Mod4J: A Qualitative Case Study of Model-Driven
Software Development

Vincent Lussenbury Tijs van der Storr3, Jurgen Vinjd3, and Jos Warmér

1 Ordina
{vincent .| ussenburg,jos.warner}@rdina.nl
2 Centrum Wiskunde & Informatica
{t.van. der.stormjurgen.vinju}@w.nl
3 Universiteit van Amsterdam

Abstract. Model-driven software development (MDSD) has been on the ri
over the past few years and is becoming more and more matavee\iér, evalu-
ation in real-life industrial context is still scarce.

In this paper, we present a case-study evaluating the apgity of a state-of-
the-art MDSD tool, MbD4J, a suite of domain specific languages (DSLs) for
developing administrative enterprise application©®4J was used to partially
rebuild an industrially representative application. Tiniplementation was then
compared to a base implementation based on elicited sucdtssa. Our evalu-
ation leads to a number of recommendations to improzk].

We conclude that having extension points for hand-writtheds a good feature
for a model driven software development environment.

1 Introduction

Model Driven Software Development (MDSD) has gained in papty the recent
years. However, research that directly evaluates theagifn of MDSD in an indus-
trial setting is still scarce. In this paper we present aitptdle case study to evaluate
the use of the state-of-the-art model driven developmesit ddop4J. We evaluate
how well an application that is built using &4 J fulfills all of its requirements.

This research project commenced just asivJ delivered a first, stable version
suitable for production use at Ordina. In this version,g¢hiemodeling support for three
out of four logical application layers and work is being demsupport modeling of the
presentation layer. We evaluate this early version becaasee interested in improving
MobD4J and the applications it generates [5]. The results mayiaflsience the current
development of the presentation layer which uses the dilyrexisting functionality as
foundation.

In the remainder of this section we first motivate and inteelv¥lob4J. Then we
describe our method of requirement elicitation and produatuation in Section 2. An
in-depth qualitative analysis produces a lot of data ancldision. A full account can be
found in [10]. Section 3 contains a summary with the mosteggng observations. We
discuss threats to validity and related work in Section #f&ive conclude in Section 5.

4http://ww. mod4j . org/

1.1 Motivating Model Driven Software Development at Ordina

This research has been conducted at J-Technologies, #odiasOrdina employing
personnel specialized in the Java programming language s€hvices offered by J-
Technologies range from hiring out Java professionals tiding and designing soft-
ware in the in-house developmentinfrastructure calledr&dwva. Smart-Java supports
application development by offering the necessary infuastire tools and services,
such as version control, build servers, issue trackersomized Integrated Develop-
ment Environments (IDEs) and software artifact distribntiThe majority of the appli-
cations built in the Smart-Java development infrastruectue web- or service oriented
administrative business applications.

Itis observed that Smart-Java applications were of vefgidint overall quality and
their development often suffers from suboptimal veloatthough they are technically
very similar to each other. Even the skeletons of basic €rdatad, Update, Delete
(CRUD) applications take a long time to be set up. BecausertSiaga is mainly fo-
cused on infrastructural services, it has proved to be lteaddress these issues. There-
fore, the decision was made to investigate the possibifigxpanding the Smart-Java
development infrastructure to a software product line [7].

As a first step, a multi-tier reference architecture [2] wasigned based on the
experiences of the leading architects over the last fewsy@dacommon, high quality
reference architecture enables reuse among projects anesads important choices
regarding non-functional requirements valid for all deyeld applications. Other ob-
jectives and advantages were identified, such as a lowenitgacurve for developers,
as they do not have to learn a new architecture for each prajed improved maintain-
ability. Next, Mob4J—Model Driven Development for Java— was founded to design
and implement a MDSD environment that can support the dpeesain writing appli-
cations within the context of this reference architecture.

1.2 Introducing MoD4J

MobD4J is an open source domain specific environment for devedogiministrative
enterprise applications. It consists of a number of dompéatiic languages (DSLs)
that are used to describe different aspects of adminigtratiterprise applications. Cur-
rently, there are four:

A Business DSL to model the domain of the application. This consists of gpieg
the classes, properties, associations and business fulesdomain.
A Data Contract DSL to define Data Transfer Objects (DTOs) on the domain objects.
A Service DSL for defining application boundaries. It encapsulates tha#iegtion’s
business logic, controls transactions and coordinatpenses.
A Presentation DSL to define user interface components of the application

An important attribute of MD4J is that it providegxtension points at every layer for
programmer to add Java code to specialize an otherwise daelherated application.
The architecture of what ®MD4J generates is depicted in Figure 1.

