
Mod4J: A Qualitative Case Study of Model-Driven
Software Development

Vincent Lussenburg1, Tijs van der Storm2,3, Jurgen Vinju2,3, and Jos Warmer1

1 Ordina
{vincent.lussenburg,jos.warmer}@ordina.nl

2 Centrum Wiskunde & Informatica
{t.van.der.storm,jurgen.vinju}@cwi.nl

3 Universiteit van Amsterdam

Abstract. Model-driven software development (MDSD) has been on the rise
over the past few years and is becoming more and more mature. However, evalu-
ation in real-life industrial context is still scarce.
In this paper, we present a case-study evaluating the applicability of a state-of-
the-art MDSD tool, MOD4J, a suite of domain specific languages (DSLs) for
developing administrative enterprise applications. MOD4J was used to partially
rebuild an industrially representative application. Thisimplementation was then
compared to a base implementation based on elicited successcriteria. Our evalu-
ation leads to a number of recommendations to improve MOD4J.
We conclude that having extension points for hand-written code is a good feature
for a model driven software development environment.

1 Introduction

Model Driven Software Development (MDSD) has gained in popularity the recent
years. However, research that directly evaluates the application of MDSD in an indus-
trial setting is still scarce. In this paper we present a qualitative case study to evaluate
the use of the state-of-the-art model driven development tool, MOD4J4. We evaluate
how well an application that is built using MOD4J fulfills all of its requirements.

This research project commenced just as MOD4J delivered a first, stable version
suitable for production use at Ordina. In this version, there is modeling support for three
out of four logical application layers and work is being doneto support modeling of the
presentation layer. We evaluate this early version becausewe are interested in improving
MOD4J and the applications it generates [5]. The results may also influence the current
development of the presentation layer which uses the currently existing functionality as
foundation.

In the remainder of this section we first motivate and introduce MOD4J. Then we
describe our method of requirement elicitation and productevaluation in Section 2. An
in-depth qualitative analysis produces a lot of data and discussion. A full account can be
found in [10]. Section 3 contains a summary with the most interesting observations. We
discuss threats to validity and related work in Section 4 before we conclude in Section 5.

4 http://www.mod4j.org/

1.1 Motivating Model Driven Software Development at Ordina

This research has been conducted at J-Technologies, a division of Ordina employing
personnel specialized in the Java programming language. The services offered by J-
Technologies range from hiring out Java professionals to building and designing soft-
ware in the in-house development infrastructure called Smart-Java. Smart-Java supports
application development by offering the necessary infrastructure tools and services,
such as version control, build servers, issue trackers, customized Integrated Develop-
ment Environments (IDEs) and software artifact distribution. The majority of the appli-
cations built in the Smart-Java development infrastructure are web- or service oriented
administrative business applications.

It is observed that Smart-Java applications were of very different overall quality and
their development often suffers from suboptimal velocity,although they are technically
very similar to each other. Even the skeletons of basic Create, Read, Update, Delete
(CRUD) applications take a long time to be set up. Because Smart-Java is mainly fo-
cused on infrastructural services, it has proved to be hard to address these issues. There-
fore, the decision was made to investigate the possibility of expanding the Smart-Java
development infrastructure to a software product line [7].

As a first step, a multi-tier reference architecture [2] was designed based on the
experiences of the leading architects over the last few years. A common, high quality
reference architecture enables reuse among projects and addresses important choices
regarding non-functional requirements valid for all developed applications. Other ob-
jectives and advantages were identified, such as a lower learning curve for developers,
as they do not have to learn a new architecture for each project, and improved maintain-
ability. Next, MOD4J—Model Driven Development for Java— was founded to design
and implement a MDSD environment that can support the developers in writing appli-
cations within the context of this reference architecture.

1.2 Introducing M OD4J

MOD4J is an open source domain specific environment for developing administrative
enterprise applications. It consists of a number of domain specific languages (DSLs)
that are used to describe different aspects of administrative enterprise applications. Cur-
rently, there are four:

A Business DSL to model the domain of the application. This consists of specifying
the classes, properties, associations and business rules of the domain.

