
Gradual Grammars: Syntax in Levels and Locales

Tijs van der Storm
storm@cwi.nl

Centrum Wiskunde & Informatica (CWI)
Amsterdam, Netherlands
University of Groningen
Groningen, Netherlands

Felienne Hermans
f.f.j.hermans@vu.nl

Vrije Universiteit Amsterdam
Amsterdam, Netherlands

Abstract

Programming language implementations are often one-size-
fits-all. Irrespective of the ethnographic background or pro-
ficiency of their users, they offer a single, canonical syntax
for all language users.

Whereas professional software developers might be will-
ing to learn a programming language all in one go, this
might be a significant barrier for non-technical users, such
as children who learn to program, or domain experts using
domain-specific languages (DSLs).

Parser tools, however, do not offer sufficient support for
graduality or internationalization, leading (worst case) to
maintaining multiple parsers, for each target class of users.

In this paper we present Fabric, a grammar formalism
that supports: 1) the gradual extension with (and depreca-
tion of) syntactic constructs in consecutive levels (“vertical”),
and, orthogonally, 2) the internationalization of syntax by
translating keywords and shuffling sentence order (“horizon-
tal”). This is done in such a way that downstream language
processors (compilers, interpreters, type checkers etc.) are
affected as little as possible.

We discuss the design of Fabric and its implementation
on top of the LARK parser generator, and how Fabric can be
embedded in the Rascal language workbench. A case study
on the gradual programming language Hedy shows that
language levels can be represented and internationalized
concisely, with hardly any duplication. We evaluate the Fab-
ric library using the Rebel2 DSL, by translating it to Dutch,
and “untranslating” its concrete syntax trees, to reuse its ex-
isting compiler. Fabric thus provides a principled approach
to gradual syntax definition in levels and locales.

CCS Concepts: • Software and its engineering → Syn-

tax; •Human-centered computing→Accessibility tech-

nologies;

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SLE ’22, December 06–07, 2022, Auckland, New Zealand
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9919-7/22/12.
https://doi.org/10.1145/3567512.3567524

Keywords: syntax definition, internationalization, modular-
ity

ACM Reference Format:

Tijs van der Storm and Felienne Hermans. 2022. Gradual Grammars:
Syntax in Levels and Locales. In Proceedings of the 15th ACM SIG-
PLAN International Conference on Software Language Engineering
(SLE ’22), December 06–07, 2022, Auckland, New Zealand. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3567512.3567524

1 Introduction

Programming languages are no islands. They are embedded
in cultural and ethnographic contexts to let highly diverse
user communities write programs to make computers do
things. Nevertheless, typical programming language imple-
mentations attempt to offer a one-size-fits-all solution. As a
result, programmers are faced with an all-or-nothing choice
to learn and use a programming language.

We discern two syntax-related barriers to learning soft-
ware languages:
• Software languages do not typically offer support for
gradually introducing language features to students
learning the language. As a result, beginning program-
mers have to learn too many concepts at once, which
increases cognitive load and has been known to be an
impediment to learning [8, 16].
• The syntax of a language is biased towards the Eng-

lish speaking world in terms of keywords and word
order. Research shows that non-English students strug-
gle with using the right English keywords and sym-
bols [11, 26]. Students with different ethnographic
backgrounds will likely be helped if a language was
closer to their native tongue. The same holds for non-
professional, end-user developers, e.g., using domain-
specific languages (DSLs).

To address these issues, we present Fabric, a modular gram-
mar formalism that sports two novel features. First, it al-
lows language designer to organize a grammar into levels
to gradually disclose (and retire) language features. We call
this direction of graduality “vertical” (e.g., versions). Second,
Fabric employs grammar fabrics to customize production
rules through keyword renaming and reordering elements
of a production. We call this “horizontal” customization (e.g.,
variants). This second dimension is gradual as well, in the

https://orcid.org/0000-0001-8853-7934
https://orcid.org/0000-0003-0722-0156
https://doi.org/10.1145/3567512.3567524
https://doi.org/10.1145/3567512.3567524

SLE ’22, December 06–07, 2022, Auckland, New Zealand Tijs van der Storm and Felienne Hermans

sense that customization is opt-in; not all productions have
to be customized.

The contributions of this paper can be summarized as
follows:
• A motivation of gradual grammars, in the context of

the Hedy programming language (Section 2).
• The design of Fabric, a grammar formalism support-

ing language levels and language internationalization
(Section 3).
• An implementation of Fabric using the Rascal [20]

language workbench (Section 4).
• An embedding of Fabric as a library in the Rascal

metaprogramming language (Section 5)
• The evaluation of Fabric using two case-studies, Hedy [16],

and Rebel2 [31] (Section 6).
We conclude the paper with a discussion of limitations and
a survey of related work (Section 7)1.

2 Background and overview

Hedy is a programming language designed for teaching pro-
gramming to children [16]. One of the novelties of Hedy is
that it gradually introduces syntactic constructs to improve
learning. At the time of writing, the language is split over
19 levels, where the final level corresponds to (a subset of)
Python.

For instance, at level 1, students can write print hello,
without quotes, to print something on the screen. Only later,
when variables are introduced, the student is required to use
quotes, to disambiguate string literals from variables. Along
the same line, more advanced levels also retire or deprecate
syntactic constructs because they are subsumed by more
general constructs. For example, for repetition, initially the
keyword repeat is used, which in later levels is replaced by
the regular Python construct for i in range():.

The engineering of Hedy is a considerable task2. Even
more so, since the present version of Hedy supports interna-
tionalized keywords for 19 languages, and currently there’s
ongoing work to support sentence reordering as well.

The syntactic part consists of a single reference grammar
(using the LARK parser3), split into files corresponding to
each level, amounting to around 300 LOC grammar code.
LARK does not support the required modularity to make
the reference grammar gradual; as a result the Hedy com-
piler simply concatenates the files for consecutive levels, and
performs rudimentary rewriting to override and deprecate
constructs.

Internationalization is implemented in a similarly ad hoc
way: each locale is defined in a separate LARK file defining

1The code and experiments supporting this paper can be found here:
10.5281/zenodo.7211893.
2To give an intuition, version 665c0be of Hedy consists of 625,253 SLOC
(mostly Python).
3https://github.com/lark-parser/lark

nonterminals for each keyword, with the respective keyword
literals in the native language (around 800 LOC). Again, these
files are simply prepended to the (concatenated) level gram-
mar files. The result is a set of over 380 “total” grammars,
amounting to 48,664 LOC LARK parser code.

Although the current implementation avoids having to
maintain hundreds of separate grammars for each combina-
tion of level and locale, there are limitations to the current
situation:
• The textual composition of various files is very ad hoc

and brittle; there is no early checking of the validity
of the result, and it complicates debugging.
• Internationalization through separate token defini-

tions works for keyword translation, but does not allow
for more complex transformations, such as changing
sentence order, inserting/removing keywords, or swap-
ping reading direction.
• The approach does not technically support removing

of syntactic constructs, so this has to be simulated by
marking productions as error-production, or leaving
certain parses ambiguous, and provide custom error
messages later in the language processing pipeline.

The current implementation of Hedy is based on the LARK
parser framework, which is fairly advanced (general) parsing
tool, with limited support for modularity. Although modular-
ity in parser definition and grammars is well researched topic
(see, e.g., [15, 20, 29]), we are not aware of any formalism with
first class support for vertical graduality. Similarly, although
textual languages with internalized keywords do exist (e.g.,
AppleScript, Excel), principled techniques for international-
ization of syntax definitions have not been investigated by
the programming language or language engineering com-
munities.

To address the issues above, we present Fabric, an EBNF-
style grammar formalism which distinguishes between two
different kinds of grammars. Reference grammars capture
the source of knowledge, defining the default syntax and
defining the structure of the Abstract Syntax Tree (AST).
The other kind of grammar is called fabric grammars, which
non-invasively define internationalization of (a selection of)
syntax productions as defined in the reference grammar.

Reference grammars can be organized in consecutive lev-
els, where each subsequent level possibly adapts the previous
levels, in three ways: 1) productions can be overridden, sim-
ilar to a method override in object-oriented languages; 2)
production removal, and 3) production deprecation.

Fabric grammars are defined relative to a reference gram-
mar. Again, they can be organized into levels, this time defin-
ing customizations using an aspect-oriented form of produc-
tion pattern4. Such rules match against productions in the
reference grammar, and may translate, introduce, or remove
keywords, and modify sentence order, as long as all AST
4One could say fabric grammars are defined in terms of grammar pointcuts.

https://doi.org/10.5281/zenodo.7211893
https://github.com/Felienne/hedy/tree/665c0becce567839cd5792cedd104bcf9cfa1cd6
https://github.com/lark-parser/lark

Gradual Grammars: Syntax in Levels and Locales SLE ’22, December 06–07, 2022, Auckland, New Zealand

nodes are preserved by the transformation. The customiza-
tion of the reference grammar is gradual as well: language
designers may choose to only reshape a subset of all produc-
tions. Consistency of a fabric grammar with respect to its
reference grammar can be checked.