5 This DSL is currently still under development.

service

Service Interfaces DTOs "
 — L _ L |Generated using
Datacontract DSL
_| —
Generated using
Service DSL]
= business

Domain Services Domain
— Model

Generated using
data _ - BusinessDomain DSL

Data access logic components

Fig. 1: Architecture of MoD4J-generated code.

Mob4J is implemented using openArchitectureWare (oA language work-
bench [6] supporting activities ranging from the design &LB to code generation.
The meta-models of the designed DSLs are used to generhattexiceditors for use
in the Eclipse IDE: they offer code completion, syntax highting and as-you-type
validation. The XText module also allows validation rule$e specified for each DSL
in both the (OCL-like) Checks language and plain Java. Fe@g#mneration of the appli-
cation code and configuration,&4J employs a Model-to-Text (M2T) approach [8,
12] using the XPand component. The various layers are iategry generating the
configuration for the Inversion-of-Control (I0C) framewdpring'.

2 Research Method

First, we discuss how we obtained the requirements, ouuatiah criteria. Then we
elaborate on the case we selected for evaluation. Finallgegeribe how we evaluate
each criterion on the selected case.

2.1 Evaluation Criteria

Based on interviews and a dedicated workshop we have dlititecriteria that should

make the use of MD4J successful [10]. This has lead to the following threewsatibn
criteria:

1. Conformance to the reference architecture
2. Functional requirement satisfaction
3. Reduction of hand-written code

6 Currently part of the Eclipse Modeling Projectht(t p: / / www. ecl i pse. or g/
nmodel i ng/).
“http://ww. springsource. org/

Conformance to the Reference Architecture By definition, all products in the Smart-
Java family must conform to the reference architectureTh]s means MD4J must
support all common and variable features defined by it. Thamiinternal criterion, as
Mob4J was designed to fulfill it. Nevertheless, the referenchitacture was devel-
oped a priori so the question remains whetheydd J-generated applications will meet
its requirements.

Functional Requirement Satisfaction. We need to determine if ®D4J is suitable
to be used to develagny product in the Smart-Java family. &4 J raises the abstrac-
tion to a higher level and by implication limits expressigea which might threaten
the satisfaction of the more low-level functional requients [12]. This is an external
criterion: given any Smart-Java application willd#4J be able to generate it?

Reduction of Hand-written Code. The goal of evaluating this criterion is to under-
stand how much MD4J will reduce the amount of developer effort. The amount of
hand-written code is an easy-to-measure indicator of effbothe amount of hand-
written code would only be reduced marginally, this wouldailidate investing in it.
Note that a MoD4J application would contain code written in the four DSLsvadl as
Java code (in extension points). As an aside, we are alseegtéa in the amount and
quality of the generated code.

2.2 Case Selection

A representative application has to be selected and (fe)sing Mop4J. To make
sure we select a case that is independent of the designoafdd we have chosen an
application developed a priori by Ordina ICToBPORTAL (2006). An existing appli-
cation also provides us with indisputable requirementséduate: the M>D4J version
should simply do the same as the originaBPORTAL.

JoBPORTAL was built using the Smart-Java development infrastructiing an
application to support employees of a recruitment divisiotheir work-flow. Types
of activities include assigning an applicant to a recryipdanning a meeting with the
applicant, assigning the application to a reviewer for éew@wof the CV, maintaining the
vacancies, etc. Also, people looking for work can searabuh the vacancies and send
in an application. 3BPORTAL is implemented as a three-tier JEE application consisting
of a data layer, a domain and service layer and two web apiolita

JOBPORTAL is too hig to re-implement completely (14.5k Non-Commerg&edrce
Statements (NCSS) and a total of 23 use cases). Instead,weedie@n a sample of
the total set of use cases this application provides. Theajolae use case sampling is
to maximize the number of insights on working withd®4J. The sampling technique
we have used to accomplish this is calsadwball sampling.. It was used to select use
cases one-by-one allowing new insights during the impldatem to dictate the choice
for a next use case.

