
Origin Tracking + Text Differencing =
Textual Model Differencing

Riemer van Rozen1 and Tijs van der Storm2,3

1 Amsterdam University of Applied Sciences
2 Centrum Wiskunde & Informatica

3 Universiteit van Amsterdam

Abstract. In textual modeling, models are created through an intermediate pars-
ing step which maps textual representations to abstract model structures. Therefore,
the identify of elements is not stable across different versions of the same model.
Existing model differencing algorithms, therefore, cannot be applied directly be-
cause they need to identify model elements across versions. In this paper we
present Textual Model Diff (TMDIFF), a technique to support model differenc-
ing for textual languages. TMDIFF requires origin tracking during text-to-model
mapping to trace model elements back to the symbolic names that define them in
the textual representation. Based on textual alignment of those names, TMDIFF

can then determine which elements are the same across revisions, and which are
added or removed. As a result, TMDIFF brings the benefits of model differencing
to textual languages.

1 Introduction

Model differencing algorithms (e.g., [1]) determine which elements are added, removed
or changed between revisions of a model. A crucial aspect of such algorithms that model
elements need to be identified across versions. This allows the algorithm to determine
which elements are still the same in both versions. In textual modeling [6], models are
represented as textual source code, similar to Domain-Specific Languages (DSLs) and
programming languages. The actual model structure is not first-class, but is derived
from the text by a text-to-model mapping, which, apart from parsing the text into a
containment hierarchy also provides for reference resolution. After every change to the
text, the corresponding structure needs to be derived again. As a result, the identities
assigned to the model elements during text-to-model mapping are not preserved across
versions, and model differencing cannot be applied directly.

Existing approaches to textual model differencing are based on mapping textual
syntax to a standard model representation (e.g., languages built with Xtext are mapped
to EMF [5]) and then using standard model comparison tools (e.g., EMFCompare [2, 3]).
As a result, model elements in both versions are matched using name-based identities
stored in the model elements themselves. One approach is to interpret such names as
globally unique identifiers: match model elements of the same class, irrespective of their
location in the containment hierarchy of the model. Another approach is to only match
elements in collections at the same position in the containment hierarchy.

Unfortunately, both approaches have their limitations. In the case of global names,
the language cannot have scoping rules: it is impossible to have different model elements
of the same class with the same name. On the other hand, matching names relative to the
containment hierarchy entails that scoping rules must obey the containment hierarchy,
which limits flexibility.

In this paper we present TMDIFF, a language-parametric technique for model differ-
encing of textual languages which does support languages with complex scoping rules,
but at the same time is agnostic of the model containment hierarchy. As a result, different
elements with the same name, but in different scopes can still be identified. TMDIFF is
based on two key techniques:

– Origin tracking. In order to map model element identities back to the source,
we assume that the text-to-model mapping applies origin tracking [7, 19]. Origin
tracking induces an origin relation which relates source locations of definitions to
(opaque) model identities. Each semantic model element can be traced back to its
defining name in the textual source, and each defining name can be traced forward
to its corresponding model element.

– Text Differencing. TMDIFF identifies model elements by textually aligning defi-
nition names between two versions of a model using traditional text differencing
techniques (e.g., [11]). When two names in the textual representations of two mod-
els are aligned, they are assumed to represent the “same” model element in both
models. In combination with the origin relation this allows TMDIFF to identify the
corresponding model elements as well.

The resulting identification of model elements can be passed to standard model differ-
encing algorithms, such as the one by Alanen and Porres [1].

TMDIFF enjoys the important benefit that it is fully language parametric. TMDIFF
works irrespective of the specific binding semantics and scoping rules of a textual model-
ing language. In other words, how the textual representation is mapped to model structure
is irrelevant. The only requirement is that semantic model elements are introduced using
symbolic names, and that the text-to-model mapping performs origin tracking.

The contributions of this paper are summarized as follows:

– We explore how textual differencing can be used to match model elements based on
origin tracking information.

– We provide a detailed description of TMDIFF, including a prototype implementation.
– The feasibility of the approach is illustrated by applying TMDIFF in the context of a

realistic, independently developed DSL.

2 Overview

Here we introduce textual model differencing using a simple motivating example that is
used as a running example throughout the paper. Figure 1 shows a state machine model
for controlling doors. It is both represented as text (left) and as object diagram (right).
A state machine has a name and contains a number of state declarations. Each state
declaration contains zero or more transitions. A transition fires on an event, and then
transfers control to a new state.

2

1 machine doors d1

2 state closed d2

3 open => opened

4
5 state opened d3

6 close => closed

7 end

Fig. 1: Doors1: a simple textual representation of a state machine and its model.

The symbolic names that define entities are annotated with unique labels dn. These
labels capture source locations of names. That is, a name occurrence is identified with
its line and column number and/or character offset4. Since identifiers can never overlap,
labels are guaranteed to be unique, and the actual name corresponding to label can be
easily retrieved from the source text itself. For instance, the machine itself is labeled d1,
and both states closed and opened are labeled d2 and d3 respectively.

The labels are typically the result of name analysis (or reference resolution), which
distinguishes definition occurrences of names from use occurrences of names according
to the specific scoping rules of the language. For the purpose of this paper it is immaterial
how this name analysis is implemented, or what kind of scoping rules are applied. The
important aspect is to know which name occurrences represent definitions of elements in
the model.