An implementation of Fabric would flatten a reference
grammar for a certain level 𝑙 into a single context-free gram-
mar, ensuring that the consecutive adapations of levels 1..𝑙
are observed. A fabric grammar is stitched onto a reference
grammar’s levels before flattening to obtain an internation-
alized grammar.

3 Fabric by example

3.1 Reference grammars

QL is a simple DSL for defining interactive questionnaire
forms [10], consisting of a number of (possibly conditional)
questions to be filled out by the user. Next to ordinary ques-
tions, a QL form may contain computed “questions”, which
derive their value from an expression computing a value
from other questions. QL forms are executed as an interac-
tive graphical user interface, for instance as an HTML form
in the browser.

This DSL is an example of a language that could be used by
non-professional, end-user programmers, to create simple,
interactive applications. Hence, for teaching purposes, it
makes sense to gradually introduce the language to novices.
Furthermore, one can imagine that in this small domain,
some English biased idioms could be foreign to users in
different countries, so that internationalization is desired.

Below we gradually introduce Fabric using QL as the ex-
ample language. The first level is defined as follows (omitting
the definition of all-caps tokens for brevity):

grammar QL

level 1

form = form: "form" ID question*

question = question: "ask" STRING "into" ID ":" type

type = bool: "boolean"

In this language level the only kinds of forms that are al-
lowed consist of questionnaires with boolean questions. Each
non-terminal has a single alternative with labels identifying
the production.

Level 2 introduces conditional questions and basic boolean
expressions:

level 2

question = ifThen: "if" "(" or_expr ")" question

or_expr = or: and_expr "||" or_expr | and: and_expr

and_expr = and: primary "&&" and_expr | prim: primary

primary = ref: ID | boolean: bool

bool = true: "true" | false: "false"

The question nonterminal is extended with another alter-
native defining the syntax of conditional questions. Other
than that, this level introduces new syntax for expressions,

consisting of boolean literals, logical connectives and ques-
tion references.

The third level adapts level 2 to require grouping of multi-
ple questions below an if-then condition.

level 3

question

= @override ifThen: "if" "(" or_expr ")" "{" question* "}"

| @error ifThenError: "if" "(" or_expr ")" question

The ifThen construct of level 2 is overridden using the
@override annotation to replace the previous construct. The
original production, however, is demoted to an error produc-
tion, so that if users still use the old notation, an informative
error message can be produced.

Next to the override and error annotations, Fabric sup-
ports directives at the scope of a level to remove or depre-
cate productions. For instance, remove 𝑙1, ..., 𝑙𝑛 indicates that
all productions labeled 𝑙1, ..., 𝑙𝑛 should be removed of any
previous levels at this point. Analogously, deprecate 𝑙1, ..., 𝑙𝑛

entails marking productions labeled 𝑙1, ..., 𝑙𝑛 to be deprecated
since the current level.

Excluding @override, this leads to a partitioning of pro-
ductions in a gradual grammar, where each class indicates a
different (implicit) message to the user:
• Normal: it’s part of the language and fully supported.
• Error: it’s not supported, but we expect this error and

we want a nice error message
• Deprecate: it’s supported, but be aware, it will be

removed in the future.
• Remove: it’s not supported, and you’ll get a normal

parse error.
One may wonder whether it would make sense to never

remove productions, and just deprecate or convert to an
error production. From a usability point of view, this may
indeed be sufficient. However, depending on the underly-
ing parsing technology used to implement Fabric, actually
removing syntax might be necessary to avoid technical pars-
ing problems, such as unwanted ambiguity or shift/reduce
conflicts5.

3.2 Fabric grammars

The gradual grammar introduced above should be consid-
ered the reference grammar: it captures the syntax of QL
in what we consider the canonical syntax that (implicitly)
defines the structure of the AST. The second kind of gradual
grammars supported by Fabric allow language designers (or
translators) to specify the aforementioned customizations
per level.

Consider the following grammar fabric that translates
level 1 of QL to Dutch:

5In fact, the embedding of Fabric as a Rascal library (Section 5), employs
precisely this strategy, since Rascal’s parser is general and supports am-
biguous parse forest that can be filtered after parsing.

SLE ’22, December 06–07, 2022, Auckland, New Zealand Tijs van der Storm and Felienne Hermans

grammar QL_NL modifies "QL.fabric"

level 1

form = form: "formulier" _ _

type = bool: "waarheidswaarde"

question = question: "vraag" _2 "met" _1 ":" _3

The header of the module specifies that this grammar is
dependent on (or relative to) a reference grammar, in this case
contained in the file QL.fabric. The first level of this grammar
defines a number of production patterns that are matched to
the reference grammar based on the production labels. The
symbols of a production use placeholders (indicated by “_”)
to match sub-trees of interest in the reference grammar.

For instance, the first rule has a single production with
the pattern "formulier" _ _ which matches the production
"form" ID question* shown above. The placeholders corre-
spond to ID and question*, respectively. The keyword "form"

is translated to the Dutch equivalent "formulier". The second
production is another example of a basic translation pattern,
where the keyword boolean is translated to the Dutch equiv-
alent, waarheidswaarde.

The third pattern, however, goes a step further. In this
case the placeholders are suffixed with a 1-based position of
symbols in the original production, "ask" STRING "into"

ID ":" type. So in this case, the pattern does not simply
translate the keywords ask to vraag and into to met, but also
swaps the order of the symbols STRING and ID.

Realistically speaking, the example is slightly contrived:
Dutch does not require the reordering in this case, but for
languages such as Arabic and Japanese changing sentence
order can be important to make a language more natural to
use for native speakers.

Grammar fabrics are also leveled. Here’s the translation
of level 2:

level 2

bool = true: "waar" | false: "onwaar"

question = ifThen: "als" _ "dan" ":" _

The boolean values are translated to their Dutch equiva-
lent, as before. More interestingly, however, the translation
of the if-then construct not only translates the keyword if

but also inserts an extra keyword dan and the interpunction
":" in between the condition and the body of the conditional,
and removes the parentheses. So the production patterns
in grammar fabrics can liberally replace, introduce, and/or
remove keywords from a syntax production to adapt a gram-
mar to a certain locale.

Note, however, that the language designer customizes the
reference grammar at their own risk: there is no guarantee
that the resulting grammar (after applying the patterned
rules) will be well-formed for the underlying parse technol-
ogy. As a pathological example: removing all keywords most
likely will lead to a highly ambiguous grammar. Note fur-
ther that fabric grammars are gradual as well: anything not
reshaped is left as-is, as per the reference grammar.

data Grammar

= grammar(str name, list[Level] levels, str base="");

data Level

= level(int n, list[str] rem, list[str] depr

, list[Rule] rules);

data Rule

= rule(str nt, list[Prod] prods);

data Prod(bool error=false, bool override=false

, int deprecatedAt=-1, int level=-1)

= prod(str label, list[Symbol] symbols);

data Symbol

= nonterminal(str name) | literal(str lit)

| placeholder(int pos=-1) | ...;

Figure 1. Abstract syntax of Fabric grammars (simplified).

Fabric furthermore supports imports, layout definitions
(whitespace and comments), an extended set of regular sym-
bols, and token definitions. These features are by all means
useful or even necessary for defining realistic languages,
however, they are immaterial to the contributions of this
paper.

4 Fabric implementation

4.1 Flattening

Figure 1 shows the (slightly simplified) abstract syntax of
Fabric in the algebraic data type notation of Rascal. A gram-
mar has a name, contains a number of levels, and (optionally)
modifies a base grammar6. Note that the Grammar type cap-
tures both reference grammars and fabric grammars.

A level is indexed with a number, defines a list of removed
and deprecated production labels, and contains a list of rules.
Rules are identified by a nonterminal and contain a list of
production alternatives. Productions have a mandatory label
and a sequence of symbols. Optionally, they can be tagged to
be an error production, an overriding production or marked
as deprecated at a certain level (deprecatedAt). The final key-
word parameter level indicates the level this production
originated from, and is used to track the level of a produc-
tion after flattening.

Finally, symbols capture the well-known symbols from
EBNF-like grammar formalisms, such as nonterminals, liter-
als, etc. Additionally, Fabric symbols include a placeholder
kind (optionally with a position) as used in grammar fabrics;
their role is further discussed in Section 4.2.