All this finally lead to the following selection:

UCO02 Users should be able to search for a vacancy. The use cadeeisw@rious
custom search queries and works with a part of the domain htieatds often used

in the application. A portion of the domain model had to be gied, which could
be reused in subsequent use cases.

UC23 Recruiters should be able to maintain her own vacancies.filght reuse a part
of the domain model that was constructed for UC02. As thisase creates, reads,
updates and deletes data, it was expected to other new iagngh modeling data
modifications using MD4J

UC11 Recruiters should be able to maintain reference data. Heisase was chosen
because we wanted to work with a new part of the domain modeldtill had
some references to the existing domain model. The ratidioalthis was that it
would yield information on how domain model partitions abbk integrated.

2.3 Criteria Evaluation

Each criterion needs a method of evaluation, which we desdrere.

Conformance to the Reference Architectureln order to determine if the application
built with MoD4J conforms to the reference architecture, we have firsaeted the
requirements from the reference architecture document§i. In this document, the
requirements have been laid down in an itemized, concis@eramd therefore the con-
formance to them can be determined well in a source code thatkigh session [11].

As an example, consider the following architectural regimient:Domain objects
must keep their internal state consistent. Since Mob4J allows validation rules to be
specified for attributes, such as optionality, maximum tangtc., such rules are fired
each time an attribute is changed, keeping the interna sfahe domain object con-
sistent. This requirement is therefore considered fulfille

We introduce the following labels to assess to what exteatjgirement is fulfilled:

Complete fulfillment The architectural requirementis completely fulfilled bg ttode
generated by MD4J. Note that hand-written code or configuration can stillate
the requirement.

Partial fulfillment The rationale of the requirement is present but somethingjss-
ing. This may occur when a single requirement defines seaechitectural rules
of which some are fulfilled but others are not.

Violated The architectural requirement is violated in the generatete. This label is
given even when it is possible to correct or circumvent thidation by manually
changing configuration code or implementing extensionfsoin

Not at all The architectural requirement is not addressed at all irgéreerated code,
but developers may add hand-written code at a suitable sxtepoint to fulfill
this requirement. If this is not possible the requiremenbissiderediolated.

Functional Requirement Satisfaction Assuming the use cases we selected are rep-
resentative, observations can be made regarding the rigfilt of the functional re-
quirements relative to these use cases. We consider a stodasimplemented if the
MobD4J-generated application has the same functionality asrtbmal JOBPORTAL.

We have used existing correctness and completeness tastthfe base application
to find out which functional requirements have been implele@isuccessfully. If an

implementation is impeded or made difficult byd@4J in any way, we collect a list of
issues that cause this impediment. From this list we try terdeine the root cause.

Reduction of Hand-written Code Since we have not completely re-implemented
JoBPORTAL simply comparing source lines is hard. We would need to ekthe exact
lines of source code that implement our use cases in thenatigpplication. This is
difficult if not infeasible to do.

Instead we base our comparison on completeness and ca&sed¢asts. By running
these tests in both the existing and the generat®PPARTAL we are able to collect
statistics about the source code that is executed for eacbase.

Code coverage statistics are often used during unit tesiidgtermine if all code is
tested [16]. In our case, we use the coverage data to leaahvlgie code is executed
for each individual correctness and completeness tesiking both the MoD4J imple-
mentation and the original implementation. The resultitagistics are detailed enough
to distinguish between the original implementation, thenos code and generated
MobD4J code. These metrics are also used to determine the ambhahad-written
code. The statistics are created by the free Eclipse pliEgiEmm&, a coverage tool
that instruments byte code to show which code has been Bcimabked by a certain
execution.

3 Results

In this section, we will answer the question to what degreebidlJ meets the estab-
lished criteria. The results have been obtained by conlgliet@lementing the three use
cases using MD4J and its extension points, and then applying the evaluatiethods
described above on the three selected criteria.

3.1 Conformance To the Reference Architecture

Research DataThe complete list of requirements consists of 72 requirdsand can
be found in the Appendix of [10]. In these tables we have mtedithe complete list
of the requirements harvested from the architecture dontif2¢ The requirements
are categorized according tust, should or may modalities. Here, we present three
examples of requirements found in the architecture docttmen

— Domain objectsnust keep their internal state consistent.
— Data Service agenshould encapsulate access to just one service.
— Domain objectsnay broadcast events about change in state.