A Data Contract DSL to define Data Transfer Objects (DTOs) on the domain objects.
A Service DSL for defining application boundaries. It encapsulates the application’s

business logic, controls transactions and coordinates responses.
A Presentation DSL to define user interface components of the application5.

An important attribute of MOD4J is that it providesextension points at every layer for
programmer to add Java code to specialize an otherwise fullygenerated application.
The architecture of what MOD4J generates is depicted in Figure 1.

5 This DSL is currently still under development.

service

Service Interfaces DTOs

business

Domain Services Domain
Model

data

Data access logic components

Generated using
BusinessDomain DSL

Generated using
Service DSL

Generated using
Datacontract DSL

Fig. 1: Architecture of MOD4J-generated code.

MOD4J is implemented using openArchitectureWare (oAW)6, a language work-
bench [6] supporting activities ranging from the design of DSLs to code generation.
The meta-models of the designed DSLs are used to generate rich text editors for use
in the Eclipse IDE: they offer code completion, syntax highlighting and as-you-type
validation. The XText module also allows validation rules to be specified for each DSL
in both the (OCL-like) Checks language and plain Java. For the generation of the appli-
cation code and configuration, MOD4J employs a Model-to-Text (M2T) approach [8,
12] using the XPand component. The various layers are integrated by generating the
configuration for the Inversion-of-Control (IoC) framework Spring7.

2 Research Method

First, we discuss how we obtained the requirements, our evaluation criteria. Then we
elaborate on the case we selected for evaluation. Finally wedescribe how we evaluate
each criterion on the selected case.

2.1 Evaluation Criteria

Based on interviews and a dedicated workshop we have elicited the criteria that should
make the use of MOD4J successful [10]. This has lead to the following three evaluation
criteria:

1. Conformance to the reference architecture
2. Functional requirement satisfaction
3. Reduction of hand-written code
6 Currently part of the Eclipse Modeling Project (http://www.eclipse.org/
modeling/).

7 http://www.springsource.org/

Conformance to the Reference Architecture.By definition, all products in the Smart-
Java family must conform to the reference architecture [2].This means MOD4J must
support all common and variable features defined by it. This is an internal criterion, as
MOD4J was designed to fulfill it. Nevertheless, the reference architecture was devel-
oped a priori so the question remains whether MOD4J-generated applications will meet
its requirements.

Functional Requirement Satisfaction. We need to determine if MOD4J is suitable
to be used to developany product in the Smart-Java family. MOD4J raises the abstrac-
tion to a higher level and by implication limits expressiveness which might threaten
the satisfaction of the more low-level functional requirements [12]. This is an external
criterion: given any Smart-Java application will MOD4J be able to generate it?

Reduction of Hand-written Code. The goal of evaluating this criterion is to under-
stand how much MOD4J will reduce the amount of developer effort. The amount of
hand-written code is an easy-to-measure indicator of effort. If the amount of hand-
written code would only be reduced marginally, this would invalidate investing in it.
Note that a MOD4J application would contain code written in the four DSLs aswell as
Java code (in extension points). As an aside, we are also interested in the amount and
quality of the generated code.

2.2 Case Selection

A representative application has to be selected and (re)built using MOD4J. To make
sure we select a case that is independent of the design of MOD4J we have chosen an
application developed a priori by Ordina ICT: JOBPORTAL (2006). An existing appli-
cation also provides us with indisputable requirements to evaluate: the MOD4J version
should simply do the same as the original JOBPORTAL.

JOBPORTAL was built using the Smart-Java development infrastructure. It is an
application to support employees of a recruitment divisionin their work-flow. Types
of activities include assigning an applicant to a recruiter, planning a meeting with the
applicant, assigning the application to a reviewer for a review of the CV, maintaining the
vacancies, etc. Also, people looking for work can search through the vacancies and send
in an application. JOBPORTAL is implemented as a three-tier JEE application consisting
of a data layer, a domain and service layer and two web applications.