6This is an example of Rascal’s keyword parameters: optional parameters to
a constructor declared with a default value, either at the constructor level,
or at the type level so that all constructors get them.

Gradual Grammars: Syntax in Levels and Locales SLE ’22, December 06–07, 2022, Auckland, New Zealand

Grammar flatten(int n, Grammar g) {

Level current = g.levels[0];

for (Level l ←g.levels[1..n])

current = adapt(l, current);

return grammar(g.name, [current]);

}

Level adapt(Level l, Level g) =

sort(merge(delOv(l, markDep(l, delRem(l, g))), l.rules));

Figure 2. Flattenening a Fabric grammar for level 𝑛.

The main operation on Fabric grammars is to obtain a
flattened grammar for a certain level 𝑛. Figure 2 shows the
pseudo-code of this algorithm in Rascal notation. The first
function receives the level 𝑛 and a value of the type Grammar

(cf. Listing 1). It then constructs a new grammar with a single
level that consists of applying the adapt function on the
accumulated level, starting at the first level up till the level
at position 𝑛 − 1 (recall that levels are 1-based).

The adapt function transforms the accumulated level g
according to the directives and annotations defined in level l
using five auxiliar functions, which are explained as follows
(innermost first):

1. delRem: remove the productions marked using the
remove directive in level 𝑙𝑖 .

2. markDep: set the deprecatedAt field of deprecated
productions to 𝑖 .

3. delOv: remove the original productions with the same
label as productions annotated with @override in 𝑙𝑖 .

4. merge: combine the rules of 𝑙𝑖 with the current set of
rules, merging sets of alternatives for shared nonter-
minals.

5. sort: order the sequence of alternatives of each rule
so that the productions with error=true come last7.

The flatten function is called for every level in a Fabric
grammar to obtain flattened grammar values corresponding
to each level. This flattened grammar is then compiled to
the formalism of the back-end parser generator, in this case
LARK.

4.2 Stitching fabrics

To define the semantics of stitching a fabric onto a reference
grammar to obtain an internationalized grammar, we will
focus on stitching two matched productions, as shown in
Figure 3. Without loss of generality, we will assume that all
bare _ placeholders have been normalized to placeholders
with 1-based indices. Furthermore, we gloss over the fact that
7Technically, this is an implementation detail of LARK seeping through:
LARK tries out productions in the order they are specified in the gram-
mar, and error productions should be tried as a last resort only. Ordered
evaluation of alternatives is, however, a common strategy of (non-general)
top-down parsing algorithms.

Prod stitch(Prod base, Prod fabric) {

astKids = [s | Symbol s ←base.symbols

, !(s is literal)];

Symbol lookup(Symbol s) =

s is placeholder ? astKids[s.pos - 1] : s;

base.symbols =

[lookup(s) | Symbol s ←fabric.symbols];

return base;

}

Figure 3. Stitching productions.

nested sequences, such as (expr "and" expr)?, may con-
tain keywords; this can be supported by a simple recursive
fix of the code shown in Figure 3.

The function stitch takes a production from the refer-
ence grammar (base), and a matched fabric production with
placeholders. The first line extracts the symbols from the the
base production that represent AST nodes, because this is
how numbered placeholders refer to elements of a produc-
tion. The auxiliary function lookup performs the shuffling
according to the fabric symbol, if the symbol is a placeholder,
otherwise the symbol (e.g., a translated literal) remains un-
changed. Finally, the symbol list of the base production is
updated, so that it now conforms to the fabric production,
but with all placeholders substituted. Note that by updating
the base production, we preserve meta-data about @error,
@override etc.

The top level stitching algorithm iterates over a flattened
reference grammar, and for each production it encounters,
it applies the fabrics (if any) defined in the levels lower or
equal than the production’s origin. It does this from the
highest level down to the lowest, to ensure that later fabric
customizations (i.e. in higher levels) are applied first. The
result is a flattened, internationalized grammar.

4.3 Implementation

Fabric has been implemented in Rascal, according to the
semantics described above, but additionally dealing with
certain corner cases, and providing dynamic error check-
ing. Based on Rascal’s language workbench features, Fabric
comes with basic IDE support in VSCode, which provides
folding, outlining, syntax highlighting, and compilation of
both reference and fabric grammars. A partial screenshot of
the QL reference grammar is shown in Figure 4.

Flattened Fabric grammars are compiled to LARK gram-
mars. In the case of shuffled productions, the corresponding
LARK productions are annotated with labels encoding the
reordering that has occurred. This allows AST construction
code to undo the shuffling, before constructing the ASTs.
As a result, existing backend processors (compilers, type
checkers, etc.) can still be reused.

SLE ’22, December 06–07, 2022, Auckland, New Zealand Tijs van der Storm and Felienne Hermans

Figure 4. Partial screenshot of the Fabric VSCode IDE.

5 Fabric as a Rascal library

5.1 Embedding Gradual Grammars

In this section we show how the concepts of Fabric can be
simulated in the Rascal language workbench, using Rascal’s
modularity and disambiguation features. Although embed-
ding typically forces us to give up control with respect to
certain aspects of a language (i.e. we lose full control over
what grammars we generate or how certain meta-language
features are realized), what we gain in return is better integra-
tion with the other metaprogramming of the Rascal language
workbench, used to define type checkers, compilers, and IDE
support.

There is, however, another complication we need to tackle:
language processors implemented using Rascal are often
defined using concrete syntax matching and construction.
For instance, a compiler for QL could have a case matching
on QL’s conditional using a pattern like this:

(Question)`if (<Expr cond>) {<Question* body>}`

This concrete pattern matches against concrete syntax trees,
as produced by parsers derived from the actual surface syntax
grammar. As a result, such patterns will not match against
internationalized versions of the QL grammar, because the
keyword “if” might have been translated. Needless to say,
the situation is worse if subnodes have been shuffled by a
fabric grammar. We will address this problem in Section 5.2.

5.1.1 Embedding reference grammars. Figure 5 shows
the Rascal version of the QL Fabric grammar. It shows three
Rascal modules containing grammars, where the lower mod-
ules extend the modules above. Rascal module extension is
transitive, so module QL_3 includes the grammar rules of
both level 1 and level 2. The first two modules are simply
modules the way one would define and modularize a syntax

module QL_1

syntax Form = form: "form" Id Question*;

syntax Question =

question: "ask" String "into" Id ":" Type;

syntax Type = boolean: "boolean";

module QL_2 extend QL_1;

syntax Question = ifThen: "if" "(" OrExpr ")" Question;

syntax OrExpr = or: AndExpr "||" OrExpr | and: AndExpr;

syntax AndExpr = and: Primary "&&" AndExpr

| prim: Primary;

syntax Primary = ref: Id \ Keywords

| boolean: Bool;

syntax Bool = tru: "true" | fal: "false";

keyword Keywords = "true" | "false";

module QL_3 extend QL_2;

syntax Question

= @override=3 ifThen: "if" "(" OrExpr ")"

"{" Question* "}"

| @error ifThenErr: "if" "(" OrExpr ")" Question;

Figure 5. Gradual grammar embedding in Rascal.

in Rascal. The productions in the third one, however, are
annotated, to indicate that a production overrides another
one or represents an error production. To obtain a parser
for a certain level, it suffices to import the corresponding
module, and use Rascal’s built-in parser generator.

Rascal module extension is monotone: it is impossible
to remove any definition from extended modules, and this
holds as well for grammar productions. So how to deal with
production removal? We post-pone this decision till after
parsing. Since Rascal’ parser algorithm is general, it supports
arbitrary context-free grammars, including ambiguous ones.
If a grammar is ambiguous, the parser produces a parse forest
containing all derivations. Such a parse forest is like a parse
tree, except it contains ambiguity nodes, consisting of sets of
alternative derivations. Nevertheless, a parse forest can be
inspected, analyzed, and transformed, just like parse trees.
The Fabric embedding exploits the grammar annotations
embedded in such parse forests to simulate the behavior of
Fabric after parsing.

The process proceeds as follows: after parsing a program
according to a certain level, we obtain a parse forest, which
will be filtered as follows:

• If there is an ambiguity node, and the node contains
one ore more trees with an override annotation, keep
the tree with the highest override number, and filter
the others.

Gradual Grammars: Syntax in Levels and Locales SLE ’22, December 06–07, 2022, Auckland, New Zealand

module QL_NL_fabric

start syntax Form_NL = form: "formulier" X "{" X "}";

syntax Question_NL

= question: "vraag" X_2 "met" X_1 ":" X_3

| ifThen: "als" X "dan" ":" X () !>> "anders"

| ifThenElse: "als" X "dan" ":" X "anders" X;

syntax Bool_NL = tru: "waar" | fal: "onwaar";

keyword Keywords_NL = "waar" | "onwaar" ;

syntax Type_NL = boolean: "waarheidswaarde"

Figure 6. A QL fabric grammar in Rascal.