Figure 2 provides a graphical overview of the results fo7alrequirements. Note that
in this view, the requirements havet been weighted or prioritized and is therefore
not suitable for drawing general quantitative conclusidt@wever, it does show that
MobD4J does not fulfill all architectural requirements.

8http://ww. ecl enmma. or g/

MUSt -
[0]
=
S shoud _ Dcompletely
g O Partially
5 H Not at all
3 H Violated
o
May _:
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percentage
Fig. 2: Requirement fulfillment statistics
Table 1: Requirements filter
Violated Not at all Partial Complete
Must V4 V4 Vv —
Should 4 V4 Vv —
May v - . .

Evaluation We argue that studying completely fulfilled architectuegjuirements and
all may requirements will yield no interesting observations, gglthey are violated. To
filter out these requirements, we apply the filter in Table e J/ symbol indicates
that requirements of the modality in a certain row are takémaccount if it is fulfilled
according to the predicate in each column. We summarizedé¢termined causes of
requirement violations in Table 2. We have seen thatodJ follows the major parts of
the reference architecture, but lacks modeling supporddain variable features [10].
The rows 2, 3, 5, 6, 7 from Table 2 describe the cause of thies@lvariable features
can be implemented by hand using the aforementioned egtepsints, at a certain
cost (see below where we evaluate hand-written code).

Cause #1 shows that the terms used in the foopKlJ DSLs do not map directly to
the terms used in the architecture document. This may becteghen the business pro-
cess layer, where most variability is to be expected betvap@tications in the Smart-
Java family.

Cause #4 we consider to be severe. Because the BusinessrbbD®aidoes not
allow to define aggregate ro8tdMop4J can not make the distinction between a high-
level and normal domain object. Because this distinctiom mwat be made, MD4J

9 An aggregate root is a cluster of associated objects the¢ased as a unit for the purpose of
data changes [4].

Table 2: Summary of causes of architecture violations kyoJ

| #Causes of architecture violations bydw4J |Severity

1|The business processes follow a different nomenclature —
2|The reference architecture is unclear on how to implemesiness work-flows. —
3|Service agents can only invoked by business work flows anéfiire are not sup- —
ported as well. Also, implementation can vary greatly anousdh be occasionally
used in the system, making it unsuitable for generation.
4 |Business Domain DSL does not allow distinguishing betwegh-tevel and low; +
level domain objects.
5|Data service agents implementations can vary greatly aodidtbe occasionally —
used in the system, making it unsuitable for generation.
6 [MoD4J currently targets systems where the security conceenadairessed by the —
presentation layer.
Functional requirements for paging facilities are not clea —
8 |Although a threat to conformance to the reference architecextension points are —
a necessary evil.

~

treats every domain object as a high level object. This presvenodularization of the
domain model, which may complicate maintenance. lnoMJ, this causes superfluous
data access logic components which can not be removed byearyaythey will always
be generated even if they are never used. Other disadvartedede the inability to
automatically delete all objects in the aggregate whendbeis deleted. This has to be
hand-coded in a Java extension.

3.2 Functional Requirement Satisfaction

Research Data We present the encountered functional issues in Table 3/ haee
been selected from the full record of issues [10] encoudtduging implementation if
they satisfy the following two conditions:

— The issue describes a functional limitation or inability.

— Severity ismajor or blocker. Major means a hand-written extension was necessary.
Blocker means that the issue prevents the satisfaction whetibnal requirement
completely.

Evaluation In Table 4 we have summarized and grouped the causes of thesiss
Table 3. This Table is the result of manually comparing sewade of the original
application with the MbD4J-generated source code.

Note that the number of issues encountered while implemegtitie three selected
use cases was quite minimal. Most of the original applicatiould be implemented
without any issue. Our choice to focus on even minor viotaim this paper is moti-
vated by our research perspective: we need to try and iratalitie claims of MDSD.

Still, we determined that issue causes #1 and #3 from Tablerémtly block the
satisfaction of certain functional requirements in tk@BORTAL case.