JOBPORTAL is too big to re-implement completely (14.5k Non-CommentedSource
Statements (NCSS) and a total of 23 use cases). Instead, we have taken a sample of
the total set of use cases this application provides. The goal of the use case sampling is
to maximize the number of insights on working with MOD4J. The sampling technique
we have used to accomplish this is calledsnowball sampling.. It was used to select use
cases one-by-one allowing new insights during the implementation to dictate the choice
for a next use case.

All this finally lead to the following selection:

UC02 Users should be able to search for a vacancy. The use case involves various
custom search queries and works with a part of the domain model that is often used

in the application. A portion of the domain model had to be modeled, which could
be reused in subsequent use cases.

UC23 Recruiters should be able to maintain her own vacancies. This might reuse a part
of the domain model that was constructed for UC02. As this usecase creates, reads,
updates and deletes data, it was expected to other new insights into modeling data
modifications using MOD4J

UC11 Recruiters should be able to maintain reference data. This use case was chosen
because we wanted to work with a new part of the domain model that still had
some references to the existing domain model. The rationalefor this was that it
would yield information on how domain model partitions could be integrated.

2.3 Criteria Evaluation

Each criterion needs a method of evaluation, which we describe here.

Conformance to the Reference ArchitectureIn order to determine if the application
built with MOD4J conforms to the reference architecture, we have first extracted the
requirements from the reference architecture documentation [2]. In this document, the
requirements have been laid down in an itemized, concise manner and therefore the con-
formance to them can be determined well in a source code walk-through session [11].

As an example, consider the following architectural requirement:Domain objects
must keep their internal state consistent. Since MOD4J allows validation rules to be
specified for attributes, such as optionality, maximum length, etc., such rules are fired
each time an attribute is changed, keeping the internal state of the domain object con-
sistent. This requirement is therefore considered fulfilled.

We introduce the following labels to assess to what extent a requirement is fulfilled:

Complete fulfillment The architectural requirement is completely fulfilled by the code
generated by MOD4J. Note that hand-written code or configuration can still violate
the requirement.

Partial fulfillment The rationale of the requirement is present but something ismiss-
ing. This may occur when a single requirement defines severalarchitectural rules
of which some are fulfilled but others are not.

Violated The architectural requirement is violated in the generatedcode. This label is
given even when it is possible to correct or circumvent this violation by manually
changing configuration code or implementing extension points.

Not at all The architectural requirement is not addressed at all in thegenerated code,
but developers may add hand-written code at a suitable extension point to fulfill
this requirement. If this is not possible the requirement isconsideredviolated.

Functional Requirement Satisfaction Assuming the use cases we selected are rep-
resentative, observations can be made regarding the fulfillment of the functional re-
quirements relative to these use cases. We consider a use case to be implemented if the
MOD4J-generated application has the same functionality as theoriginal JOBPORTAL.

We have used existing correctness and completeness tests from the base application
to find out which functional requirements have been implemented successfully. If an

implementation is impeded or made difficult by MOD4J in any way, we collect a list of
issues that cause this impediment. From this list we try to determine the root cause.

Reduction of Hand-written Code Since we have not completely re-implemented
JOBPORTAL simply comparing source lines is hard. We would need to extract the exact
lines of source code that implement our use cases in the original application. This is
difficult if not infeasible to do.

Instead we base our comparison on completeness and correctness tests. By running
these tests in both the existing and the generated JOBPORTAL we are able to collect
statistics about the source code that is executed for each use case.

Code coverage statistics are often used during unit testingto determine if all code is
tested [16]. In our case, we use the coverage data to learn which byte code is executed
for each individual correctness and completeness test, invoking both the MOD4J imple-
mentation and the original implementation. The resulting statistics are detailed enough
to distinguish between the original implementation, the manual code and generated
MOD4J code. These metrics are also used to determine the amount of hand-written
code. The statistics are created by the free Eclipse plug-inEclEmma8, a coverage tool
that instruments byte code to show which code has been actually invoked by a certain
execution.

3 Results

In this section, we will answer the question to what degree MOD4J meets the estab-
lished criteria. The results have been obtained by completely implementing the three use
cases using MOD4J and its extension points, and then applying the evaluation methods
described above on the three selected criteria.