By propagating the source locations (di) to the fully resolved model, symbolic names
can be linked to model elements and vice versa. On the right of Fig. 1, we have used
the labels themselves as object identities in the object model. Note that the anonymous
Transition objects lack such labels. In this case, the objects do not have an identity,
and the difference algorithm will perform structural differencing (e.g., [20]), instead of
semantic, model-based differencing [1].

Figure 2 shows two additional versions of the state machine of Fig. 1. First the
machine is extended with a locked state in Doors2 (Fig. 2a). Second, Doors3 (Fig. 2c),
shows a grouping feature of the language: the locked state is part of the locking group.
The grouping construct acts as a scope: it allows different states with the same name to
coexist in the same state machine model.

Looking at the labels in Fig. 1 and 2, however, one may observe that the labels used
in each version are disjoint. For instance, even though the defining name occurrences
of the machine doors and state closed occur at the exact same location in Doors2 and
Doors3, this is an accidental artifact of how the source code is formatted. Case in point
is the name locked, which now has moved down because of the addition of the group
construct.

4 For the sake of presentation, we use the abstract labels di for the rest of the paper, but keep in
mind that they represent source locations

3

1 machine doors d4

2 state closed d5

3 open => opened

4 lock => locked

5
6 state opened d6

7 close => closed

8
9 state locked d7

10 unlock => closed

11
12 end

(a) Doors2

1 machine doors d8

2 state closed d9

3 open => opened

4 lock => locking.locked

5
6 state opened d10

7 close => closed

8
9 locking d11 {

10 state locked d12

11 unlock => closed

12 }

13 end

(b) Doors3

Fig. 2: Two new versions of the simple state machine model Doors1.

src1

src2

m1

m2

map

origin1

identify

map

origin2

align ∆

Fig. 3: Identifying model elements in m1 and m2 through origin tracking and alignment
of textual names.

The source locations, therefore, cannot be used as (stable) identities to used during
model differencing. The approach taken by TMDIFF involves determining added and
removed definitions by aligning the textual occurrences of defining names (i.e. labels
di). Based on the origin tracking between the textual source and the actual model it then
becomes possible to identify which model elements have survived changing the source
text.

This high-level approach is visualized in Fig. 3. src1 and src2 represent the source
code of two revisions of a model. Each of these textual representations is mapped to a
proper model, m1 and m2 respectively. Mapping text to a model induces origin relations,
origin1 and origin2, mapping model elements back to the source locations of their
defining names in src1 and src2 respectively. By then aligning these names between src1
and src2, the elements themselves can be identified via the respective origin relations.

4

--- a/doors1.sl

+++ b/doors2.sl

@@ -3,0 +4

+ lock => locked

@@ -6,0 +8,3

+

+ state locked

+ unlock => closed

--- a/doors2.sl

+++ b/doors3.sl

@@ -4 +4

- lock => locked

+ lock => locking.locked

@@ -8,0 +9

+ locking {

@@ -10,0 +12

+ }

Fig. 4: Textual diff between Doors1 and Doors2, and Doors2 and Doors3
5.

create State d7

d7 = State("locked",[Trans("unlock",d2)])

d2.out[1] = Trans("lock", d7)

d1.states[2] = d7

(a) tmdiff Doors1 Doors2

create Group d11

d11 = Group("locking",[d7])

remove d4.states[2]

d4.states[2] = d11

(b) tmdiff Doors2 Doors3

Fig. 5: TMDIFF differences between Doorsi and Doorsi+1 (i ∈ 1, ..,2)

TMDIFF aligns textual names by interpreting the output of a textual diff algorithm on
the model source code. The diffs between Doors1 and Doors2, and Doors2 and Doors3
is shown in Fig. 4. As can be seen, the diffs show for each line whether it was added (“+”)
or removed (“-”). By looking at the line number of the definition labels di it becomes
possible to determine whether the associated model element was added or removed.

For instance, the new locked state was introduced in Doors2. This can be observed
from the fact that the diff on the left of Fig. 4 shows that the name “locked” is on a line
marked as added. Since the names doors, closed and opened occur on unchanged lines,
TMDIFF will identify the corresponding model elements (the machine, and the 2 states)
in Doors1 and Doors2. Similarly, the diff between Doors2 and Doors3 shows that only
the group locking was introduced. All other entities have remained the same, even the
locked state, which has moved into the group locking.

With the identification of model elements in place, TMDIFF applies a variant of the
standard model differencing introduced in [1]. Hence, TMDIFF deltas are imperative edit
scripts that consist of edit operations on the model. Edit operations include creating and
removing of nodes, assigning fields, and inserting or removing elements from collection-
valued properties. Figure 5 shows the TMDIFF edit scripts computed between Doors1
and Doors2 (a), and Doors2 and Doors3 (b). The edit scripts use the definition labels dn
as node identities.

The edit script shown in Fig. 5a captures the difference between source version
Doors1 and target version Doors2. It begins with the creation of a new state d7. On the
following line d7 is initialized with its name (locked) and a fresh collection of transitions.

5 The diffs are computed by the diff tool included with the git version control system. We
used the following invocation: git diff --no-index --patience --ignore-space-change

--ignore-blank-lines --ignore-space-at-eol -U0 <old> <new>.