Table 3: Excerpt from [10]: functional issues with severity

| #[Issue |Severity
1{Custom DAO implementation: can not disable generation dé@nd configuratianMajor
2|Cannot not override boolean persistence configuration Blocker
4|Binary data types are not supported Blocker

14|Mob4J generates incorrect ORM mappings if a domain object haang#tm-many Major
association with itself. Workaround in place.
15|1t is not possible to have a non-persistable domain objecniple: SearchResultMajor
Persistence does not make sense here, yet mapping etc iatgeine
17|As the original service is the contract, the amount of servicethods exposed |irviajor
the Mob4J and original implementation should match up. In reaitg, MoD4J
service definition exposes more functionality.

18|Cascading delete has to be hand-written for composite as®ors, introducing Major
duplicate code (multiple domain services) or violatinghétectural requirements
(calling other DAQ's in a DAO).

Table 4: Functional requirements satisfaction summary

| #|Observation cause |Severity

1|Persistence configuration is determined from the struii@mation laid down in ~ +
the Business Domain DSL and application-wide propertié® dffered flexibility
does not suffice.

2 |The Service DSL is unable to distinguish between domainseand local servic
3|The exact cause for the omission of binary data could not bermiéned from th
research data.

DT
+

3.3 Reduction of Hand-written Code

Research Data The metric data of the covered code are provided in Tables 6d.t
This data has been normalized in order to do a fair comparsmrboth the currentand
MobD4J implementation the start-up executes quite some inginsyconstructors, ini-
tializers), which we removed. The rationale is that our iempéntation is only a partial
clone of the original 3BPORTAL. Initialization code in the JBPORTAL may easily be
related to use cases that we did not select for this case. Stladyrally, the unrefined
metric data is also listed in [10].

Evaluation The following evaluation is structured along the desigredénces be-
tween the original SBBPORTAL and the Mob4J-generatedQBPORTAL. After that we
evaluate the statistics regarding hand-written code gegsuerated code.

Design Differences. Figure 3a represents a graphical view of Table 6d:

— We see that MD4J requires 2663 byte code instructions where theRDRTAL
requires 2059 (table 6d). Based on these numbeysM requires more byte code
to execute the same business functionality. To determirsd thie cause of this is,
we will zoom in on the differences for each layer.

Table 5: Byte code instructions executed (hormalized)

JoriginallMoDp4J manugMop4J generateld

originallMoDp4J manugdMop4J generated

data | 346 115 93 data | 331 156 102
business 0 141 31 business 0 5 23
domain| 545 4 101 domain| 458 29 119
service| 223 176 533 service| 42 72 420

total 1114 436 758 total 831 262 664

(a) UCO02 Select Vacancy

(b) UC23 Maintain my vacancies

originallMoDp4J manugMop4J generateld

|originallMoDp4J manugdMop4J generated

data 339 116 65 data 787 387 176
business 0 56 53 business 0 202 107
domain| 373 0 156 domain| 942 29 268
service| 70 92 627 service| 330 340 1154

total 782 264 901 total 2059 958 1705

(c) UC11 Maintain reference data (d) All three in one run
1600 1600
1400 1400

» 1200 o 1200

é 1000 é 1000

% 800 g 80 W moddj

= O original € 500 generated

S 600 W mod4; 3 O mod4j

g 400 § 400 manual

5 2 200 D !

200
| ;
0 business service
data business domain service data domain

implementation layer implementation layer

(a) Original implementation vs Eb4J (b) Hand-written vs generated code

Fig. 3: Hand-written code charts

— The original implementation requires more instructionghia data layer for the
same functionality (figure 3a, data bar). The cause of tiraeride in the data layer
of the original implementation is that it has to adapt betweehavior-less Transfer
Objects used by the persistence framework and businesst®hbiged throughout
the rest of the application.

— The original implementation has three times as much instmg in the domain
layer (Figure 3a, domain bar). This is caused by the factthab4J domain ob-
jects combine the original Business Objects and Transfgedbresulting in a
decline of code in the MD4J domain layer compared to the original implementa-
tion.

— The original implementation has no executed instructiarnke business layer at all
(Figure 3a, business bar). This is caused by the fact thatripmal implementation
has no business layer: the business process logic is codeel §ervice layer.

— The number of instructions required in the service layerf&tor four higher com-
pared to the original implementation (Figure 3a, servicg.ha Mob4J, domain
object validation is done in the domain layer. In the originglementation, this is
scattered throughout the domain model and service layailtieg in a code shift
from service layer to domain layer.