• In the remaining ambiguity nodes, remove the trees
annotated with @remove, @error, and @deprecate, in that
order, but at least retain one tree.
• For every tree with a @deprecate annotation, generate

a warning.
• For every tree with an @error annotation, generate an

error.
• For every tree with a @remove annotation, generate a

parse error.

The end result is a parse forest and a possibly empty set of
error/warning messages. If the parse forest is still ambiguous,
it is an ambiguity inherent to the language, unrelated to
Fabric.

5.1.2 Embedding fabric grammars. Similar to the lev-
eled reference grammars discussed above, fabric grammars
are embedded as Rascal syntax definitions as well. An ex-
ample QL fabric is shown in Figure 6. The placeholders are
encoded using a (configurable) dedicated nonterminal, in this
case X. All nonterminals are suffixed with a locale-identifying
string (e.g., _NL) to avoid name clashes. Fabric productions
are matched to productions in the reference grammar using
the production labels (e.g., ifThen). Note that keyword reser-
vation, expressed using the keyword directive, is translated
like an ordinary production.

The fabric grammars themselves are never used to parse
any program, but function as recipes to transform the refer-
ence grammar. In Rascal this is achieved using type reflec-
tion: the # operator allows any Rascal type to be converted
to a value representation. For instance, the expression #bool

produces a value representing the bool type.
Since every nonterminal in a context-free grammar de-

fines a proper type of parse trees of a certain shape, we
can use these reflective capabilities to reify grammars into
values, which can be dynamically analyzed, transformed,
or constructed. In this case this amounts to reifying both
the reference grammar and the fabric grammar, and then to
stitch (see Section 4.2) the fabric grammar onto the reference
grammar. The result is then pretty printed to a Rascal module
which can be used to parse programs in the specific locale.

Grammar stitch Grammar𝐿

src parse fabric𝐿 parse src𝐿

tree unravel tree𝐿

compile etc.

Figure 7. Grammar stitching and parse tree unraveling.

There is still one problem left: the parse trees from the
locale-grammar possibly have a different shape from the
parse trees that a backend processor (e.g., a compiler) ex-
pects in its concrete syntax patterns. In a sense, the effect of
stitching a fabric grammar onto a reference grammar has to
be undone, but this time on parse trees. We call this process
parse tree unraveling.

5.2 Parse tree unraveling

Parse tree unraveling consists of undoing the effect of fabric
grammar stitching on the parse trees resulting from parsing
using the stitched grammar.

An overview of the approach is shown in Figure 7. The left
of the figure shows the normal situation where a reference
grammar is used to parse some source code, which produces
a tree that can be compiled. The middle shows how both
the reference grammar and the fabric grammar are used by
both stitch and unravel. In the case of stitch, this produces an
internationalized grammar; in the case of unravel, parse trees
obtained using the internationalized grammar are converted
back to parse trees that can be compiled. As a result, all
backend language processor are reused.

The essence of parse tree unraveling is to reuse the reified
fabric grammar as a recipe to transform the parse trees to
a shape as if it resulted from a parse using the reference
grammar. However, there is one challenge that needs to be
addressed: since stitching allows the addition and/or removal
of tokens at various places in a production, the number and
placement of layout nodes (whitespace and comments) in
between symbols has to be adjusted when going from in-
ternationalized parse tree to a parse tree as dictated by the
reference grammar.

This problem is illustrated in Figure 8 using the Dutch
version of QL. The bottom row shows the arrangement of
the children of a parse tree representing the Dutch condi-
tional. The layout positions are indicated with ␣ at positions
1, 3, 5, and 7. The top row shows the desired (reference) ar-
rangement of children. Note that, incidentally, there is an
equal number of layout positions, but their positions are not
aligned with the bottom row.

SLE ’22, December 06–07, 2022, Auckland, New Zealand Tijs van der Storm and Felienne Hermans

"if"0 ␣1 "("2 ␣3 Expr4 ␣5 ")"6 ␣7 Question8

"als"0 ␣1 Expr2 ␣3 "dan"4 ␣5 ":"6 ␣7 Question8

Figure 8. Aligning production patterns (no reordering)

The arrows indicate the way the unravel algorithm heuris-
tically assigns actual layout from the Dutch parse tree into
the constructed reference parse tree. In the meantime, the
original keywords are simply replicated from the reference
grammar, because they are constant. Note further that layout
at position 1 is used twice, because the heuristic assumes
that the layout after Expr2 should come after Expr4 at the
top row. Finally, a consequence of this heuristic is that layout
at position 7 is never replicated.

What about reordering of AST nodes? After a matching
has been established like in Figure 8, the indices on the place-
holders are used to shuffle the AST nodes into the positions
dictated by the reference grammar. This only applies to AST
nodes, so Expr2 and Question8 would be eligible for shuf-
fling, if the fabric grammar’s placeholders would specify that.
The algorithm is similar to the stitching process of Figure 3,
but in reverse, and modulo the layout nodes.

The full algorithm in (simplified) Rascal code can be found
in Appendix A. The above explanation details a specific
heuristic to deal with the layout problem. Others are pos-
sible too. For instance, we could duplicate layout nodes, if
the internationalized tree has fewer layout nodes than the
reference tree; in the current algorithm we put a dummy lay-
out if there are not enough layout nodes available, e.g., due
to keyword removal in the fabric. Alternatively, one could
merge multiple layout nodes into a single one, if the inter-
nationalized tree has a surplus. In any case, which heuristic
works best, and for what purpose, requires further research.

The accurate backporting of the layout is not an essential
aspect of the approach, because the unraveled parse trees
are not for human consumption, at least not if the reason
is to reuse backends. If unraveling is used for the actual
translation of locale-specific programs back to the reference
format, one would like to provide a reasonable layout. Still,
for debugging concerns of the language engineer, it might
be useful to have a layout at least somewhat close to the
internationalized original program.

A pretty printer could also be used, but this requires un-
parsing to text, and parsing again, which is inefficient, and
furthermore breaks down when identifiers were used that
are reserved keywords in the reference grammar. It would
also have been possible to simply insert a default layout (e.g.,
a single space) everywhere, but this would lead to unraveled

programs that are completely unrecognizable to the original
author.

5.2.1 Unraveling to abstract syntax. Although it is com-
mon and idiomatic in Rascal to define language processors
in terms of concrete syntax trees, it is possible to define a
language’s abstract syntax as an algebraic data type, and
convert parse trees to ASTs over such a data type. This pro-
cess is sometimes called “implode”, and Rascal comes with a
built-in function that performs implode generically, mapping
production labels in the parse tree to constructor names in
the algebraic data type.

To accomodate internationalization we have reimplemen-
ted implode to take reordering of AST children into account.
This means that for any internationalized parse tree, a single,
canonical abstract syntax type can be used. Since the conver-
sion to abstract syntax trees typically involves eliminating
syntactic elements like keywords and whitespace, the prob-
lem of layout reconstruction and “untranslating” keywords
does not apply here.

6 Evaluation

6.1 Case study: Hedy
′

To evaluate the expressiveness of Fabric, we reimplemented
the first 10 levels of a refactored version of Hedy [16], called
Hedy′, together with a fabric grammar reproducing the
Dutch translation.

We call this version Hedy′, because the actual implemen-
tation has organically evolved, contains a lot of tricky corner
cases, and displays a strong dependency on LARK’s parsing
algorithm. The Fabric formalism is designed to be indepen-
dent of specific parsing technology (as much as possible);
replicating the actual Hedy implementation would entail
too much tailoring for this specific case, which defeats the
point of being a generic tool. Nevertheless, this case study
shows that the graduality and internationalization required
by Hedy can be concisely represented in Fabric. We dele-
gate refactoring the actual implementation of Hedy to future
work.

Table 1 shows a metrics-based summary of the Hedy′
Fabric grammars. As can be seen, most of the features of
Fabric are used extensively, with the exception of @deprecate.
The Dutch translation requires a mere 57 source lines of
code (SLOC). Both the reference grammar and the Dutch

Gradual Grammars: Syntax in Levels and Locales SLE ’22, December 06–07, 2022, Auckland, New Zealand

Table 1. Hedy′ case study metrics.

#levels 10 Reference grammar 151 SLOC
#overrides 29 Dutch fabric 57 SLOC
#removes 4 Base LARK 503 SLOC
#error 16 Dutch LARK 597 SLOC
#deprecate 0

fabric grammar generate a total of 503 SLOC and 597 SLOC
of LARK code, respectively. These results are in the same
order of magnitude as the actual implementation of Hedy.
Yet, using Fabric, the leveled structure of Hedy′ is made
explicit and analyzable. Furthermore, the Dutch translation,
supports reordering of AST arguments, which is currently
unsupported by Hedy.

