
Nomen: A Dynamically Typed OO
Programming Language, Transpiled to Java

Tijs van der Storm
Centrum Wiskunde & Informatica (CWI)

University of Groningen (RUG)
storm@cwi.nl

Introduction
Nomen is an experimental, dynamically typed OO program-
ming language which compiles to Java source code. The
translation to Java is transparent: a class in Nomen is a class
in Java, a method in Nomen is a method in Java, etc. The gen-
erated code is thus relatively idiomatic (allowing the JVM to
optimize method dispatch), and easy to map back to Nomen
code during debugging.

Furthermore, the compilation scheme of Nomen supports
separate compilation of Nomen modules, does not require
any casts at runtime, and supports dynamic features such as
Ruby’s method_missing. This is achieved using a simple mod-
ule system for Nomen, and a novel application of recursive
F-bounds and Java 8 default methods in the generated code.

The ongoing implementation of Nomen can be found here:
https://github.com/cwi-swat/nomen.

The Design of Nomen
Nomen is designed as a language for experimenting with
IDE support generation using the Rascal language work-
bench [4, 7]. As such, it can be considered an extended
case-study in language engineering, exercising techniques for
specifying, testing, desugaring, compiling, and deploying lan-
guage implementations, including editor services such as syn-
tax highlighting, error marking, code completion, outlining,
incremental compilation, live programming, debugging, and
so on [2]. Furthermore, Nomen is designed to as a future test-
bed for experimenting with language embedding approaches
based on syntactic language virtualization [1, 5, 8].

Nomen is a simple, object-oriented, dynamically typed
language inspired by Ruby. It features single inheritance, a
module system for namespacing (a la Python), closures as
objects (with instance_eval a la Ruby), and anonymous classes
(a la Java). A simple example program is shown in Figure 1.

The snippet shows a module Space, containing two classes,
Spacecraft and Orbiter. Both classes have an initialize method
to initialize fields (prefixed with @). The describe method
prints out a simple description. The puts method is inherited
from the root object which all objects inherit from.
Some principles that have informed the design of Nomen:

module Space

class Spacecraft
def initialize(name, launchDate):

@name = name;
@launchDate = launchDate;

def describe:
puts("Spacecraft: " + name);
if @launchDate then

puts("Launched at " + @launchDate);
end

class Orbiter: Spacecraft
def initialize(name, launchDate, altitude):

super.initialize(name, launchDate);
@altitude = altitude

Figure 1. Example Nomen Module

• Dynamic where desired, static where needed. Methods are
alway late bound; – classes, modules, and local variables
are statically resolved. Calling a method never causes
a static error, but referencing undefined classes or mod-
ules does. Nomen supports method_missing to intercept
method invocations of undefined methods, but does not
support dynamically modifying class definitions (“mon-
key patching”).

• Different things have different syntax. This applies mostly
to names: static names are capitalized, local variables and
method parameters start with a lowercase letter, fields
start with @, and method calls always have parenthesized
arguments, an explicit receiver, or a trailing statement (see
below).

One important design goal has been to support a very flex-
ible and rich method call syntax to support DSL embedding
and fluent interface idioms. First of all, standard prefix and
infix operators are implemented as methods. Second, method
calls can be suffixed with a trailing statement which will be
implicitly lifted to a closure (if it isn’t already a closure), and

1 2016/10/23

https://github.com/cwi-swat/nomen

def menu(menu):
echo(menu.title);
ul for k in menu.kids do

item(kid)
end

end

def item(item)
if item.kids then

li menu(item)
else

li a(item.link) item.title
end

end

Figure 2. Rendering recursive menus to HTML using state-
ment chaining

passed in as the last argument. For instance, the statement
f(x) y = 3; is equivalent to f(x, {y = 3}), where curly braces
indicate explicit closure creation.

Figure 2 shows two methods exploiting this kind of chain-
ing feature to render recursive menu structures to HTML. The
code assumes that methods for rendering HTML elements
(e.g., ul, li, etc.) and outputting text (echo) are in scope. State-
ment chaining happens when invoking ul in the menu method,
and li in the item method. The statement chaining captures the
nesting of HTML elements. For instance, in the else branch
of item, the anchor a is nested within the li element and the
item’s title will be the content of the anchor element. This
form of chaining provides a flexible syntax to express builder
patterns.

