine
StateS states

:State

:State

:State

name: "Opened"

name: "Closed"

name: "Locked"

¢

from to from to to from o
_ from \
Iny out In out

:Transition :Transition

event: "open" event: "unlock"

out in

\2 \4
: Transition : Transition
< >
event: "close" in out | event: "lock"

Monday, October 1, 12

Creating cross links

...

state Closed
on open go Opened
on lock go Locked
state Locked
on unlock go Closed

start
states

:Machine

machine
StateS states

:State

:State

:State

name: "Opened"

name: "Closed"

name: "Locked"

from

out
\4

to from
inV out

:Transition

event: "open"

: Transition

to

event: "close" in

¢

fr

to from | to
m .
I out
:Transition
event: "unlock"

: Transition

~

out | event: "lock"

Monday, October 1, 12

Creating cross links

...

state Closed
on open go Opened
on lock go Locked
state Locked
on unlock go Closed

start
states

:State

:Machine

machine

states

-State

:State

name: "Opened"

name: "Closed"

name: "Locked"

from to

out
\4

from
inV out

:Transition

event: "open"

: Transition

to

event: "close"

? \to from | to
from \
I out
:Transition
event: "unlock"
: Transition
out | event: "lock"

Monday, October 1, 12

Creating cross links

...

state Closed
on open go Opened
on lock go Locked
state Locked
on unlock go Closed

start
states

:Machine

machine

states

:State

/

name: "Closed"

name: "Locked"

:Transition

event: "open"

: Transition

~

event: "close" in

to from | to
m .
I out
:Transition
event: "unlock"

: Transition

out | event: "lock"

Monday, October 1, 12

Creating cross links

...

start (Opened) | start:</states[“Opened”]> | —>l8tart

state Opened

state Closed
on open go Opened
on lock go Locked
state Locked
on unlock go Closed

:Machine

/ ‘&chme
tates states

:State

name: "Closed"

name: "Locked"

:Transition

event: "open"

: Transition

event: "close" in

to from | to
m .
I out
:Transition
event: "unlock"
: Transition
t | event: "lock"

Monday, October 1, 12

Creating cross links

...

start (Opened) | start:</states[“Opened”]> | —>l8tart

state Opened

state Closed nm#

on open go (Opened)

on lock go Locked
state Locked
on unlock go Closed

:Machine

/ ‘&chme
tates states

:State

:State

name: "Closed"

name: "Locked"

:Transition

event: "open"

out

\4

: Transition

to

event: "close" in

¢
fr

to from
m .
I out

:Transition

event: "unlock"

to

Vin

: Transition

ou

~V

event: "lock"

Monday, October 1, 12

Creating cross links

...

start (Opened) start:</states[“Opened”]> —— lStart
state

on lock go Locked
state Locked
on unlock go Closed

:Machine

:State

:State

machine
StateS states

:State

S
d" name: "Closed"

name: "Locked"

:Transition

event: "open"

out

\4

: Transition

to

event: "close" in

¢
fr

to from
m .
I out

:Transition

ev

ent: "unlock"

~

to

Vin

: Transition

out

event: "lock"

Monday, October 1, 12

Creating cross links

...

start (Opened) start:</states[“Opened”]> | —— lStart

on lock go Locked
state Locked
on unlock go Closed

- machine
StateS states

:State

:State

name: "Closed"

name: "Locked"

:Transition

event: "open"

out

\4

: Transition

to

event: "close" in

¢
fr

to from
m .
I out

:Transition

ev

ent: "unlock"

~

to

Vin

: Transition

out

event: "lock"

Monday, October 1, 12

Creating cross links

...

start (Opened) start:</states[“Opened”]> | —— lStart

on lock go Locked
state Locked
on unlock go Closed

- machine
StateS states

:State

:State

name: "Closed"

name: "Locked"

:Transition

event: "open"

: Transition

to

event: "close" in

¢
fr

to from
m .
I out

:Transition

ev

ent: "unlock"

~

to

Vin

: Transition

out

event: "lock"

Monday, October 1, 12

Creating cross links

...

start (Opened) start:</states[“Opened”]> —— lStart
state

on lock go Locked
state Locked
on unlock go Closed

:Machine

:State

:State

machine
StateS states

:State

S
d" name: "Closed"

name: "Locked"

:Transition

event: "open"

: Transition

to

event: "close" in

¢
fr

to from
m .
I out

:Transition

ev

ent: "unlock"

~

to

Vin

: Transition

out

event: "lock"

Monday, October 1, 12

Creating cross links

...

start (Opened) | start:</states[“Opened”]> | —>\L8tart

state Opened

on lock go(Locked)

state Locked
on unlock go Closed

:Machine

/ ‘&chme
tates states

:State

:State

name: "Closed"

name: "Locked"

:Transition

out

event: "open"

\4

: Transition

to

event: "close"