6.2 Case study: Rebel2

To exercise the embedding of Fabric in the Rascal language
workbench, we have performed a second case study on the
DSL Rebel2 [31]. Rebel2 is a DSL for state-based specifica-
tion of financial products, and performing subsequent light-
weight model checking operations. Since the target audience
of Rebel2 consists of domain experts in finance, it makes
sense to offer the DSL close to the users’ native language (in
this example we use Dutch).

Figure 9 shows a simple Rebel2 specification of a counter
system, using Dutch keywords. Such specifications can be
parsed using the grammars obtained from stitching the Dutch
Rebel2 fabric onto the reference grammar (which required
no changes at all). The resulting parse trees are then unrav-
eled to reference parse trees, which can be compiled, type
checked, or unparsed to text (if so desired). Appendix C
shows the unraveled parse tree of Figure 9. Note that in this
case all layout is perfectly preserved.

The back translation of keywords in parse trees poses the
problem of keyword reservation. Whereas fabric grammars
specify how to reserve keywords in the internationalized
grammars, it may happen that users of that locale use identi-
fiers that are actually reserved in the reference grammar. For
instance, in Dutch Rebel2 the token “waar” (true) is reserved,
and cannot be used as an identifier. However, a Dutch user
could use the token “true” as an identifier. When the Dutch
parse tree is unraveled, the reference parse tree contains an
identifier that could never have resulted from a parse using
the reference grammar.

Keyword reservation is a disambiguation construct. As a
result, backend language processors generally do not care
whether identifiers like “true” occur in the parse tree, since
they will still be distinguished from actual keywords through
their syntactic category. The problem thus only surfaces if
the unraveled parse tree is rendered to text and if one would
then try to parse again using the reference grammar, which
would cause a parse error. If such rendering to text and

module Counter

spec Counter

i: Integer;

start gebeurtenis create() post: this.i' = 0;

gebeurtenis inc() post: this.i' = this.i + 1;

gebeurtenis dec() post: this.i' = this.i - 1;

toestanden:

(*) -> active: create;

active -> active: inc,dec;

config Simple = c: Counter is uninitialized;

stel vast Eventually3Later1 = uiteindelijk

bestaat c:Counter | c.i = 3 && uiteindelijk c.i = 1;

doe Eventually3Later1 van Simple in maximaal 7 stappen;

Figure 9. Snippet of Dutch Rebel2.

parsing again would be required, e.g., in the case unravel
would literally be used to translate programs between locales,
a possible solution would be to have the language support
escaped keywords as identifiers. Unravel would then detect
whether an identifier is reserved in the target grammar, and
insert escape characters accordingly. In that case the Dutch
identifier “true” would end up as the English identifier, say,
“\true”.

6.3 Performance overhead of unravel

Since the embedding of Fabric in Rascal postpones unravel-
ing to run time, we have performed a small experiment to
assess the performance cost of both unravel, and implode.
This exercise was performed on 2019 MacBook Pro 2.6 GHz,
6-Core Intel Core i7, with 16 GB of memory. Using random
sentence generation, we’ve synthesized 1000 Dutch QL pro-
grams, up to an AST depth of 12, and measured the time of
unravel and implode. The results are shown in Figure 10.

From the plot it is clear there is a linear correlation be-
tween size of the program and time of unravel and im-
plode, as expected. Somewhat surprising, however, implode
is slower that unravel, possibly because implode creates a
new tree structure, whereas unravel reuses as much as pos-
sible of the original, internationalized parse tree, and only
creates new literals, and shuffles subtrees.

Although all randomly synthesized programs incur an
unravel/implode overhead that is still below one third of a
second, the programs are arguably small (≤ 2500 characters).
For large programs, therefore, it could incur a noticeable
delay when compiling internationalized programs. However,
both in the setting of education (where programs are typ-
ically very small), and in the setting of DSLs (which are
designed to make programs smaller), the performance over-
head of unravel/implode might be acceptable. Nevertheless,

SLE ’22, December 06–07, 2022, Auckland, New Zealand Tijs van der Storm and Felienne Hermans

y = 0.0592x + 1.7295
R² = 0.9916

y = 0.1275x + 3.0555
R² = 0.9739

0

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500

Ti
m

e
(m

s)

Size (#characters)

unravel implode

Figure 10. Performance of unravel and implode.

further research is needed to assess the overhead of unravel-
ing/imploding realistic programs, with actual users.

7 Discussion and related work

7.1 Discussion

Fabric is designed to be independent of specific parsing tech-
nology. However, in the current implementation, specifics
of the back-end seep through. For instance, LARK tries al-
ternatives of a syntax rule in order, leading to a preferential
order of productions. Fabric makes no assumptions about
production ordering, so the actual result of parsing using
LARK might incur surprises.

Although Fabric supports declarative internationalization
through its fabric grammars, backend processors are not
oblivious to shuffling of AST nodes. Language engineers have
to detect and interpret the shuffling annotations embedded
in the LARK grammars to construct the canonical ASTs that
are expected by the language’s compiler or interpreter.

The embedding of Fabric in Rascal does not suffer from
this problem. However, the obliviousness comes at a per-
formance cost at compile time. Whether this is a relevant
performance penalty for the language user is up for debate,
and probably depends on language pragmatics, e.g. whether
Fabric is used for teaching purposes or for actual interna-
tionalization of DSLs.

One additional benefit of the Rascal embedding is that it
provides a seamless way to implement the actual translation
of programs from a locale to the reference locale. Due to
heuristically re-inserting of layout, unraveling an interna-
tionalized parse tree into a reference parse tree, we obtain
reasonable, human-readable programs, modulo some lay-
out artifacts of the chosen heuristic. The other way round,
one would expect it to be possible to translate a program
conforming to the reference grammar to any other locale,
by taking the generated grammar from the fabric as the
(temporary) reference grammar. Unfortunately, this requires
a “reference” fabric for each generated localized grammar,

which surely does not scale. Further research is needed to
extend the Fabric approach to be more symmetric.

There has been recent work on generating Scratch-like [23]
block-based environments from context-free grammars [24,
36]. The Kogi tool interprets the productions of a gram-
mar as templates for constructing a toolbox of jigsaw-like
pieces which can be then be pieced together to construct pro-
grams. In combination with Fabric, language engineers can
now construct internationalized block-based environments
at practically zero effort.

In essence, Fabric is a modular grammar formalism, which
is at odds with parsing algorithms that do not support the
full class of context-free grammars. In the current incarna-
tion, Fabric is implemented on top of LARK and embedded
in Rascal, both of which are backed by general parsing al-
gorithms. This does not necessarily mean Fabric cannot be
realized on top of, say, a variant of Yacc [19], or ANTLR4 [25],
since the basic composition mechanism is still merging of
sets of production rules. However, there is the risk that the
resulting composition is not well-defined, or, at minimum,
might not behave as intuitively expected.

7.2 Related work

In essence, Fabric is modular syntax definition formalism.
Modularity in language engineering is a research topic that
has been extensively researched. Modular language develop-
ment systems such as JastAdd [9], Silver [41], Lisa [27], Ras-
cal [1, 20], Asf+Sdf [15, 33], Spoofax [37, 40], Neverlang [32],
Monticore [21], GEMOC studio/Melange [3, 7], Xtext [12],
MPS [38, 39], Ensō [34], Naked Object Algebras [13, 18], all
support varying degrees of modularity and syntax composi-
tion.

Many of these approaches employ underlying class-based
metamodels to define abstract syntax. As a result, their gram-
mar formalisms (with some variations) follow the mapping
pattern where nonterminals correspond to (abstract) base
classes, and productions to concrete subclasses. Some form
of inheritance is supported, where nonterminals can be ex-
tended with additional productions, which in turn corre-
spond to additional subclasses. Others, e.g., Rascal, Asf+Sdf,
Spoofax, are based on algebraic data types or signature,
which in a similar way only support addition of produc-
tions/constructors.

The modularity features offered by these systems could
be leveraged to realize gradual grammars. Nevertheless, this
kind of modularity is always monotonic: language compo-
nents or language modules can be extended in a strictly
increasing fashion, i.e., the only operation is adding new
constructs, not removing them.

As far as we know, Fabric is novel by supporting non-
monotonic graduality as well. This comes in two forms. First,
production overriding (replacing a syntactic construct with a
different syntax) effectively support eliminating existing syn-
tax. Second, the explicit removal can be used to strictly make

Gradual Grammars: Syntax in Levels and Locales SLE ’22, December 06–07, 2022, Auckland, New Zealand

language smaller. These features are essential for languages
like Hedy, which start by offering extremely simplified nota-
tions, which have to be removed later on to avoid parsing
conflicts and/or ambiguity.