5

list[Operation] tmDiff(str src1, str src2, obj m1, obj m2) {
<A, D, M> = match(src1, src2, m1, m2)
∆ = [new Create(da, da.class) | da ←A]
M′ = M + { <da, da> | da ←A }
∆ += [new SetTree(da, build(da, M′)) | da ←A]
for (<d1, d2> ←M)

∆ += diffNodes(d1, d1, d2, [], M′)
∆ += [new Delete(dd) | dd ←D]
return ∆

}
Fig. 6: TMDIFF

The transitions are contained by the state, so they are created anonymously (without
identity). Note that the created transition contains a (cross-)reference to state d2. The
next step is to add a new transition to the out field of state d2 (which is preserved from
Doors1). The target state of this transition is the new state d7. Finally, state d7 is inserted
at index 2 of the collection of states of the machine d1 in Doors1.

The edit script introducing the grouping construct locking between Doors2 and
Doors3 is shown in Fig. 5b. The first step is the creation of a new group d11. It is
initialized with the name "locking". The set of nested states is initialized to contain
state d7 which already existed in Doors2. Finally, the state with index 2 is removed from
the machine d4 in Doors3, and then replaced by the new group d11.

In this section we have introduced the basic approach of TMDIFF using the state
machine example. The next section presents TMDIFF in more detail.

3 TMDIFF in More Detail

3.1 Top-level Algorithm

Figure 6 shows the TMDIFF algorithm in high-level pseudo code. Input to the algorithm
are the source texts of the models (src1, src2), and the models themselves (m1, m2). The
first step is identifying model elements of m1 to elements in m2 using the matching
technique introduced above. The match function is further described in the next sub
section (Section 3.2).

Based on the matching returned by match, TMDIFF first generates global Create
operations for nodes that are in the A set. After these operations are created, the
matching M is “completed” into M′, by mapping every added object to itself. This
ensures that reverse lookups in M′ for elements in m2 will always be defined. Each
entity just created is initialized by generating SetTree operations which reconstruct
the containment hierarchy for each element da using the build function. The function
diffNodes then computes the difference between each pair of nodes originally identified
in M. The edit operations will be anchored at object d1 (first argument). As a result,
diffNodes produces edits on “old” entities, if possible. Finally, the nodes that have been
deleted from m1 result in global Delete actions.

6

Matching match(str src1, str src2, obj m1, obj m2) {
P1 = project(m1)
P2 = project(m2)
<Ladd , Ldel> = split(diff(src1, src2))

i = 0, j = 0; A = {}, D = {}; M = {}
while (i < |P1| ∨ j < |P2|) {

if (i < |P1| ∧ P1[i].line ∈ Ldel)
D += {P1[i].ob ject}; i += 1; continue

if (j < |P2| ∧ P2[j].line) ∈ Ladd)
A += {P2[j].ob ject}; j += 1; continue

if (P1[i].ob ject.class = P2[j].ob ject.class)
M += {<P1[i].ob ject, P2[j].ob ject>}

else
D += {P1[i].ob ject}; A += {P2[j].ob ject}

i += 1; j += 1
}
return <A, D, M>;

}

Fig. 7: Matching model elements based on source text diffs.

3.2 Matching

The match function uses the output computed by standard diff tools. In particular, we
employ a diff variant called Patience Diff 6 which is known to often provide better
results than the standard, LCS-based, algorithm [12].

The matching algorithm is shown in Fig. 7. The function match takes the textual
source of both models (src1, src2) and the actual models as input (m1, m2). It first projects
out the origin and class information for each model. The resulting projections P1 and P2
are sequences of tuples 〈x,c, l,d〉, where x is the symbolic name of the entity, c its class
(e.g. State, Machine, etc.), l the textual line it occurs on and d the object itself.

As an example, the projections for Doors1 and Doors2 are as follows:

P1 =
[〈doors, Machine, 1, d1〉,
〈closed, State, 2, d2〉,
〈opened, State, 5, d3〉]

P2 =

[〈doors, Machine, 1, d4〉,
〈closed, State, 2, d5〉,
〈opened, State, 6, d6〉,
〈locked, State, 9, d7〉]

The algorithm then partitions the textual diff in two sets Ladd and Ldel of added
lines (relative to src2) and deleted lines (relative to src1). The main while-loop then
iterates over the projections P1 and P2 in parallel, distributing definition labels over the
A, D and M sets that will make up the matching. If a name occurs unchanged in both
src1 and src2, an additional type check prevents that entities in different categories are
matched.

6 See: http://bramcohen.livejournal.com/73318.html

7

http://bramcohen.livejournal.com/73318.html

The result of matching is a triple M = 〈A,D, I〉, where A⊆ LY contains new elements
in Y , D⊆ LX contains elements removed from X , and I ⊆ LX ×LY represents identified
entities.

For instance the matchings between Doors1, Doors2, and between Doors2 and
Doors3 are:

M1,2 = 〈{d7},{},{〈d1,d4〉,〈d2,d5〉,〈d3,d6〉}〉
M2,3 = 〈{d11},{},{〈d4,d8〉,〈d5,d9〉,〈d6,d10〉,〈d7,d12〉}〉

3.3 Differencing

list[Operation] diffNodes(obj ctx, obj t1, obj t2, Path p, Matching M) {
assert t1.class = t2.class;
∆ = []
for (f ←m1.class.fields) {

if (f .isPrimitive && t1[f] 6= t2[f])
∆ += [new SetPrim(ctx, p+[f], t2[f])];

else if (f .isContainment)
if (m1[f].class = m2[f].class)

∆ += diffNodes(ctx, t1[f], t2[f], p+[f], M)
else

∆ += [new SetTree(ctx, p+[f], build(m2[f], M))]

else if (f .isReference && M−1[t2[f]] 6= t1[f])

∆ += [new SetRef(ctx, p+[f], M−1[t2[f]])]

else if (f .isList)
∆ += diffLists(ctx, t1[f], t2[f], p+[f], M)

}
return ∆

}
Fig. 8: Differencing nodes.