Currently, however, Nomen’s most distinctive feature is
how it is transpiled to Java, which I describe next.

Implementation
[...] the so-called untyped (that is “dynamically typed”)

languages are, in fact, unityped. (Dana Scott) [3]

The compilation of dynamically typed programming lan-
guages to the JVM has been an ongoing challenge. Cur-
rent implementations of dynamically typed programming
languages, such as JRuby, resort to VM level techniques
based on invokedynamic and method handles, or use runtime
partial evaluation of interpreters in combination with specific
VM support [6]. Compiling to source code has been generally
problematic, since Java requires a type for invoking methods
(even reflectively).

At one end, there is the strategy of generating a single,
“maximal” interface declaring all method patterns occuring
in the source code; this type will then be the declared
type of all method parameters and return values at runtime.
Unfortunately, this breaks separate compilation. At the other
end of the spectrum, the compiler would generate a separate,
“minimal” interface for each individual method pattern. The
declared type of values will then be Object, but receivers
need to be cast to the interface corresponding to the call at
every call site. Furthermore, this strategy may lead to class
file bloat.

Next I describe a middle ground between these two ex-
tremes: instead of generating a maximal interface (support-
ing “all possible methods”) from scratch, we will construct

module A

class Foo

def foo:
...

interface A<O extends A<O>>
extends Kernel<O> {

default O foo() { return missing("foo"); }

O A$Foo(); // abstract constructor
abstract class Foo<O extends A<O>>
extends Kernel.Obj<O> implements A<O> {
public O foo() { ... }

}
}

module B
import A

class Bar: Foo

def foo:
baz();
new Foo()

interface B<O extends B<O>>
extends A<O> {

default O baz() { return missing("baz"); }

O B$Bar(); // abstract constructor
abstract class Bar<O extends B<O>>
extends A.Foo<O> implements B<O> {
public O foo() {

baz();
return A$Foo();

}
}

}

Figure 3. Translating Nomen modules to Java

it incrementally using recursive F-bounds. This compilation
scheme is illustrated in Figure 3. The left shows two Nomen
modules (A and B); the corresponding Java code is shown
on the right. Every module is mapped to a generic interface,
where the type parameter is bounded by itself. If a module
has no imports of its own (e.g., A), the generated interface ex-
tends the built-in Kernel module containing standard classes
for numbers, boolean, strings etc. Otherwise, (e.g., as in B),
each import will be represented by an extends-clause. Cyclic
imports are disallowed, and as such imports map directly to
Java’s multiple interface inheritance feature.

A module interface declares default methods for every
method pattern that occurs in the module (either as a defini-
tion or in a call), delegating to the missing method (declared
in Kernel). For instance, interface B provides a default im-
plementation for baz, even it is not defined anywhere in the
Nomen code.

Every Nomen class is mapped to two Java declarations.
First, an abstract constructor method is generated, using a
fully qualified name (e.g., A$Foo). Second, the class itself
will be represented by a generic, abstract class, implementing
the current module interface (e.g., Foo). The super class will

2 2016/10/23

be the corresponding abstract class (if any), or Kernel.Obj
otherwise.

The methods in a class compile to Java methods, where
every return type and argument type is the generic type param-
eter representing the carrier type O. Statements and expres-
sions are compiled in a straightforward way. Object construc-
tion, however, does not map directly to object construction in
Java, but delegates to the abstract constructor methods (e.g.,
AFoo, BBar).

Although the Java code of Figure 3 can be compiled, it
is not yet executable: no objects are ever created, and there
is no main method to provide an entry point. At this point
the abstract classes generated from the Nomen classes are
literally incomplete. They are “completed” in the context
of a “main” module, which provides the entry to program
execution. This is handled by additionally generating code
for modules which contain top-level statements (i.e. without
enclosing methods). For instance, for a main module M
(importing B):

• Tie the knot: define a local interface Self extends M<Self>.
As a result, Self declares all method patterns occuring in
M, as well as those occurring in (transitively) imported
modules.