The second novelty of Fabric is the use of grammar fab-
rics for internationalization. Although one could argue that
a sufficiently modular language development system could
leverage its modularity constructs to realize translation of
keywords and/or reordering productions, this would require
duplicating large parts of the grammar, and does not trivially
solve the problem of reusing existing back-ends. We believe
that a dedicated, aspect-like fabric formalism is more light-
weight, is mostly oblivious to, e.g., names of nonterminals
and (labeled) production arguments, and is easy to check for
conformance with respet to a base grammar.

Gradual disclosure of language features in levels for the
sake of programming education was pioneered in the PLT
Scheme/Racket ecosystem [5]. The DrRacket environment8

offers menu options to enable certain teaching languages,
corresponding to a student’s proficiency. Unlike Hedy, how-
ever, Racket’s levels are primarily semantic. For instance, the
“Beginning Student” language is a small version of Racket, tai-
lored to novice computer science students, whereas the “In-
termediate Student” language adds local bindings and higher-
order functions. Racket and Hedy differ in both granularity
of graduality and target audience. First of all, the former is
oriented towards computer science students, whereas the
latter is aimed at children from 8 year on. Second, Hedy is
syntactically more fine-grained (at statement level), and non-
monotonic: certain syntax becomes invalid in later levels.

More recently, others have also described languages that
are extended over the duration of a course, for example Caz-
zola and Olivares [2] describe a language which gradually
builds up to JavaScript, in which students were provided
with different JavaScript variants, where each variant fo-
cused on another language feature, e.g., loops, recursion,
exception handling, object orientation. Vega et al. describe
their Java-based system Cupi2, in which students solve in-
creasingly more complicated problems, with partly gener-
ated programs [35].

Organizing syntax definitions into consecutive levels can
be seen as a form of language product lines [6, 22], where
each level is a variant of some base language. This has ap-
plications outside of programming education. For instance,
language restriction is a well-known concept to make lan-
guages less expressive, e.g., for the purpose of security or
safety. One example of this is Misra C, a version of C used
in automotive software development that disallows certain
features of the full C programming language [14].

Another way of looking at the vertical aspect of gradual
grammars is from the perspective of language evolution. It

8https://racket-lang.org/

has been argued that languages should be growable, gradu-
ally adding features according to the demands of a certain
domain [30]. Industrial languages typically prioritize back-
wards compatibility over feature removal, but gradual gram-
mars could be used to make language versioning first-class
in the language engineering process.

There are number of languages which feature interna-
tionalization or localization of their syntax. Next to Hedy,
notable examples include Microsoft Excel9, AppleScript [4],
and Scratch [23]. All three target end-user developers and/or
novice programmers. While these languages are very suc-
cessful, they have not lead to reusable, generic principles or
techniques to engineer languages for internationalization.

Most relevant to our work is AppleScript, since it is an
end-user programming language and has a textual syntax.
The implementation approach, however, is different from
the Fabric approach we present in this paper. AppleScript
programs are stored in a locale-independent format, and they
are syntactically skinned depending on in which locale the
program is edited or viewed. This means that the render-
ing to text has to perform pretty printing, thereby possibly
losing the layout of the original program. Both Fabric, and
its embedding in Rascal, retain the original layout of the
programmer, which is desirable in most situations.

Another difference is that AppleScript was designed to
look like a natural language, an experiment that, according
to Cook [4], has failed. Our approach is independent of such
goals. As the prime example of an internationalized program-
ming language today, Hedy definitely is not designed to look
like a natural language, but nonetheless benefits from the fact
that its keywords can be translated to different languages.

Fabric stitching resembles advice weaving, such as offered
by, for instance AspectJ [17], or could be seen as a domain-
specific form of delta-oriented programming [28]. The pro-
duction patterns with placeholders can be seen as simple
pointcuts specifying join points in the grammar, or deltas,
modifying some base structure. Unlike the general pointcuts
of AspectJ, however, matching is one-to-one, through the
unique production labels. Since stitched productions pre-
serve the AST symbols via the placeholders, one could say
such a pattern realizes a simple form of “around” advice.
Along similar lines, fabric grammars resemble Cascading
Style Sheets (CSS), which are also used to style or “skin” a
base document using pointcut like selectors.

8 Conclusion

Much of software language engineering is based on the as-
sumption that languages have a single, canonical syntax.
This syntax, however, can be too intimidating to process
all at once by end-users, students, or children learning the
language. Furthermore, most programming language syn-
tax is biased towards the western, English speaking world,

9https://www.microsoft.com/en-us/microsoft-365/excel

https://racket-lang.org/
https://www.microsoft.com/en-us/microsoft-365/excel

SLE ’22, December 06–07, 2022, Auckland, New Zealand Tijs van der Storm and Felienne Hermans

which can be another barrier to learning. In this paper we
have presented Fabric, a grammar formalism that allows
language engineers to organize syntax definitions into levels,
to gradually introduce language features. Furthermore, each
of those levels can be internationalized by keyword trans-
lation and sentence reordering directives, defined in fabric
grammars.
Fabric has been implemented in Rascal [20] as a stand-

alone grammar formalism which is compiled to LARK gram-
mars. An embedding of Fabric as a library in Rascal allows
DSLs developed in the Rascal language workbench to be
seamlessly gradualized, as well as internationalized. We have
evaluated Fabric using two case studies: an idealized ver-
sion of Hedy [16], a gradual programming language designed
for education, and Rebel2 [31], a DSL for financial product
modeling. Both case studies demonstrate the potential of the
approach.

Future directions for research include: extending the in-
ternationalization features of Fabric to include adaptation
of reading direction, and customization towards using non-
Latin punctuation, such as the Arabic comma, and investi-
gating how internationalization could be realized in visual
languages. Finally, we would like to refactor the current Hedy
implementation to use Fabric, to make the development and
maintenance of its gradual, internationalized syntax easier
and more reliable.

References

[1] Bas Basten, Jeroen van den Bos, Mark Hills, Paul Klint, Arnold
Lankamp, Bert Lisser, Atze van der Ploeg, Tijs van der Storm, and
Jurgen J. Vinju. 2015. Modular language implementation in Ras-
cal - experience report. Sci. Comput. Program. 114 (2015), 7–19.
https://doi.org/10.1016/j.scico.2015.11.003

[2] Walter Cazzola and Diego Mathias Olivares. 2016. Gradually Learning
Programming Supported by a Growable Programming Language. IEEE
Transactions on Emerging Topics in Computing 4, 3 (July 2016), 404–415.
https://doi.org/10.1109/TETC.2015.2446192

[3] Benoît Combemale, Olivier Barais, and Andreas Wortmann. 2017. Lan-
guage Engineering with the GEMOC Studio. In ICSAWorkshop’17. IEEE
Computer Society, 189–191. https://doi.org/10.1109/ICSAW.2017.61

[4] William R. Cook. 2007. AppleScript. In HOPL III (San Diego, California).
1–1–1–21. https://doi.org/10.1145/1238844.1238845

[5] Marcus Crestani and Michael Sperber. 2010. Experience report: grow-
ing programming languages for beginning students. ACM Sigplan
Notices 45, 9 (2010), 229–234.

[6] Juan de Lara and Esther Guerra. 2020. Multi-level Model Product Lines
- Open and Closed Variability for Modelling Language Families. In
FASE’20 (LNCS), Heike Wehrheim and Jordi Cabot (Eds.), Vol. 12076.
Springer, 161–181. https://doi.org/10.1007/978-3-030-45234-6_8

[7] Thomas Degueule, Benoît Combemale, Arnaud Blouin, Olivier Barais,
and Jean-Marc Jézéquel. 2015. Melange: a meta-language for mod-
ular and reusable development of DSLs. In SLE’15, Richard F. Paige,
Davide Di Ruscio, and Markus Völter (Eds.). ACM, 25–36. https:
//doi.org/10.1145/2814251.2814252

[8] Paul Denny, Andrew Luxton-Reilly, Ewan Tempero, and Jacob Hen-
drickx. 2011. Understanding the syntax barrier for novices. ACM,
208–212. https://doi.org/10.1145/1999747.1999807

[9] Torbjörn Ekman and Görel Hedin. 2007. The JastAdd system - modular
extensible compiler construction. Sci. Comput. Program. 69, 1-3 (2007),

14–26. https://doi.org/10.1016/j.scico.2007.02.003
[10] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Laurence Tratt,

Remi Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout,
Steven Kelly, Alex Loh, Gabriël Konat, Pedro J. Molina, Martin Palatnik,
Risto Pohjonen, Eugen Schindler, Klemens Schindler, Riccardo Solmi,
Vlad Vergu, Eelco Visser, Kevin van der Vlist, Guido Wachsmuth,
and Jimi van der Woning. 2015. Evaluating and comparing lan-
guage workbenches: Existing results and benchmarks for the fu-
ture. Computer Languages, Systems & Structures 44 (2015), 24–47.
https://doi.org/10.1016/j.cl.2015.08.007 Special issue on the 6th and
7th International Conference on Software Language Engineering (SLE
2013 and SLE 2014).