The heavy lifting of TMDIFF is realized by the diffNodes function. It is shown in
Fig. 8. It receives the current context (ctx), the two elements to be compared (t1 and
t2), a Path p which is a list recursively built up out of names and indexes and the
matching relation to provide reference equality between elements in t1 and t2. diffNodes
assumes that both t1 and t2 are of the same class. The algorithm then loops over all
fields that need to be differenced. Fields can be of four kinds: primitive, containment,
reference or list. For each case the appropriate edit operations are generated, and in
most cases the semantics is straightforward and standard. For instance, if the field is
list-valued, we delegate differencing to an auxiliary function diffLists (not shown) which
performs Longest Common Subsequence (LCS) differencing using reference equality.
The interesting bit happens when differencing reference fields. References are compared
via the matching M. Figure 8 highlights the relevant parts.

8

In order to know whether two references are “equal”, diffNodes performs a reverse
lookup in M on the reference in t2. If the result of that lookup is different from the
reference in t1 the field needs to be updated. Recall that M was augmented to M′ (cf.
Fig. 6) to contain entries for all newly created model elements. As a result, the reverse
lookup is always well-defined. Either we find an already existing element of t1, or we
find a element created as part of t2.

4 Case study: Derric

4.1 Implementation in RASCAL

We have implemented TMDIFF in RASCAL, a functional programming language for
meta programming and a language workbench for developing textual Domain-Specific
Languages (DSLs) [8]. The code for the algorithm, and the application to the example
state machine language and the case study can be found on GitHub7.

Since RASCAL is a textual language workbench [4] all models are represented as
text, and then parsed into an abstract syntax tree (AST). Except for primitive values
(string, boolean, integer etc.), all nodes in the AST are automatically annotated with
source locations to provide basic origin tracking.

Source locations are a built-in data type in RASCAL (loc), and are used to relate
sub-trees of a parse tree or AST back to their corresponding textual source fragment.
A source location consists of a resource URI, an offset, a length, and begin/end and
line/column information. For instance, the name of the closed state in Fig. 2 is labeled:

|project://textual-model-diff/input/doors1.sl|(22,6,<2,8>,<2,14>)

Because RASCAL is a functional programming language, all data is immutable. As
a result graph-like structure cannot be directly represented. Instead we represent the
containment hierarchy of a model as an AST, and represent cross-references by explicit
relations rel[loc from, loc to], once again using source locations to represent object
identities.

4.2 Differencing Derric File Format Descriptions

To evaluate TMDIFF on a real-life DSL and see if it computes reasonable deltas, we
have applied it to the version history of file format specifications. These file format
specifications are written in Derric, a DSL for digital forensics analysis [16]. Derric is
a grammar-like DSL: it contains a top-level regular expression, specifying the binary
layout of file formats. Symbols in the regular expression refer to structures which
define the building blocks of a file format. Each structure, in turn has a number of field
declarations, with constraints on length or contents of the field.

There are 3 kinds of semantic entities in Derric: the file format, structures, and fields.
Inside the regular expression, symbolic names refer to structures. Structures themselves
refer to other structures to express inheritance. Finally, field constraints may refer to
fields defined in other structures or defined locally in the enclosing structure.

7 https://github.com/cwi-swat/textual-model-diff

9

https://github.com/cwi-swat/textual-model-diff

In an earlier study, the authors of [17] investigated whether Derric could accom-
modate practical evolution scenarios on Derric programs. This has resulted in a public
Github repository, containing the detailed history of three file format descriptions, for
GIF, PNG and JPEG8.

For each description, we have applied TMDIFF on subsequent revisions, and compared
the resulting edit scripts to the ordinary textual diffs produce by the Git version control
system9. The results are shown in Table 1. The first three columns identify the file and the
two consecutive revisions (Git hashes) that have been compared. Column 4, 5 indicate
the number of lines added and removed, as computed by the standard diff tool used by
Git. To approximate the relative size of the changes, column 6 shows the number of
line additions and removals per line of code in the source revision. The following eight
columns then show how often each of the edit operations occurred in the delta computed
by TMDIFF. The results are summarized in the next three columns, showing the total
number of operations, the percentage indicating the number of operations per original
AST node, and the number of nodes literally built by the delta. The last column contains
the log message to provide an intuition of the intent of the revision.

Table 1 shows that some operations actually were never computed by TMDIFF. For
instance, there are no Delete operations. This can be explained from the fact that, indeed,
all revisions involve adding elements to the file descriptions; nothing is actually ever
deleted.

The operations SetPrim and SetRef did not occur either. The reason is that there
are no revisions at that level of granularity. Most changes are additions of structures
and/or fields, or changes to the sequence constraints of a file format. In both cases,
references and primitives end up as part of InsertTree operations. An example is shown
in Fig. 9. The left and right columns show fragments of two versions of the GIF file
format. The only change is and additional optional element at the end of the sequence
section. The delta computed by TMDIFF is shown at the bottom of the figure. It consists
of a single InsertTree operation. Within the inserted tree, one finds actual references to
the structures CommentExtension and DataBlock.

The ratios of changes per total units of change (i.e. lines resp. AST nodes) show
that TMDIFF deltas are consistently smaller that the ordinary textual deltas. It is also not
the case that a single operation InsertTree operation replaces large parts of the model in
one go. The before-last column shows that the number of nodes literally contained in a
delta is reasonable. The largest number is 65 (fourth from below). As as comparison, the
average number of nodes across all revisions in Table 1 is 432.