3.1 Conformance To the Reference Architecture

Research DataThe complete list of requirements consists of 72 requirements and can
be found in the Appendix of [10]. In these tables we have provided the complete list
of the requirements harvested from the architecture document [2]. The requirements
are categorized according tomust, should or may modalities. Here, we present three
examples of requirements found in the architecture document:

– Domain objectsmust keep their internal state consistent.
– Data Service agentsshould encapsulate access to just one service.
– Domain objectsmay broadcast events about change in state.

Figure 2 provides a graphical overview of the results for all72 requirements. Note that
in this view, the requirements havenot been weighted or prioritized and is therefore
not suitable for drawing general quantitative conclusions. However, it does show that
MOD4J does not fulfill all architectural requirements.

8 http://www.eclemma.org/

Fig. 2: Requirement fulfillment statistics

Table 1: Requirements filter

Violated Not at all Partial Complete

Must
√ √ √

−

Should
√ √ √

−

May
√

− − −

Evaluation We argue that studying completely fulfilled architectural requirements and
all may requirements will yield no interesting observations, unless they are violated. To
filter out these requirements, we apply the filter in Table 1. The

√

symbol indicates
that requirements of the modality in a certain row are taken into account if it is fulfilled
according to the predicate in each column. We summarized thedetermined causes of
requirement violations in Table 2. We have seen that MOD4J follows the major parts of
the reference architecture, but lacks modeling support forcertain variable features [10].
The rows 2, 3, 5, 6, 7 from Table 2 describe the cause of this. These variable features
can be implemented by hand using the aforementioned extension points, at a certain
cost (see below where we evaluate hand-written code).

Cause #1 shows that the terms used in the four MOD4J DSLs do not map directly to
the terms used in the architecture document. This may be expected in the business pro-
cess layer, where most variability is to be expected betweenapplications in the Smart-
Java family.

Cause #4 we consider to be severe. Because the Business Domain DSL does not
allow to define aggregate roots9, MOD4J can not make the distinction between a high-
level and normal domain object. Because this distinction can not be made, MOD4J

9 An aggregate root is a cluster of associated objects that is treated as a unit for the purpose of
data changes [4].

Table 2: Summary of causes of architecture violations by MOD4J

Causes of architecture violations by MOD4J Severity

1 The business processes follow a different nomenclature −

2 The reference architecture is unclear on how to implement business work-flows. −

3 Service agents can only invoked by business work flows and therefore are not sup-
ported as well. Also, implementation can vary greatly and should be occasionally
used in the system, making it unsuitable for generation.

−

4 Business Domain DSL does not allow distinguishing between high-level and low-
level domain objects.

+

5 Data service agents implementations can vary greatly and should be occasionally
used in the system, making it unsuitable for generation.

−

6 MOD4J currently targets systems where the security concerns are addressed by the
presentation layer.

−

7 Functional requirements for paging facilities are not clear. −

8 Although a threat to conformance to the reference architecture, extension points are
a necessary evil.

−

treats every domain object as a high level object. This prevents modularization of the
domain model, which may complicate maintenance. In MOD4J, this causes superfluous
data access logic components which can not be removed by any means; they will always
be generated even if they are never used. Other disadvantages include the inability to
automatically delete all objects in the aggregate when the root is deleted. This has to be
hand-coded in a Java extension.

3.2 Functional Requirement Satisfaction

Research Data We present the encountered functional issues in Table 3. They have
been selected from the full record of issues [10] encountered during implementation if
they satisfy the following two conditions:

– The issue describes a functional limitation or inability.
– Severity ismajor or blocker. Major means a hand-written extension was necessary.

Blocker means that the issue prevents the satisfaction of a functional requirement
completely.

Evaluation In Table 4 we have summarized and grouped the causes of the issues in
Table 3. This Table is the result of manually comparing source code of the original
application with the MOD4J-generated source code.

Note that the number of issues encountered while implementing the three selected
use cases was quite minimal. Most of the original application could be implemented
without any issue. Our choice to focus on even minor violations in this paper is moti-
vated by our research perspective: we need to try and invalidate the claims of MDSD.

Still, we determined that issue causes #1 and #3 from Table 4 currently block the
satisfaction of certain functional requirements in the JOBPORTAL case.