— MobD4J adds local services, DTOs and DTO translators in theaekayer, result-
ing in a great increase of code in the service layer. The malgimplementation
does not offer a specific course-grained interface and pdbksebusiness objects
directly to the presentation layer. This means the pretentéayer can directly
execute business logic by invoking operations on thesabssiobjects, something
that is not allowed in the reference architecture as alliassi logic has to be in-
voked through the service layer.dw4J addresses a concern in the service layer
that is not addressed by the original implementation.

Based on this analysis we conclude that the DTOs in servie laf MoD4J are the
cause of the fact that BID4J requires more code for the same functionality. Each DTO
more or less duplicates the domain object and there can lkeoféen are, multiple
DTOs for each domain object. For each DTO except custom Di@we s a Translator
that maps between the DTO and the domain object. The regaltmount of generated
code is huge, as can also be seen in Figure 3b (service barjadtthat MoD4J does
not support modeling of aggregate roots required more CR@ihaus to be generated,
however, the resulting increase in code is negligible cargbdo the effect of DTO
translators.

Hand-written Code vs Generated code. Figure 3b is another view on Table 6d, now
focusing on the distribution of hand-written and generatede in the MbD4J imple-
mentation only. Based on this data, the developed applicatas analyzed.

1. MoD4J requires 958 byte code instructions from hand-writte/a &de, where
the HBPORTAL code is all hand-written, to a total of 2059 byte code indtans
(Table 6d). Based on these numbers, we conclude th@ba has succeeded in
decreasing the amount of hand-written code. Note that katiten code compared
to the original implementation is reduced by more than 50%wéler, we also

Table 6: Observations on reduction of hand-written code

|#|Observation cause | Priority|

1

Custom methods require a lot of boiler-plate code, causlagge portion of the hand- +
written code. It may be an opportunity to support more mesttodeduce the amount
of hand-written code.

N

When using custom DTOs in a service method, the invocatidhe@omain servide +
has to be hand-written due to the fact that the custom DTO oabhenmapped ontoja
domain object. Since we argued that custom DTOs are notregtjuiemoving them
and allowing simple types to be entered in the service mededidition will result in

less hand-written code.

identified in the previous section that the service layentwaseal equivalent in the
original implementation. The actual gain is therefore eveme because more then
50% of the hand-written code is located in the service lalee actual reduction
of hand-written code might therefore be as large as 75%. &\thié sample we
have done is not by any means large enough for this concltsiba statistically
significant, it is hard data for a real case.

2. Of all the code in the analyzed sample, 64% is generatddg®al). This excludes

start-up and initializing code as these have been subtraltteng normalization.
The unnormalized amounts would indicate that 71% of thel wide is gener-
ated [10].

3. The data layer has a large amount (68%) of hand-writtea ¢Bidure 3b). Further

analysis on the source code of thel4J implementation shows that this is caused
by hand-written data access logic methods. We have spadteda opportunities
of code that might also be generated, which are discussdd]n [

4. The domain layer is almost void (10%) of hand-written c@eigure 3b). This is

caused by the fact that th@BPoORTAL functionality required little behavior and
validation to be defined. Most functionality was implemehte the data layer,
just like in the original implementation. An example is rewing the Vacancies
for a certain User: it is more efficient to determine this bgaxing a query on
the database then by traversing the entire object strudiost validations in the
domain model were quite simple (i.e., maximum length) andevaaitomatically
generated from the rules in the Business Domain DSL.

5. The business layer has a large amount (66%) of hand-wicttde (Figure 3b).

Closer inspection of the implementation showed that sonnts pé this code per-
tained to boilerplate code that could have been generateg] fle large amount of
hand-written code is to be expected, as the business logiddinaturally be the
most variable part of an application in the Smart-Java famil

6. The service layer has a considerate amount (23%) of haittvcode (Figure

3b). Contrary to expectation, a lot of boilerplate code tmke the domain service
had to be hand-coded.

We have summarized the severity of the identified obsematioTable 6. We have seen
that the amount of hand-written code, for the functionalitst could be fully rebuilt,
has decreased compared to the original, hand-writtenagtjgn. Although the Java

extension points provided by &4J were used, they certainly did not result in a cost
that would shadow the gain of code generation from abstractets. We did identify
two opportunities, cause #1 and #2 in Table 6, to decreasantioeint of hand-written
code.