Figure 10 shows a typical delta computed by TMDIFF on a Derric description. It
involves adding a new structure (COMASC) and its two fields (length and data). They
are initialized in three InsertTree operations. The last three operations wire the newly
created elements into the existing model.

8 https://github.com/jvdb/derric-eval
9 The actual command:
git diff --patience --ignore-blank-lines --ignore-all-space R1 R2 path.

10

https://github.com/jvdb/derric-eval

File R1 R2 +
lin

es
−

lin
es

{+
,−
}/

L
O

C
(%

)

#C
re

at
e

#D
el

et
e

#I
ns

er
tT

re
e

#I
ns

er
tR

ef
#R

em
ov

e
#S

et
P
ri
m

#S
et

R
ef

#S
et

T
re

e
To

ta
l

#e
di

ts
/
#n

od
es

(%
)

#n
od

es
∈

∆

Log message
gif.derric fc43456 2c28d2a 2 2 2.8 1 0 0 1 2 0 0 1 5 1.2 8 Removed required value range on GraphicControlExten-

sion.DisposalMethod.
2c28d2a a3cb744 2 2 2.8 0 0 1 0 1 0 0 0 2 0.5 12 Added optional GraphicControlExtension to initial Com-

mentExtension subsequence.
a3cb744 7cd6500 5 4 6.4 0 0 2 0 1 0 0 0 3 0.7 10 GraphicControlExtension is now optional in the main se-

quence.
7cd6500 cd76b13 1 4 3.5 0 0 1 0 7 0 0 0 8 1.9 8 Removed last three fields from ApplicationExtension.
cd76b13 46379ec 2 2 2.9 0 0 1 0 1 0 0 0 2 0.5 13 Added optional GraphicControlExtension to final Com-

mentExtension subsequence.
46379ec d09ac40 2 2 2.9 0 0 1 0 1 0 0 0 2 0.5 1 Trailer is now optional.
d09ac40 9b3f919 2 2 2.9 0 0 1 0 1 0 0 0 2 0.5 1 ZeroBlock is now optional in the main sequence.
9b3f919 872cd67 2 1 2.2 0 0 1 0 0 0 0 0 1 0.2 2 Added optional CommentExtension subsequence with a sin-

gle DataBlock and no ZeroBlock to main sequence.
png.derric d71a7c4 3922516 22 2 17.1 10 0 1 5 1 0 0 10 27 7.8 32 Added private Macromedia (Adobe) Fireworks chunks prVW,

mkBF, mkTS, mkBS and mkBT.
3922516 f97370b 6 2 5. 2 0 1 1 1 0 0 2 7 1.8 8 Added vpAg structure.
f97370b 3780274 6 2 4.9 2 0 1 1 1 0 0 2 7 1.8 8 Added oFFs structure.
3780274 cc7f2f3 6 2 4.8 2 0 1 1 1 0 0 2 7 1.7 8 Added tpNG structure.
cc7f2f3 7c32673 6 1 4.1 2 0 1 1 0 0 0 2 6 1.4 7 Added bBPn structure.
7c32673 454152a 10 2 6.8 4 0 1 2 1 0 0 4 12 2.8 14 Added cmOD and cpIp structures.
454152a bdbf985 6 2 4.3 2 0 1 1 1 0 0 2 7 1.6 8 Added meTa structure.
bdbf985 3caa428 6 2 4.2 2 0 1 1 1 0 0 2 7 1.5 8 Added eXIF structure.
3caa428 6b0cca9 2 2 2.1 0 0 1 0 1 0 0 0 2 0.4 2 Modified sequence to allow the oFFs structure to occur after

the bKGD structure.
6b0cca9 ec33a53 2 2 2.1 0 0 1 0 1 0 0 0 2 0.4 2 Modified sequence to allow the bKGD to occur before the

PLTE structure.
ec33a53 fddce35 2 2 2.1 0 0 1 0 1 0 0 0 2 0.4 1 IEND is now optional.
fddce35 20b63f0 6 2 4.1 2 0 1 1 1 0 0 2 7 1.5 8 Added gIFg structure.
20b63f0 b8cd1d9 6 2 4.1 2 0 1 1 1 0 0 2 7 1.5 8 Added tpNg structure.
b8cd1d9 f096d6c 6 2 4. 2 0 1 1 1 0 0 2 7 1.4 8 Added cmPP structure.
f096d6c cff3430 10 2 5.9 4 0 1 2 1 0 0 4 12 2.4 14 Added acTL and fcTL structures.
cff3430 a691cde 2 2 1.9 0 0 1 0 1 0 0 0 2 0.4 2 Modified sequence to allow the vpAg to occur before the

PLTE structure.
a691cde bdc85e9 6 2 3.8 2 0 1 1 1 0 0 2 7 1.4 8 Added pRVW structure.
bdc85e9 399fb54 2 2 1.8 0 0 1 0 1 0 0 0 2 0.4 2 Modified sequence to allow the cmOD, cpIp and meTa struc-

tures to occur before the IDAT structure.
jpeg.derric 590a396 c1b3578 7 2 10.3 3 0 2 1 2 0 0 3 11 3.8 28 Added APP0Picasa.

c1b3578 6ebbad4 2 2 4.3 0 0 2 0 2 0 0 0 4 1.3 18 Modified sequence to allow APP0JFXX to appear as first
APP structure.