Table 3: Excerpt from [10]: functional issues with severity

Issue Severity

1 Custom DAO implementation: can not disable generation of code and configurationMajor
2 Cannot not override boolean persistence configuration Blocker
4 Binary data types are not supported Blocker

14 MOD4J generates incorrect ORM mappings if a domain object has a many-to-many
association with itself. Workaround in place.

Major

15 It is not possible to have a non-persistable domain object. Example: SearchResult.
Persistence does not make sense here, yet mapping etc is generated.

Major

17 As the original service is the contract, the amount of service methods exposed in
the MOD4J and original implementation should match up. In reality,the MOD4J
service definition exposes more functionality.

Major

18 Cascading delete has to be hand-written for composite associations, introducing
duplicate code (multiple domain services) or violating architectural requirements
(calling other DAO’s in a DAO).

Major

Table 4: Functional requirements satisfaction summary

Observation cause Severity

1 Persistence configuration is determined from the structural information laid down in
the Business Domain DSL and application-wide properties. The offered flexibility
does not suffice.

+

2 The Service DSL is unable to distinguish between domain service and local service. −

3 The exact cause for the omission of binary data could not be determined from the
research data.

+

3.3 Reduction of Hand-written Code

Research Data The metric data of the covered code are provided in Tables 6a to 6d.
This data has been normalized in order to do a fair comparison. For both the current and
MOD4J implementation the start-up executes quite some instructions (constructors, ini-
tializers), which we removed. The rationale is that our implementation is only a partial
clone of the original JOBPORTAL. Initialization code in the JOBPORTAL may easily be
related to use cases that we did not select for this case study. Naturally, the unrefined
metric data is also listed in [10].

Evaluation The following evaluation is structured along the design differences be-
tween the original JOBPORTAL and the MOD4J-generated JOBPORTAL. After that we
evaluate the statistics regarding hand-written code versus generated code.

Design Differences. Figure 3a represents a graphical view of Table 6d:

– We see that MOD4J requires 2663 byte code instructions where the JOBPORTAL

requires 2059 (table 6d). Based on these numbers MOD4J requires more byte code
to execute the same business functionality. To determine what the cause of this is,
we will zoom in on the differences for each layer.

Table 5: Byte code instructions executed (normalized)

original MOD4J manualMOD4J generated

data 346 115 93
business 0 141 31
domain 545 4 101
service 223 176 533
total 1114 436 758

(a) UC02 Select Vacancy

original MOD4J manualMOD4J generated

data 331 156 102
business 0 5 23
domain 458 29 119
service 42 72 420
total 831 262 664

(b) UC23 Maintain my vacancies

original MOD4J manualMOD4J generated

data 339 116 65
business 0 56 53
domain 373 0 156
service 70 92 627
total 782 264 901

(c) UC11 Maintain reference data

original MOD4J manualMOD4J generated

data 787 387 176
business 0 202 107
domain 942 29 268
service 330 340 1154
total 2059 958 1705

(d) All three in one run

(a) Original implementation vs MOD4J (b) Hand-written vs generated code

Fig. 3: Hand-written code charts

– The original implementation requires more instructions inthe data layer for the
same functionality (figure 3a, data bar). The cause of the extra code in the data layer
of the original implementation is that it has to adapt between behavior-less Transfer
Objects used by the persistence framework and business objects used throughout
the rest of the application.

– The original implementation has three times as much instructions in the domain
layer (Figure 3a, domain bar). This is caused by the fact thatMOD4J domain ob-
jects combine the original Business Objects and Transfer Objects resulting in a
decline of code in the MOD4J domain layer compared to the original implementa-
tion.

– The original implementation has no executed instructions in the business layer at all
(Figure 3a, business bar). This is caused by the fact that theoriginal implementation
has no business layer: the business process logic is coded inthe service layer.

– The number of instructions required in the service layer is afactor four higher com-
pared to the original implementation (Figure 3a, service bar). In MOD4J, domain
object validation is done in the domain layer. In the original implementation, this is
scattered throughout the domain model and service layer, resulting in a code shift
from service layer to domain layer.