• For every class reachable from M through the import
graph, define an empty concrete class extending the
corresponding abstract class, implementing Self. For in-
stance, the interface corresponding to M will contain a
class B$Bar extends B.Bar<Self> implements Self.

• Provide implementations for the abstract constructors
returning instances of the concrete classes of the previous
bullet. For instance, default O B$Bar() {return (O)new
B$Bar();}.This is the only cast that is generated, and it’s a
vacuous one at that, because of Java’s type erasure.

The main code itself is lifted into a synthetic Main class,
which contains the standard Java static main entry point.

Defining the concrete classes over Self will effectively
bind all “O” type parameters (in this module and imported
ones), to Self. All constructed objects – dynamically bound
through the constructor methods, but now implemented to
return instances of concrete classes – will have all methods
available defined or used, in this module or in any of the
imported ones. Since Java inheritance predicates that class
extension has precedence over inheritance of default methods,
the actual methods defined in the Nomen classes will always
take precedence over the stub methods defined in the module
interfaces.

Conclusion and Outlook Nomen is a dynamically typed,
OO programming languages, designed as an extended case

study in language engineering. Its design is characterized
by a static module system, flexible method invocation and
statement syntax, and support for method_missing DSL em-
bedding idioms. Nomen is transpiled to Java source code
using a novel scheme based on recursive F-bounds in com-
bination with Java 8 default methods. This scheme allows
compilation of dynamically typed OO code without relying
on casts, reflection, or VM level techniques, but without sac-
rificing separate compilation.

Nomen is by no means finished. The current prototype
supports static checking of Nomen source code and incre-
mental compilation from within an Eclipse IDE developed
using the Rascal language workbench [4]. Further work in
the near future includes defining the precise static seman-
tics of Nomen and exploring the performance of Nomen’s
compilation scheme compared to other schemes.

Acknowledgments Thanks to the anonymous reviewers,
the attendees of the IFIP Working Group on Language
Design meeting in Lausanne, and James Noble for providing
constructive feedback on the design and implementation of
Nomen.

References
[1] A. Biboudis, P. Inostroza, and T. van der Storm. Recaf: Java

dialects as libraries. In GPCE. ACM, 2016.

[2] S. Erdweg, T. van der Storm, M. Völter, L. Tratt, R. Bosman,
W. R. Cook, A. Gerritsen, A. Hulshout, S. Kelly, A. Loh,
G. Konat, P. J. Molina, M. Palatnik, R. Pohjonen, E. Schindler,
K. Schindler, R. Solmi, V. Vergu, E. Visser, K. van der Vlist,
G. Wachsmuth, and J. van der Woning. Evaluating and compar-
ing language workbenches: Existing results and benchmarks for
the future. Computer Languages, Systems & Structures, 44, Part
A:24 – 47, 2015.

[3] B. Harper. Dynamic languages are static lan-
guages. Online, March 2011. https://
existentialtype.wordpress.com/2011/03/19/
dynamic-languages-are-static-languages/.

[4] P. Klint, T. van der Storm, and J. J. Vinju. RASCAL: A domain
specific language for source code analysis and manipulation. In
SCAM, pages 168–177. IEEE, 2009.

[5] A. Loh, T. van der Storm, and W. R. Cook. Managed data:
modular strategies for data abstraction. In Onward!, pages 179–
194. ACM, 2012.

[6] C. Seaton. Specialising Dynamic Techniques for Implementing
The Ruby Programming Language. PhD thesis, University of
Manchester, School of Computer Science, 2015.

[7] T. van der Storm. The Rascal Language Workbench. CWI
Technical Report SEN-1111, CWI, 2011.

[8] T. Zacharopoulos, P. Inostroza, and T. van der Storm. Extensible
modeling with managed data in Java. In GPCE. ACM, 2016.

3 2016/10/23

https://existentialtype.wordpress.com/2011/03/19/dynamic-languages-are-static-languages/
https://existentialtype.wordpress.com/2011/03/19/dynamic-languages-are-static-languages/
https://existentialtype.wordpress.com/2011/03/19/dynamic-languages-are-static-languages/