4 Discussion

An in-depth qualitative evaluation of a single softwaredarct such as GBPORTAL
does not necessarily lead to grand conclusions. Nevesthdiere we have extensively
studied one application, generated for the most part byte-sfathe art MDSD tool. We
have observed that a non-trivial application which existediori could be implemented
using Mob4J, with a number of (minor) unforeseen issues.

Since we have not completely rebuilt the whole applicateothreat-to-validity of
the above observation is that we might have uncovered mdnerabilities later. Our
snowball sampling technique was designed to mitigate tiécte We feel confident
that we have sampled a most difficult and relevant part of fipdi@ation, but we must
pay attention to this completeness issue nevertheless.

We have focused on three evaluation criteria that weretetidrom a professional
team at Ordina, using exploratory interviews and an inHdemdrkshop. We do not
know whether our resulting focus on architecture, requéets and amount of hand-
written source code is representative for other softwaveldpment projects. Naturally,
different criteria would lead to a different study of the ttyaof M oD4J.

We would like to observe that any software is subject to a glmrenvironmentand
changing requirements [9]. We therefore believe that thistexce of extension points
for hand-written code, such as offered byl J, is essential. It allows the programmer
to adapt to changing or unforeseen circumstances withainhdpéo directly adapt the
model driven development environment. In tleBPORTAL case, extension points were
used to implement features that were expected not to be @tederas well as features
that might have been generated itod4J would provide such a feature.

Note that exactly these hand-written extensions are cersida bad thing from
another viewpoint. We conclude that a model driven develmrenvironment should
evolve with the applications that it generates. Frequealitgive analyses such as per-
formed in this paper, are necessary to update and refreshdtiel driven development
environment such that the use of extension points will reot $b outweigh the benefits
of modeling and code generation.

4.1 Related Work

Smart-Microsoft. Warmer, the project leader of &b4J, has designed a model driven
software factory before: the Smart-Microsoft softwaretdag. His experiences are de-
scribed in [15]. In this paper, the chosen DSLs and architecre explained in detail.
Of course, Warmer’s experiences have had a great impact@pdMl and the DSLs are
very similar to those in Smart-Microsoft. It would be intstiag to compare the results
from this study with the projects done in the Smart-Microsuofftware factory. How-
ever, as the research assignment was primarily scopedamd¥ we did not have the
time to gather the project data as this was not readily availia the organization.

Generation of Web Applications. Visser [14] presents a case study in domain-specific
language engineering. He designs and implements a numli#log which generate
a web application for the full one hundred percent. Visseisubhe SDF2 formalism to
define a concrete syntax for the DSLs and term rewriting teegee code. While the
case study in conducted in the same areaodlJ focuses on, the focus of the paper
is quite different. Visser explains that, in the first plalis, work is intended as a case
study in the development of DSLs.

Although the approach of generation of web applications Yhisser employs is
comparable with the approach thathd4J follows, Visser’s conclusions do not directly
overlap or contradict our own.

Changeability in Model Driven Web Development. Van Dijk [3] carries out an experi-
ment to assess the changeability of model driven developaiemall to medium size
web applications and compares it to the changeability aisitally developed projects.
He concludes that the changeability of web applicationglibged in model driven ap-
proach is competitive with classical approaches. The éxyants are not carried out on
real-life projects but rather on a small application depelbby Van Dijk himself. Like
MoD4J, he uses the openArchitectureWare tooling to design &ta models of the
DSLs and the templates used for code generation.

Because our study did not focus on changeability, Van Dgkisclusions do neither
contradict nor confirm our own conclusions.

Adoption of Model Driven Software Development. Related work on evaluating model
driven engineering is relatively scarce. A large caseystiodevaluate model driven
engineering practices at Motorola is described in [1]. Thes reports that an infras-
tructure division at Motorola achieved 65%—-80% code gdi@mrdy applying model
driven engineering principles, leading to overall impnoants in productivity and qual-
ity. These observations seem to be consistent with thetsdstthis paper.