¢
fr

to from
m .
I out

:Transition

event: "unlock"

to

Vin

: Transition

ou

~V

event: "lock"

Monday, October 1, 12

Creating cross links

...

start (Opened) | start:</states[“Opened”]> | —>\L8tart

state Opened

state Locked
on unlock go Closed

:Machine

/ ‘&chme
tates states

:State

:State

name: "Closed"

name: "Locked"

:Transition

event: "open"

\4

: Transition

to

event: "close"

¢
fr

to from
m .
I out

:Transition

event: "unlock"

to

Vin

: Transition

ou

~V

event: "lock"

Monday, October 1, 12

Creating cross links

...

start (Opened) | start:</states[“Opened”]> | —>\L8tart

state Opened

:Machine

f[ates gl

:State

machine

name: "Closed"

name: "Locked"

"""""""""""""""""""""""""""""" :Transition

on lock go (Locked ﬁ&!@@é&%&&&%ﬁ | ovent. "open"
__ o

state Locked Y —
: Transition

to ¢ \to from
from
in out

:Transition

event: "unlock"

on unlock go Closed event: "close”

to

Vin

: Transition

~V

ou

event: "lock"

Monday, October 1, 12

Creating cross links

...

start (Opened) | start:</states[“Opened”]> | —»lStart

state Opened

:Machine
machine

fcates T A

:State . State

name: "Closed"

name: "Locked"

state Locked —
: Transition

to ¢ \to from
from
in out

event: "unlock"

to

Vin

on unlock go Closed event: "close”

: Transition

~V

out | event: "lock"

Monday, October 1, 12

Creating cross links

...

start (Opened) | start:</states[“Opened”]> | —>\L8tart

state Opened

:Machine

/ ‘Qchme
tates states

:State

:State

name: "Closed"

name: "Locked"

state Locked —
: Transition

to

on unlock go Closed event: "close”

¢
fr

to from | to
m .
I out
event: "unlock"

: Transition

~V

out | event: "lock"

Monday, October 1, 12

Creating cross links

...

start (Opened) | start:</states[“Opened”]> | —>\L8tart

state Opened

:Machine

/ ‘Qchme
tates states

:State

:State

name: "Closed"

name: "Locked"

state Locked —
: Transition

to

on unlock go (Closed) event: "close”

¢
fr

to from | to
m .
I out
event: "unlock"

: Transition

~V

out | event: "lock"

Monday, October 1, 12

Creating cross links

___ :Machine

start (ODGHGCD i start: </states[“0pened”:|>§ —*\LStart / ‘%Chme
state Opened tates

states
:State :State :State

name: "Closed" name: "Locked"

state Closed from’ to ’mY lfrom o
in

fr

out

event: "unlock"

state Locked = = y in

' to: </states[“Closed”]> : Transition : Transition

on unlock go (Closed) event: "close” in out

~V

event: "lock"

Monday, October 1, 12

Creating cross links

...

start (Opened) start:</states[“Opened”]> | —— lStart

State LOCked : ’
Ito</states[“Closed”]>

:Machine

[machine
Rakiates states

.State

:State

name: "Closed"

name: "Locked"

: Transition

event: "close"

to from | to
m .
I out
event: "unlock"

/

: Transition

out

event: "lock"

Monday, October 1, 12

Creating cross links

__ :Machine
start (Opened) start:</states[“0pened”]>E —letart f”., ‘Qchine
L ;; ot
state Opened states il states
:State :State :State

name: "Closed" name: "Locked"

state Closed from? Y lfrom o

event: "unlock"

state Locked = = 0

?to:</states[“Closed”]>E : Transition

on un -l. OC k go (C -l. 0S ed) event: "close" in out/ event: "lock"

Monday, October 1, 12

Creating cross links

___ :Machine

start (ODGHGCD i start: </states[“0pened”:|>§ —»ls"art / ‘%Chme
state Opened tates

states
:State :State :State

name: "Closed" name: "Locked"

state Closed from’ Y lfrom o

event: "unlock"

state Locked = = 0

 to: </states[“Closed”]> -
on unlock go (C-l-osed) event: "close" in out

: Transition

~V

event: "lock"

Monday, October 1, 12

Assessment

® Bi-directional & compositional
® Flexible:
® interleaved data binding
® path-based references & predicates

® formatting hints

® Self-described

Monday, October 1, 12

Composition in EnsO

| Path | Expr | > Command | | xmL |
l r I N i\ \l

‘ Grammar H Schema H Auth H Controller ‘ Stencil ‘ Web ‘

Monday, October 1, 12

Conclusion

® Object grammars: mapping text to objects
and vice versa

® Declarative paths for resolving cross-
references

® Flexible, bi-directional and compositional

® Foundation of EnsO

Monday, October 1, 12

ENSO

Don't Design Your Programs, Program Your Designs

http://www.enso-lang.org/

Monday, October 1, 12

http://enso-lang.org/
http://enso-lang.org/

