
The Sisyphus Continuous Integration System
Tijs van der Storm

Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam

The Netherlands
storm@cwi.nl

February 7, 2007

Abstract
Integration hell is a prime example of software evolution
gone out of control. The Sisyphus continuous integration
system is designed to prevent this situation in the context of
component-based software configuration management. We
show how incremental and backtracking techniques are ap-
plied to strike a balance between maximal feedback and be-
ing up-to-the-minute, and how these techniques enable au-
tomation of release and delivery.

1. Introduction
Continuous integration is a practice to keep software evo-
lution in control [1]. As soon as changes on a code line
become available, they are integrated to the mainline. The
complete product is built, tested and the results are published
so that the global status of the software product is known at
all times. Continuous integration has therefore been called
the “heartbeat” of software development. If it stops beating,
you cannot ship.

Sisyphus is a continuous integration system targeted at
component-based software configuration management set-
tings in order to reduce the risk of integration and to auto-
mate release and delivery [3]. Currently, it is implemented as
a prototype to build the components of the ASF+SDF Meta-
Environment [2] in a continuous fashion. The current status
of its builds can be viewed live at:

http://sisyphus.sen.cwi.nl:8080.

2. Innovations
The Sisyphus continuous integration system applies a num-
ber of innovations to maximize the value of continuous in-
tegration by exploiting the fact that sources are divided over
separate source components. They are summarized as fol-
lows :

Figure 1. Build sharing among build iterations

• Components are first class. Components are repre-
sented by independently versioned sets of sources that
may reside in different repositories. Each component
may declare build-time dependencies on other compo-
nents. Figure 1 shows six source components and their
dependencies. Nodes represent builds of a certain re-
vision (the number in the label) of a component. The
edges indicate a use relation.

• Performing a build only when needed. A source com-
ponent will only be built if there are affecting changes,
which are changes to the sources of the component it-
self or changes to one or more of its dependencies. In
the figure, build iterations are visualized by clusters of
nodes labeled by a timestamp. The example shows that
the aterm-java build of October 19th uses builds
from a week earlier; apparently no changes on these
components did occur since then so build artifacts can
be reused.

1



Figure 2. Build, release and delivery portal

• Any build is better than no build. If the latest build
of a component has failed, but is still required in an-
other build, an earlier successful build is used instead.
This way of backtracking upon failure trades some up-
to-dateness for increased feedback. Without backtrack-
ing, it would not make any sense to build a component
if any of the builds of its dependencies have failed.

Due to the incremental nature of integration, no time is
wasted building components that have not changed in be-
tween integrations and feedback is generated more quickly.
Similarly, the backtracking technique ensures that there al-
ways will be feedback, even if dependency builds have
failed. More feedback, more often, can help reduce the risks
imposed by integration.

3. Release and Delivery
The Sisyphus system differs from many other continuous in-
tegration systems in that it maintains a knowledge-base that
keeps track of which version of which component has been
built in what project against which dependencies with what
result. Build results – success or failure – of individual com-
ponents are related to the exact revision number of the cor-
responding sources. This revision number, however, does
not capture which versions of dependencies were used in a
certain build. This information is stored separately in the
knowledge-base so that every build identifies a certain com-
position.

Every component that has been built successfully repre-
sents a (theoretical) release candidate. Formally releasing a
product means preparing the software product so that it can
be delivered for installation to users. Often an informative
version number is assigned so that users can interpret the
changes with respect to previous versions. Using the soft-
ware knowledge-base populated by Sisyphus, release boils
down to selecting the desired build and providing an infor-
mative version number. The system will ensure that releases

are internally consistent, that dependency links are properly
versioned and that no build is released more than once.

Since builds identify compositions, it is known which
sources have been used in which builds. This facilitates the
derivation of source-based distributions that are commonly
used in open source projects. Moreover, since build shar-
ing and backtracking require that all build artifacts are stored
persistently, any binary distribution can be accurately and ef-
ficiently reproduced, and incremental updates can be com-
puted for efficient delivery [4].

The Sisyphus front-end consists of a build, release and de-
livery portal. See Figure 2 for a screen-shot. This web appli-
cation displays the current build status of every component.
For every build, detailed information is available about build
actions, used dependencies and revisions. In addition there
are links to distributions (source and binary) and visualiza-
tions of the bills of materials (see Figure 1 for an example).

4. Relevance for Software Evolution
Integration hell is a direct consequence of software evolu-
tion. It has been said that the effort of integration is expo-
nentially proportional to the amount of time you postpone it.
The longer you wait, the more chance there is that changes
conflict, either at build-time or at runtime. There is an in-
creased risk of introducing integration bugs and they may be
very hard to track down. Being able to integrate as soon as
possible is therefore a sine qua non to keep software evolu-
tion in control.

Furthermore, users see the result of evolution in the form
of updates, and at the same time fuel software evolution by
the feedback they provide (e.g. bug reports). To shorten the
feedback loop between development and user, it is essen-
tial to be able to deliver new versions quickly, and to main-
tain traceability between sources and installed versions of a
product. The Sisyphus system accomplishes these two re-
quirements in a setting of component-based development.

References
[1] M. Fowler and M. Foemmel. Continuous integration.

Online: http://martinfowler.com/articles/
continuousIntegration.html.

[2] M. van den Brand et. al. The ASF+SDF Meta-Environment:
a Component-Based Language Development Environment. In
R. Wilhelm, editor, Compiler Construction (CC ’01), volume
2027 of Lecture Notes in Computer Science, pages 365–370.
Springer-Verlag, 2001.

[3] T. van der Storm. Continuous release and upgrade of
component-based software. In J. Whitehead and A. P.
Dahlqvist, editors, Proceedings of the 12th International Work-
shop on Software Configuration Management (SCM-12), 2005.

[4] T. van der Storm. Lightweight incremental application upgrade.
Technical Report SEN-R0604, Centrum voor Wiskunde en In-
formatica (CWI), 2006.

2