Staron [13] investigates the factors that influence the toiopf MDSD at two
companies. One of the conclusions of this study is that nieglébols should be in-
tegrated in the software development process without cetalylredefining it. This is
compatible with our observations as to how mucbiJ generated applications con-
form to the reference architecture of J-Technologies.

5 Conclusion

We have done an extensive evaluation of the suitability oftMJ for building applica-
tions within a domain defined by a reference architecture.

By eliciting the criteria in a structured way, consultingbditerature and experts,
we have selected criteria for evaluatingoi4 J. Next, we have set up a research method
with a strong focus on data validity to evaluate these datérhe study resulted in a
number of issues and causes thereof which may be remediled design of MbD4J.

We conclude that M D4J is suitable to be used to build applications that fall imith
the domain of the Ordina J-Technologies reference ardhitecSince we have indica-
tions that up to 71% of the code can be generated, we thinklitglrle that applications
will be built with less effort than before.

We found that the use of hand-written code using the extansaints of MoD4J
was instrumental in implementing the fine details of somefiomal requirements. We
propose that designers of model driven development enviemts introduce such a
feature and at the same time try to prevent its usage by (meméally) perfecting their
modeling languages.

References

1. Baker, P, Loh, S., Weil, F.: Model-driven engineeringiarge industrial context—Motorola
case study. In: Briand, L.C., Williams, C. (eds.) Procegdinf the 8th International Con-
ference on Model Driven Engineering Languages and Syst&toBELS’'05). LNCS, vol.
3713, pp. 476—491. Springer (2005)

2. van Boxtel, P., Malotaux, E.J., Tjon-a-Hen, P.: OrdineaJaeferentie Architectuur. Ordina
J-Technologies (2008), version 1.1 (in Dutch)

3. van Dijk, D.: Changeability in model-driven web develaamh Master’s thesis, University
of Amsterdam (2009ftt p: // dare. uva. nl /en/ scripti e/ 313029

4. Evans, E.: Domain-Driven Design: Tackling Complexityttie Heart of Software. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA (2003)

5. Fagan, M.: Software pioneers: contributions to softveargineering, chap. Design and code
inspections to reduce errors in program development, pp-@&J7. Springer-Verlag New
York, Inc., New York, NY, USA (2002)

6. Fowler, M.: Language workbenches: The killer-app for domspecific languages? (May
2005), http://ww. marti nfow er.com articl es/| anguageWr kbench.
ht m

7. Greenfield, J., Short, K., Cook, S., Kent, S.: Softwaretdtags: Assembling Applications
with Patterns, Models, Frameworks, and Tools. Wiley (Au@@94)

8. Kleppe, A.: Software Language Engineering: Creating BiorSpecific Languages Using
Metamodels. Addison-Wesley Professional (2008)

9. Lehman, M.: On understanding laws, evolution, and caagien in the large-program life
cycle. Journal of Systems and Software 1, 213-221 (1979)

10. Lussenburg, V.: MD4J: A qualitative case study of industrially applied modgiren soft-
ware development. Master’s thesis, Universiteit van Antistien (2009)ht t p: // dare.
uva.nl/en/scriptie/ 321845

11. Myers, G.J.: The Art of Software Testing, Second Edititfiley, 2 edn. (June 2004)

12. Stahl, T., Voelter, M., Czarnecki, K.: Model-Driven 8gére Development: Technology,
Engineering, Management. John Wiley & Sons (2006)

13. Staron, M.: Adopting model driven software developmianihdustry—a case study at two
companies. In: Nierstrasz, O., Whittle, J., Harel, D., Reg®. (eds.) Proceedings of the
9th International Conference on Model Driven Engineerilmgdiuages and Systems (MoD-
ELS’06). LNCS, vol. 4199, pp. 57-72. Springer (2006)

14. Visser, E.: WebDSL: A case study in domain-specific lagguengineering. In: LAmmel,
R., Visser, J., Saraiva, J. (eds.) Generative and Transttwnal Techniques in Software
Engineering Il, (GTTSE’07). LNCS, vol. 5235, pp. 291-378riBger (2007)

15. Warmer, J.: A model driven software factory using domepecific languages. In: Euro-
pean Conference on Model Driven Architecture—Foundatams Applications (ECMDA-
FA07). pp. 194-203 (2007)

16. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit testecage and adequacy. ACM Comput.
Surv. 29(4), 366-427 (1997)