6ebbad4 ef0329b 10 2 13. 5 0 2 1 2 0 0 5 15 4.9 37 Added APP14Adobe.
ef0329b d679520 10 2 12. 5 0 2 1 2 0 0 5 15 4.5 37 Added APP13Photoshop.
d679520 fce26b3 2 2 3.7 0 0 2 0 2 0 0 0 4 1.1 19 The APP-only sequence is now optional.
fce26b3 bbe0bf1 4 2 5.6 0 0 2 1 1 0 0 0 4 1.1 3 EOI is no longer required, but SOS is now required.
bbe0bf1 13f1e56 4 3 6.4 2 0 3 1 3 0 0 2 11 2.9 23 Added SOF1 structure.
13f1e56 6a8b0d7 14 8 19.8 5 0 6 4 11 0 0 5 31 7.9 65 Added 0xFF padding.
6a8b0d7 acfab2d 5 3 6.8 2 0 3 1 3 0 0 2 11 2.3 59 Added SOF3 structure.
acfab2d 712e583 7 1 6.7 2 0 3 1 1 0 0 2 9 1.8 47 Added COMElanGmk variant of COM.
712e583 afb17f7 8 1 7.2 3 0 2 1 0 0 0 3 9 1.6 15 Added COMASC variant of COM.

Table 1: Applying TMDIFF to revisions of Derric fileformat specifications.

11

https://github.com/jvdb/derric-eval/commit/fc43456
https://github.com/jvdb/derric-eval/commit/2c28d2a
https://github.com/jvdb/derric-eval/commit/2c28d2a
https://github.com/jvdb/derric-eval/commit/a3cb744
https://github.com/jvdb/derric-eval/commit/a3cb744
https://github.com/jvdb/derric-eval/commit/7cd6500
https://github.com/jvdb/derric-eval/commit/7cd6500
https://github.com/jvdb/derric-eval/commit/cd76b13
https://github.com/jvdb/derric-eval/commit/cd76b13
https://github.com/jvdb/derric-eval/commit/46379ec
https://github.com/jvdb/derric-eval/commit/46379ec
https://github.com/jvdb/derric-eval/commit/d09ac40
https://github.com/jvdb/derric-eval/commit/d09ac40
https://github.com/jvdb/derric-eval/commit/9b3f919
https://github.com/jvdb/derric-eval/commit/9b3f919
https://github.com/jvdb/derric-eval/commit/872cd67
https://github.com/jvdb/derric-eval/commit/d71a7c4
https://github.com/jvdb/derric-eval/commit/3922516
https://github.com/jvdb/derric-eval/commit/3922516
https://github.com/jvdb/derric-eval/commit/f97370b
https://github.com/jvdb/derric-eval/commit/f97370b
https://github.com/jvdb/derric-eval/commit/3780274
https://github.com/jvdb/derric-eval/commit/3780274
https://github.com/jvdb/derric-eval/commit/cc7f2f3
https://github.com/jvdb/derric-eval/commit/cc7f2f3
https://github.com/jvdb/derric-eval/commit/7c32673
https://github.com/jvdb/derric-eval/commit/7c32673
https://github.com/jvdb/derric-eval/commit/454152a
https://github.com/jvdb/derric-eval/commit/454152a
https://github.com/jvdb/derric-eval/commit/bdbf985
https://github.com/jvdb/derric-eval/commit/bdbf985
https://github.com/jvdb/derric-eval/commit/3caa428
https://github.com/jvdb/derric-eval/commit/3caa428
https://github.com/jvdb/derric-eval/commit/6b0cca9
https://github.com/jvdb/derric-eval/commit/6b0cca9
https://github.com/jvdb/derric-eval/commit/ec33a53
https://github.com/jvdb/derric-eval/commit/ec33a53
https://github.com/jvdb/derric-eval/commit/fddce35
https://github.com/jvdb/derric-eval/commit/fddce35
https://github.com/jvdb/derric-eval/commit/20b63f0
https://github.com/jvdb/derric-eval/commit/20b63f0
https://github.com/jvdb/derric-eval/commit/b8cd1d9
https://github.com/jvdb/derric-eval/commit/b8cd1d9
https://github.com/jvdb/derric-eval/commit/f096d6c
https://github.com/jvdb/derric-eval/commit/f096d6c
https://github.com/jvdb/derric-eval/commit/cff3430
https://github.com/jvdb/derric-eval/commit/cff3430
https://github.com/jvdb/derric-eval/commit/a691cde
https://github.com/jvdb/derric-eval/commit/a691cde
https://github.com/jvdb/derric-eval/commit/bdc85e9
https://github.com/jvdb/derric-eval/commit/bdc85e9
https://github.com/jvdb/derric-eval/commit/399fb54
https://github.com/jvdb/derric-eval/commit/590a396
https://github.com/jvdb/derric-eval/commit/c1b3578
https://github.com/jvdb/derric-eval/commit/c1b3578
https://github.com/jvdb/derric-eval/commit/6ebbad4
https://github.com/jvdb/derric-eval/commit/6ebbad4
https://github.com/jvdb/derric-eval/commit/ef0329b
https://github.com/jvdb/derric-eval/commit/ef0329b
https://github.com/jvdb/derric-eval/commit/d679520
https://github.com/jvdb/derric-eval/commit/d679520
https://github.com/jvdb/derric-eval/commit/fce26b3
https://github.com/jvdb/derric-eval/commit/fce26b3
https://github.com/jvdb/derric-eval/commit/bbe0bf1
https://github.com/jvdb/derric-eval/commit/bbe0bf1
https://github.com/jvdb/derric-eval/commit/13f1e56
https://github.com/jvdb/derric-eval/commit/13f1e56
https://github.com/jvdb/derric-eval/commit/6a8b0d7
https://github.com/jvdb/derric-eval/commit/6a8b0d7
https://github.com/jvdb/derric-eval/commit/acfab2d
https://github.com/jvdb/derric-eval/commit/acfab2d
https://github.com/jvdb/derric-eval/commit/712e583
https://github.com/jvdb/derric-eval/commit/712e583
https://github.com/jvdb/derric-eval/commit/afb17f7