– MOD4J adds local services, DTOs and DTO translators in the service layer, result-
ing in a great increase of code in the service layer. The original implementation
does not offer a specific course-grained interface and passes the business objects
directly to the presentation layer. This means the presentation layer can directly
execute business logic by invoking operations on these business objects, something
that is not allowed in the reference architecture as all business logic has to be in-
voked through the service layer. MOD4J addresses a concern in the service layer
that is not addressed by the original implementation.

Based on this analysis we conclude that the DTOs in service layer of MOD4J are the
cause of the fact that MOD4J requires more code for the same functionality. Each DTO
more or less duplicates the domain object and there can be, and often are, multiple
DTOs for each domain object. For each DTO except custom DTOs there is a Translator
that maps between the DTO and the domain object. The resulting amount of generated
code is huge, as can also be seen in Figure 3b (service bar). The fact that MOD4J does
not support modeling of aggregate roots required more CRUD methods to be generated,
however, the resulting increase in code is negligible compared to the effect of DTO
translators.

Hand-written Code vs Generated code. Figure 3b is another view on Table 6d, now
focusing on the distribution of hand-written and generatedcode in the MOD4J imple-
mentation only. Based on this data, the developed application was analyzed.

1. MOD4J requires 958 byte code instructions from hand-written Java code, where
the JOBPORTAL code is all hand-written, to a total of 2059 byte code instructions
(Table 6d). Based on these numbers, we conclude that MOD4J has succeeded in
decreasing the amount of hand-written code. Note that hand-written code compared
to the original implementation is reduced by more than 50%. However, we also

Table 6: Observations on reduction of hand-written code

Observation cause Priority

1 Custom methods require a lot of boiler-plate code, causing alarge portion of the hand-
written code. It may be an opportunity to support more methods to reduce the amount
of hand-written code.

+

2 When using custom DTOs in a service method, the invocation tothe domain service
has to be hand-written due to the fact that the custom DTO can not be mapped onto a
domain object. Since we argued that custom DTOs are not required, removing them
and allowing simple types to be entered in the service methoddefinition will result in
less hand-written code.

+

identified in the previous section that the service layer hasno real equivalent in the
original implementation. The actual gain is therefore evenmore because more then
50% of the hand-written code is located in the service layer.The actual reduction
of hand-written code might therefore be as large as 75%. While the sample we
have done is not by any means large enough for this conclusionto be statistically
significant, it is hard data for a real case.

2. Of all the code in the analyzed sample, 64% is generated (Table 6d). This excludes
start-up and initializing code as these have been subtracted during normalization.
The unnormalized amounts would indicate that 71% of the total code is gener-
ated [10].

3. The data layer has a large amount (68%) of hand-written code (Figure 3b). Further
analysis on the source code of the MOD4J implementation shows that this is caused
by hand-written data access logic methods. We have spotted several opportunities
of code that might also be generated, which are discussed in [10].

4. The domain layer is almost void (10%) of hand-written code(Figure 3b). This is
caused by the fact that the JOBPORTAL functionality required little behavior and
validation to be defined. Most functionality was implemented in the data layer,
just like in the original implementation. An example is retrieving the Vacancies
for a certain User: it is more efficient to determine this by executing a query on
the database then by traversing the entire object structure. Most validations in the
domain model were quite simple (i.e., maximum length) and were automatically
generated from the rules in the Business Domain DSL.

5. The business layer has a large amount (66%) of hand-written code (Figure 3b).
Closer inspection of the implementation showed that some parts of this code per-
tained to boilerplate code that could have been generated Also, the large amount of
hand-written code is to be expected, as the business logic should naturally be the
most variable part of an application in the Smart-Java family.

6. The service layer has a considerate amount (23%) of hand-written code (Figure
3b). Contrary to expectation, a lot of boilerplate code to invoke the domain service
had to be hand-coded.

We have summarized the severity of the identified observations in Table 6. We have seen
that the amount of hand-written code, for the functionalitythat could be fully rebuilt,
has decreased compared to the original, hand-written application. Although the Java

extension points provided by MOD4J were used, they certainly did not result in a cost
that would shadow the gain of code generation from abstract models. We did identify
two opportunities, cause #1 and #2 in Table 6, to decrease theamount of hand-written
code.