[11] Alejandro Espinal, Camilo Vieira, and Valeria Guerrero-Bequis. 2022.
Student ability and difficulties with transfer from a block-based
programming language into other programming languages: a case
study in Colombia. Computer Science Education 0, 0 (2022), 1–33.
https://doi.org/10.1080/08993408.2022.2079867

[12] Moritz Eysholdt and Heiko Behrens. 2010. Xtext: implement your
language faster than the quick and dirty way. InOOPSLA’10 Companion,
William R. Cook, Siobhán Clarke, and Martin C. Rinard (Eds.). ACM,
307–309. https://doi.org/10.1145/1869542.1869625

[13] Maria Gouseti, Chiel Peters, and Tijs van der Storm. 2014. Extensi-
ble language implementation with object algebras (short paper). In
GPCE’14. ACM, 25–28. https://doi.org/10.1145/2658761.2658765

[14] Les Hatton. 2004. Safer language subsets: an overview and a case
history, MISRA C. Information and Software Technology 46, 7 (2004),
465–472.

[15] Jan Heering, Paul Robert Hendrik Hendriks, Paul Klint, and Jan Rekers.
1989. The syntax definition formalism SDF—reference manual—. ACM
Sigplan Notices 24, 11 (1989), 43–75.

[16] Felienne Hermans. 2020. Hedy: A Gradual Language for Programming
Education. In ICER’20. Association for Computing Machinery, New
York, NY, USA, 259–270. https://doi.org/10.1145/3372782.3406262

[17] Erik Hilsdale and Jim Hugunin. 2004. Advice weaving in AspectJ. In
AOSD’04. 26–35.

[18] Pablo Inostroza and Tijs van der Storm. 2017. Modular interpreters
with implicit context propagation. Comput. Lang. Syst. Struct. 48 (2017),
39–67. https://doi.org/10.1016/j.cl.2016.08.001

[19] Stephen C Johnson et al. 1975. Yacc: Yet another compiler-compiler.
Vol. 32. Bell Laboratories Murray Hill, NJ.

[20] Paul Klint, Tijs van der Storm, and Vinju Jurgen. 2009. RASCAL: A
Domain Specific Language for Source Code Analysis and Manipulation.
In SCAM’09. IEEE Computer Society, 168–177. https://doi.org/10.1109/
SCAM.2009.28

[21] Holger Krahn, Bernhard Rumpe, and Steven Völkel. 2010. Monti-
Core: a framework for compositional development of domain specific
languages. Int. J. Softw. Tools Technol. Transf. 12, 5 (2010), 353–372.
https://doi.org/10.1007/s10009-010-0142-1

[22] Thomas Kühn, Walter Cazzola, Nicola Pirritano Giampietro, and Massi-
miliano Poggi. 2019. Piggyback IDE support for language product lines.
In SPLC’19. ACM, 22:1–22:12. https://doi.org/10.1145/3336294.3336301

[23] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and
Evelyn Eastmond. 2010. The Scratch Programming Language and
Environment. ACM Trans. Comput. Educ. 10, 4, Article 16 (nov 2010),
15 pages. https://doi.org/10.1145/1868358.1868363

[24] Mauricio Verano Merino, Tom Beckmann, Tijs van der Storm, Robert
Hirschfeld, and Jurgen J. Vinju. 2021. Getting grammars into shape for
block-based editors. In SLE’21. ACM, 83–98. https://doi.org/10.1145/
3486608.3486908

[25] Terence Parr, Sam Harwell, and Kathleen Fisher. 2014. Adaptive LL(*)
parsing: the power of dynamic analysis. ACM SIGPLAN Notices 49, 10
(2014), 579–598.

[26] Yizhou Qian, Peilin Yan, and Mingke Zhou. 2019. Using Data to Un-
derstand Difficulties of Learning to Program: A Study with Chinese

https://doi.org/10.1016/j.scico.2015.11.003
https://doi.org/10.1109/TETC.2015.2446192
https://doi.org/10.1109/ICSAW.2017.61
https://doi.org/10.1145/1238844.1238845
https://doi.org/10.1007/978-3-030-45234-6_8
https://doi.org/10.1145/2814251.2814252
https://doi.org/10.1145/2814251.2814252
https://doi.org/10.1145/1999747.1999807
https://doi.org/10.1016/j.scico.2007.02.003
https://doi.org/10.1016/j.cl.2015.08.007
https://doi.org/10.1080/08993408.2022.2079867
https://doi.org/10.1145/1869542.1869625
https://doi.org/10.1145/2658761.2658765
https://doi.org/10.1145/3372782.3406262
https://doi.org/10.1016/j.cl.2016.08.001
https://doi.org/10.1109/SCAM.2009.28
https://doi.org/10.1109/SCAM.2009.28
https://doi.org/10.1007/s10009-010-0142-1
https://doi.org/10.1145/3336294.3336301
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/3486608.3486908
https://doi.org/10.1145/3486608.3486908

Gradual Grammars: Syntax in Levels and Locales SLE ’22, December 06–07, 2022, Auckland, New Zealand

Middle School Students. In CompEd’19 (Chengdu,Sichuan, China). New
York, NY, USA, 185–191. https://doi.org/10.1145/3300115.3309521

[27] Damijan Rebernak, Marjan Mernik, Pedro Rangel Henriques,
Daniela Carneiro da Cruz, and Maria João Varanda Pereira. 2006. Spec-
ifying Languages Using Aspect-oriented Approach: AspectLISA. J.
Comput. Inf. Technol. 14, 4 (2006), 343–350. https://doi.org/10.2498/cit.
2006.04.11

[28] Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and
Nico Tanzarella. 2010. Delta-Oriented Programming of Software
Product Lines. In SPLC’10 (LNCS), Vol. 6287. Springer, 77–91. https:
//doi.org/10.1007/978-3-642-15579-6_6

[29] August Schwerdfeger and Eric Van Wyk. 2009. Verifiable composition
of deterministic grammars. In PLDI’09, Michael Hind and Amer Diwan
(Eds.). ACM, 199–210. https://doi.org/10.1145/1542476.1542499

[30] Guy L. Steele. 2006. A Growable Language. InCompanion to OOPSLA’06
(Portland, Oregon, USA). Association for Computing Machinery, New
York, NY, USA, 505. https://doi.org/10.1145/1176617.1176621

[31] Jouke Stoel, Tijs van der Storm, and Jurgen J. Vinju. 2021. Model-
ing with Mocking. In ICST’21. IEEE, 59–70. https://doi.org/10.1109/
ICST49551.2021.00018

[32] Edoardo Vacchi and Walter Cazzola. 2015. Neverlang: A framework
for feature-oriented language development. Comput. Lang. Syst. Struct.
43 (2015), 1–40. https://doi.org/10.1016/j.cl.2015.02.001

[33] Mark van den Brand, Arie van Deursen, Jan Heering, Hayco de Jong,
Merijn de Jonge, Tobias Kuipers, Paul Klint, Leon Moonen, Pieter A.
Olivier, Jeroen Scheerder, Jurgen J. Vinju, Eelco Visser, and Joost Visser.
2001. The Asf+Sdf Meta-Environment: a Component-Based Language
Development Environment. Electron. Notes Theor. Comput. Sci. 44, 2
(2001), 3–8. https://doi.org/10.1016/S1571-0661(04)80917-4

[34] Tijs van der Storm, William R. Cook, and Alex Loh. 2014. The design
and implementation of Object Grammars. Sci. Comput. Program. 96
(2014), 460–487. https://doi.org/10.1016/j.scico.2014.02.023

[35] Carlos Vega, Camilo Jiménez, and Jorge Villalobos. 2013. A scalable
and incremental project-based learning approach for CS1/CS2 courses.
Education and Information Technologies 18, 2 (June 2013), 309–329.
https://doi.org/10.1007/s10639-012-9242-8

[36] Mauricio Verano Merino and Tijs van der Storm. 2020. Block-Based
Syntax from Context-Free Grammars. In SLE’20 (Virtual, USA) (SLE
2020). ACM, New York, NY, USA, 283–295. https://doi.org/10.1145/
3426425.3426948