format gif d0

sequence
(Header87a Header89a)
LogicalScreenDesc
GraphicControlExtension?
(
[TableBasedImage CompressedDataBlock*]
[PlainTextExtension DataBlock*]
[ApplicationExtension DataBlock*]
[CommentExtension DataBlock*]

)
ZeroBlock?
(
[GraphicControlExtension?
TableBasedImage CompressedDataBlock*
ZeroBlock]

[GraphicControlExtension?
PlainTextExtension DataBlock* ZeroBlock]

[ApplicationExtension DataBlock* ZeroBlock]
[GraphicControlExtension? CommentExtension
DataBlock* ZeroBlock]

)*
Trailer?

...

CommentExtension d1 = ...

DataBlock d2 = ...

format gif
sequence
(Header87a Header89a)
LogicalScreenDesc
GraphicControlExtension?
(
[TableBasedImage CompressedDataBlock*]
[PlainTextExtension DataBlock*]
[ApplicationExtension DataBlock*]
[CommentExtension DataBlock*]

)
ZeroBlock?
(
[GraphicControlExtension?
TableBasedImage CompressedDataBlock*
ZeroBlock]

[GraphicControlExtension?
PlainTextExtension DataBlock* ZeroBlock]

[ApplicationExtension DataBlock* ZeroBlock]
[GraphicControlExtension? CommentExtension
DataBlock* ZeroBlock]

)*
[CommentExtension DataBlock]?
Trailer?

...

d0.sequence[6] = Optional(Seq([d1, d2]))

Fig. 9: A minimal change to the sequence part of a Derric description of GIF. A single
line is added on right (underlined). At the bottom the edit script computed by TMDIFF
(between 9b3f919 and 872cd67)

5 Discussion and Related Work

The case-study of the previous section shows that TMDIFF computes reasonable deltas
on realistic evolution scenarios on DSL programs. In this section we discuss a number
of limitations of TMDIFF and directions for further research.

The matching of entities uses textual deltas computed by diff as a guiding heuristic.
In rare cases this affects the quality of the matching. For instance, diff works at the
granularity of a line of code. As a result, any change on a line defining a semantic entity
will incur the entity to be marked as added. The addition of a single comment may trigger
this incorrect behavior. Furthermore, if a single line of code defined multiple entities, a
single addition or removal will trigger the addition of all other entities. Nevertheless, we
expect entities to be defined on a single line most of the time.

If not, the matching process can be made immune to such issues by first pretty-
printing a textual model (without comments) before performing the textual comparison.
The pretty-printer can then ensure that every definition is on its own line. Note, that
simply projecting out all definition names and performing longest common subsequence
(LCS) on the result sequences abstracts from a lot of textual context that is typically
used by diff-like tools. In fact, this was our first approach to matching. The resulting
matching, however, contained significantly more false positives.

Another factor influencing the precision of the matchings is the dependence on
the textual order of occurrence of names. As a result, when entities are moved around

12

https://github.com/jvdb/derric-eval/commit/9b3f919
https://github.com/jvdb/derric-eval/commit/872cd67

format d4 jpeg

sequence

SOI

PADDING*
COMASC?

...

PADDING d5 = ...

COM d3 = ...

COMASC d2 = COM {
length d1 : lengthOf(data) size 2;

data d0 : "Created by AccuSoft Corp.", 0;

}

create Field d0

create Field d1

create Term d2

d0 = Field("data",[Exps([

Str("Created by AccuSoft Corp."),

Num(0)])])

d1 = Field("length",[Exps([d0]),

Qualifier(Size(Num(2)))])

d2 = Struct("COMASC",d3,[d1,d0])

d4.sequence[1] = Iter(d5)

d4.sequence[2] = Optional(d2)

d4.structs[21] = d2

Fig. 10: Fragment of revision afb17f7 of jpeg.derric (left, added lines are underlined),
and the relevant part of the TMDIFF delta from revision 712e583 to afb17f7 (right).

without any further change, TMDIFF will not detect it. We have experimented with a
simple move detection algorithm to mitigate this problem, however, this turned out
to be too computationally expensive. Fortunately, edit distance problems with moves
are well-researched, see, e.g., [15]. A related problem is that TMDIFF will always see
renames as an addition and removal of an entity. Further research is needed if renames of
entities can be detected, for instance by matching up additions and removals of entities,
where the deleted node and the added node are the same, modulo the renaming.

Much work has been done in the research area of model comparison that relates
to TMDIFF. We refer to a survey of model comparison approaches and applications by
Stephan and Cordy for an overview [14]. In the area of model comparison, calculation
refers to identifying similarities and differences between models, representation refers
to the encoding form of the similarities and differences, and visualization refers to
presenting changes to the user [9, 14]. Here we focus on the calculation aspect.