4 Discussion

An in-depth qualitative evaluation of a single software product such as JOBPORTAL

does not necessarily lead to grand conclusions. Nevertheless, here we have extensively
studied one application, generated for the most part by a state-of-the art MDSD tool. We
have observed that a non-trivial application which existeda priori could be implemented
using MOD4J, with a number of (minor) unforeseen issues.

Since we have not completely rebuilt the whole application,a threat-to-validity of
the above observation is that we might have uncovered more vulnerabilities later. Our
snowball sampling technique was designed to mitigate this effect. We feel confident
that we have sampled a most difficult and relevant part of the application, but we must
pay attention to this completeness issue nevertheless.

We have focused on three evaluation criteria that were elicited from a professional
team at Ordina, using exploratory interviews and an in-depth workshop. We do not
know whether our resulting focus on architecture, requirements and amount of hand-
written source code is representative for other software development projects. Naturally,
different criteria would lead to a different study of the quality of M OD4J.

We would like to observe that any software is subject to a changing environment and
changing requirements [9]. We therefore believe that the existence of extension points
for hand-written code, such as offered by MOD4J, is essential. It allows the programmer
to adapt to changing or unforeseen circumstances without having to directly adapt the
model driven development environment. In the JOBPORTAL case, extension points were
used to implement features that were expected not to be generated, as well as features
that might have been generated if MOD4J would provide such a feature.

Note that exactly these hand-written extensions are considered a bad thing from
another viewpoint. We conclude that a model driven development environment should
evolve with the applications that it generates. Frequent qualitative analyses such as per-
formed in this paper, are necessary to update and refresh themodel driven development
environment such that the use of extension points will not start to outweigh the benefits
of modeling and code generation.

4.1 Related Work

Smart-Microsoft. Warmer, the project leader of MOD4J, has designed a model driven
software factory before: the Smart-Microsoft software factory. His experiences are de-
scribed in [15]. In this paper, the chosen DSLs and architecture are explained in detail.
Of course, Warmer’s experiences have had a great impact on MOD4J and the DSLs are
very similar to those in Smart-Microsoft. It would be interesting to compare the results
from this study with the projects done in the Smart-Microsoft software factory. How-
ever, as the research assignment was primarily scoped on MOD4J we did not have the
time to gather the project data as this was not readily available in the organization.

Generation of Web Applications. Visser [14] presents a case study in domain-specific
language engineering. He designs and implements a number ofDSLs which generate
a web application for the full one hundred percent. Visser uses the SDF2 formalism to
define a concrete syntax for the DSLs and term rewriting to generate code. While the
case study in conducted in the same area MOD4J focuses on, the focus of the paper
is quite different. Visser explains that, in the first place,his work is intended as a case
study in the development of DSLs.

Although the approach of generation of web applications that Visser employs is
comparable with the approach that MOD4J follows, Visser’s conclusions do not directly
overlap or contradict our own.

Changeability in Model Driven Web Development. Van Dijk [3] carries out an experi-
ment to assess the changeability of model driven development of small to medium size
web applications and compares it to the changeability of classically developed projects.
He concludes that the changeability of web applications developed in model driven ap-
proach is competitive with classical approaches. The experiments are not carried out on
real-life projects but rather on a small application developed by Van Dijk himself. Like
MOD4J, he uses the openArchitectureWare tooling to design the meta models of the
DSLs and the templates used for code generation.

Because our study did not focus on changeability, Van Dijk’sconclusions do neither
contradict nor confirm our own conclusions.

Adoption of Model Driven Software Development. Related work on evaluating model
driven engineering is relatively scarce. A large case-study to evaluate model driven
engineering practices at Motorola is described in [1]. The study reports that an infras-
tructure division at Motorola achieved 65%–80% code generation by applying model
driven engineering principles, leading to overall improvements in productivity and qual-
ity. These observations seem to be consistent with the results in this paper.