[37] Eelco Visser, Guido Wachsmuth, Andrew P. Tolmach, Pierre Neron,
Vlad A. Vergu, Augusto Passalaqua, and Gabriël Konat. 2014. A Lan-
guage Designer’s Workbench: A One-Stop-Shop for Implementation
and Verification of Language Designs. In Onward! 2014. ACM, 95–111.
https://doi.org/10.1145/2661136.2661149

[38] Markus Voelter and Vaclav Pech. 2012. Language modularity with the
MPS language workbench. In ICSE’12, Martin Glinz, Gail C. Murphy,
and Mauro Pezzè (Eds.). IEEE Computer Society, 1449–1450. https:
//doi.org/10.1109/ICSE.2012.6227070

[39] Markus Voelter, Jos Warmer, and Bernd Kolb. 2015. Projecting a Mod-
ular Future. IEEE Softw. 32, 5 (2015), 46–52. https://doi.org/10.1109/
MS.2014.103

[40] Guido Wachsmuth, Gabriël D. P. Konat, and Eelco Visser. 2014. Lan-
guage Design with the Spoofax Language Workbench. IEEE Softw. 31,
5 (2014), 35–43. https://doi.org/10.1109/MS.2014.100

[41] Eric Van Wyk, Derek Bodin, Jimin Gao, and Lijesh Krishnan. 2010.
Silver: An extensible attribute grammar system. Sci. Comput. Program.
75, 1-2 (2010), 39–54. https://doi.org/10.1016/j.scico.2009.07.004

A Unravel algorithm

The top level unravel function is shown below. It receives
two reified types, ref, and fabric, representing the reference
grammar and the fabric grammar, respectively. The third

parameter, pt, is the parse tree, that resulted from parsing
using a localized grammar. The final parameter indicates the
locale.

The function traverse the parse tree, and rewrites every
encountered node for which the fabric grammar contains
a matching production pattern. The appl constructor is the
internal representation of Rascal parse trees, and is used to
destructure the visited node. The expression after the ⇒
is unraveled using the helper function unravelKids, shown
below.
Tree unravel(type[&T<:Tree] ref, type[&U<:Tree] fabric,

Tree pt, str locale) {

// bottom-up traversal of the parse tree

return visit (pt) {

// match a parse tree over the localized grammar

case appl(prod(label(str l, sort(str nt)), _, _),

list[Tree] kids) ⇒
// & rewrite it to a tree over the ref grammar

appl(bp, unravelKids(bp.symbols, fp.symbols, kids))

when

// a mathing prod bp exists in ref-grammar

/bp:prod(label(l, sort(nt)), _, _)

:= ref.definitions,

// and locale prod fp exists in the fabric

/fp:prod(label(l, sort(/<nt>_<locale>/)), _, _)

:= fabric.definitions

}

}

Rascal code to unravel children (kids) of a parse tree ob-
tained from a stitched grammar into parse tree children
conforming to a reference grammar production (ref); fab
represents the fabric production with placeholders used to
stitch the grammar.
list[Tree] unravelKids(list[Symbol] ref,

list[Symbol] fab, list[Tree] kids) {

int cur = 0; // child index in kids

Tree nextLayout() { // find the next layout node

while (cur < size(fab))

if (isLit(fab[cur])) cur += 1; // skip lits

else if (isLayout(fab[cur])) return kids[cur];

return dummyLayout(); // if no more layout available

}

Tree nextAST() { // find the next AST node

while (cur<size(fab), isLit(fab[cur])

|| isLayout(fab[cur]))

cur += 1;

return kids[cur];

}

// map maintaining reordering of AST child nodes

map[int,int] shuffle = (i: 0 | i ←[0..size(ref)]);

int idx = 0; // index in the future (ref) production

https://doi.org/10.1145/3300115.3309521
https://doi.org/10.2498/cit.2006.04.11
https://doi.org/10.2498/cit.2006.04.11
https://doi.org/10.1007/978-3-642-15579-6_6
https://doi.org/10.1007/978-3-642-15579-6_6
https://doi.org/10.1145/1542476.1542499
https://doi.org/10.1145/1176617.1176621
https://doi.org/10.1109/ICST49551.2021.00018
https://doi.org/10.1109/ICST49551.2021.00018
https://doi.org/10.1016/j.cl.2015.02.001
https://doi.org/10.1016/S1571-0661(04)80917-4
https://doi.org/10.1016/j.scico.2014.02.023
https://doi.org/10.1007/s10639-012-9242-8
https://doi.org/10.1145/3426425.3426948
https://doi.org/10.1145/3426425.3426948
https://doi.org/10.1145/2661136.2661149
https://doi.org/10.1109/ICSE.2012.6227070
https://doi.org/10.1109/ICSE.2012.6227070
https://doi.org/10.1109/MS.2014.103
https://doi.org/10.1109/MS.2014.103
https://doi.org/10.1109/MS.2014.100
https://doi.org/10.1016/j.scico.2009.07.004

SLE ’22, December 06–07, 2022, Auckland, New Zealand Tijs van der Storm and Felienne Hermans

list[Tree] newKids = [];

// reconstruct kids according to ref

while (idx < size(ref)) {

if (isLit(ref[idx]))

newKids += makeLitTree(ref[idx]);

else if (isLayout(ref[idx]))

newKids += nextLayout();

else {

newKids += nextAST();

shuffle[idx] = placeholderPos(fab[cur]);

cur += 1;

}

idx += 1;

}

list[Tree] shuffled = newKids;

for (int i ←[0..size(newKids)])

if (shuffle[i] > 0)

shuffled[i] = astAt(newKids, shuffle[i] - 1);

return shuffled;

}

B Dutch Hedy
′
fabric grammar

module HedyNL

modifies "hedy-nice.gradgram"

locale nl

level 1

command

= ask: "vraag" _

| turn: "draai" _

| forward: "vooruit" _

| print: "print" _ "uit"

level 2

command

= sleep: "slaap" _

| ask: _ "is" "vraag" _

| color: "kleur" _

| error_ask_dep_2: "vraag" _

color

= black: "zwart" | blue: "blauw" | brown: "bruin"

| gray: "grijs" | green: "groen" | orange: "oranje"

| pink: "roze" | purple: "paars" | red: "rood"

| white: "wit" | yellow: "geel"

level 3

command = add: "voeg" _ "aan" _ "toe"

| remove: "verwijder" _ "uit" _

list_access = _ "op" (_ | "willekeurig")

level 4

command = error_ask_no_quotes: _ "is" "vraag" _

level 5

command_with_ifs

= ifs: "als" _ "dan" _

| ifelse: "als" _ "dan" _ " anders" _

| list_access_var: _ "is" _ "op" _

level 6

level 7

command

= repeat: "herhaal" _ "keer" _

| error_repeat_no_command: "herhaal" _ "keer"

| error_repeat_no_print: "herhaal" _ "keer" _

| error_repeat_no_times: "herhaal" _ _

level 8

command

= ifs: "als" _ "dan" "\n" _ "\n" _

| ifelse: "als" _ "dan" "\n" _ "\n" _ "\n"

"anders" "\n" _ "\n" _

| repeat: "herhaal" _ "keer" _ "\n" _

level 9

level 10

command

= "voor" _ "in" _ "\n" _ "\n" _

C Unraveled Rebel2 specification

The unraveled Rebel2 specification of Figure 9:
module Counter

spec Counter

i: Integer;

init event create() post: this.i' = 0;

event inc() post: this.i' = this.i + 1;

event dec() post: this.i' = this.i - 1;

states:

(*) -> active: create;

active -> active: inc,dec;

config Simple = c: Counter is uninitialized;

assert Eventually3Later1 = eventually

exists c:Counter | c.i = 3 && eventually c.i = 1;

run Eventually3Later1 from Simple in max 7 steps;

assert EventuallyAlwaysHigherThan3 = eventually

always exists c:Counter | c.i > 3;

check EventuallyAlwaysHigherThan3 from Simple

in max 6 steps with infinite trace;

	Abstract
	1 Introduction
	2 Background and overview
	3 Fabric by example
	3.1 Reference grammars
	3.2 Fabric grammars

	4 Fabric implementation
	4.1 Flattening
	4.2 Stitching fabrics
	4.3 Implementation

	5 Fabric as a Rascal library
	5.1 Embedding Gradual Grammars
	5.2 Parse tree unraveling

	6 Evaluation
	6.1 Case study: Hedy'
	6.2 Case study: Rebel2
	6.3 Performance overhead of unravel

	7 Discussion and related work
	7.1 Discussion
	7.2 Related work

	8 Conclusion
	References
	A Unravel algorithm
	B Dutch Hedy' fabric grammar
	C Unraveled Rebel2 specification