Staron [13] investigates the factors that influence the adoption of MDSD at two
companies. One of the conclusions of this study is that modeling tools should be in-
tegrated in the software development process without completely redefining it. This is
compatible with our observations as to how much MOD4J generated applications con-
form to the reference architecture of J-Technologies.

5 Conclusion

We have done an extensive evaluation of the suitability of MOD4J for building applica-
tions within a domain defined by a reference architecture.

By eliciting the criteria in a structured way, consulting both literature and experts,
we have selected criteria for evaluating MOD4J. Next, we have set up a research method
with a strong focus on data validity to evaluate these criteria. The study resulted in a
number of issues and causes thereof which may be remedied in the design of MOD4J.

We conclude that MOD4J is suitable to be used to build applications that fall within
the domain of the Ordina J-Technologies reference architecture. Since we have indica-
tions that up to 71% of the code can be generated, we think it probable that applications
will be built with less effort than before.

We found that the use of hand-written code using the extension points of MOD4J
was instrumental in implementing the fine details of some functional requirements. We
propose that designers of model driven development environments introduce such a
feature and at the same time try to prevent its usage by (incrementally) perfecting their
modeling languages.

References

1. Baker, P., Loh, S., Weil, F.: Model-driven engineering ina large industrial context—Motorola
case study. In: Briand, L.C., Williams, C. (eds.) Proceedings of the 8th International Con-
ference on Model Driven Engineering Languages and Systems (MoDELS’05). LNCS, vol.
3713, pp. 476–491. Springer (2005)

2. van Boxtel, P., Malotaux, E.J., Tjon-a-Hen, P.: Ordina Java Referentie Architectuur. Ordina
J-Technologies (2008), version 1.1 (in Dutch)

3. van Dijk, D.: Changeability in model-driven web development. Master’s thesis, University
of Amsterdam (2009),http://dare.uva.nl/en/scriptie/313029

4. Evans, E.: Domain-Driven Design: Tackling Complexity Inthe Heart of Software. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA (2003)

5. Fagan, M.: Software pioneers: contributions to softwareengineering, chap. Design and code
inspections to reduce errors in program development, pp. 575–607. Springer-Verlag New
York, Inc., New York, NY, USA (2002)

6. Fowler, M.: Language workbenches: The killer-app for domain specific languages? (May
2005), http://www.martinfowler.com/articles/languageWorkbench.
html

7. Greenfield, J., Short, K., Cook, S., Kent, S.: Software Factories: Assembling Applications
with Patterns, Models, Frameworks, and Tools. Wiley (August 2004)

8. Kleppe, A.: Software Language Engineering: Creating Domain-Specific Languages Using
Metamodels. Addison-Wesley Professional (2008)

9. Lehman, M.: On understanding laws, evolution, and conservation in the large-program life
cycle. Journal of Systems and Software 1, 213–221 (1979)

10. Lussenburg, V.: MOD4J: A qualitative case study of industrially applied model-driven soft-
ware development. Master’s thesis, Universiteit van Amsterdam (2009),http://dare.
uva.nl/en/scriptie/321845

11. Myers, G.J.: The Art of Software Testing, Second Edition. Wiley, 2 edn. (June 2004)
12. Stahl, T., Voelter, M., Czarnecki, K.: Model-Driven Software Development: Technology,

Engineering, Management. John Wiley & Sons (2006)
13. Staron, M.: Adopting model driven software developmentin industry—a case study at two

companies. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) Proceedings of the
9th International Conference on Model Driven Engineering Languages and Systems (MoD-
ELS’06). LNCS, vol. 4199, pp. 57–72. Springer (2006)

14. Visser, E.: WebDSL: A case study in domain-specific language engineering. In: Lämmel,
R., Visser, J., Saraiva, J. (eds.) Generative and Transformational Techniques in Software
Engineering II, (GTTSE’07). LNCS, vol. 5235, pp. 291–373. Springer (2007)

15. Warmer, J.: A model driven software factory using domainspecific languages. In: Euro-
pean Conference on Model Driven Architecture—Foundationsand Applications (ECMDA-
FA’07). pp. 194–203 (2007)

16. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy. ACM Comput.
Surv. 29(4), 366–427 (1997)