Calculation involves matching entities between model versions. Strategies for match-
ing model elements include matching by 1) static identity, relying on persistent global
unique entity identifiers; 2) structural similarity, comparing entity features; 3) signature,
using user defined comparison functions; 4) language specific algorithms that use do-
main specific knowledge [14]. With respect to this list, our approach represents a new
point in the design space: matching by textual alignment of names.

The differencing algorithm underlying TMDIFF is directly inspired by Alanen and
Porres’ seminal work [1]. The identification map M between model elements is explicitly
mentioned, but the main algorithm assumes that model element identities are stable.
Additionally, TMDIFF supports elements without identity. In that case, TMDIFF performs
a structural diff on the containment hierarchy (see, e.g., [20]).

TMDIFF’s differencing strategy resembles the model merging technique used Ensō [18].
The Ensō “merge” operator also traverses a spanning tree of two models in parallel and
matches up object with the same identity. In that case, however, the objects are identified
using primary keys, relative to a collection (e.g., a set). This means that matching only

13

https://github.com/jvdb/derric-eval/commit/afb17f7
https://github.com/jvdb/derric-eval/commit/712e583
https://github.com/jvdb/derric-eval/commit/afb17f7

happens between model elements at the same syntactic level of the spanning tree of
an Ensō model. As a result, it cannot deal with “scope travel” as in Fig. 2c, where the
locked state moved from the global state to the locking scope. On the other hand, the
matching is more precise, since it is not dependent on the heuristics of textual alignment.

Epsilon is a family of languages and tools for model transformation, model migration,
refactoring and comparison [10]. It integrates HUTN [13], the OMG’s Human Usable
Text Notation, to serialize models as text. As result, which elements define semantic iden-
tities is known for each textual serialization. In other words, unlike in our setting, HUTN
provides a fixed concrete syntax with fixed scoping rules. TMDIFF allows languages to
have custom syntax, and custom binding semantics.

6 Conclusion

Accurately differencing models is important for managing and supporting the evolution of
models. Representing models as text, however, poses a challenge for model differencing
algorithms, because the identity of model elements is not stable across revisions.

In this paper we have shown how this challenge could be addressed by constructing
the mapping between model elements using origin tracking and traditional textual
differencing. Origin tracking traces the identity of an element back to the symbolic
name that defines it in the textual source of a model. Using textual differencing these
names can be aligned between versions of a model. Combining the origin relation and
the alignment of names is sufficient to identify the model elements themselves. It then
becomes possible to apply standard model differencing algorithms.

Based on these techniques, we have presented TMDIFF, a fully language parametric
approach to textual model differencing. A prototype of TMDIFF has been implemented
in the RASCAL meta programming language [8]. The prototype was used to illustrate the
feasibility of TMDIFF by reconstructing the version history of existing textual models.
The models in question are file format descriptions in an independently developed DSL
in the domain of in digital forensics [16].

Although the work presented in this paper shows promise, important directions for
further research remain. First of all, it is unclear if the deltas produced by TMDIFF
are on average smaller than the deltas produced by, for instance, EMFCompare [3], for
languages which have scoping aligned with the containment hierarchy. Further evaluation
should also include benchmarking the size and speed of differencing against a broader
set of practical examples.

References

1. Alanen, M., Porres, I.: Difference and Union of Models. In: UML. (2003) 2–17
2. Brun, C., Pierantonio, A.: Model Differences in the Eclipse Modeling Framework. UPGRADE,

The European Journal for the Informatics Professional 9(2) (2008) 29–34
3. Eclipse Foundation: EMF Compare Project. https://www.eclipse.org/emf/compare/
4. Erdweg, S., van der Storm, T., Völter, M., et al.: The State of the Art in Language Work-

benches. In: SLE. Volume 8225 of LNCS., Springer (2013) 197–217

14

https://www.eclipse.org/emf/compare/

5. Eysholdt, M., Behrens, H.: Xtext: Implement Your Language Faster Than the Quick and Dirty
Way. In: Proceedings of the ACM International Conference Companion on Object Oriented
Programming Systems Languages and Applications Companion. OOPSLA ’10, New York,
NY, USA, ACM (2010) 307–309

6. Goldschmidt, T., Becker, S., Uhl, A.: Classification of concrete textual syntax mapping
approaches. In: Proceedings of the European Conference on Model Driven Architecture—
Foundations and Applications (ECMDA-FA). Volume 5095 of LNCS. (2008) 169–184

7. Inostroza, P., van der Storm, T., Erdweg, S.: Tracing program transformations with string
origins. In Di Ruscio, D., Varró, D., eds.: Theory and Practice of Model Transformations.
Volume 8568 of LNCS. Springer (2014) 154–169

8. Klint, P., van der Storm, T., Vinju, J.: Rascal: A Domain-Specific Language for Source Code
Analysis and Manipulation. In: SCAM. (2009) 168–177

9. Kolovos, D.S., Di Ruscio, D., Pierantonio, A., Paige, R.F.: Different Models for Model
Matching: An Analysis of Approaches to Support Model Differencing. In: ICSE Workshop
on Comparison and Versioning of Software Models (CVSM’09), IEEE (2009) 1–6

10. Kolovos, D.S., Paige, R.F., Polack, F.A.: The Epsilon Transformation Language. In: Theory
and practice of model transformations. Springer (2008) 46–60

11. Miller, W., Myers, E.W.: A File Comparison Program. Softw. Pract. Exper. 15(11) (1985)
1025–1040

12. Myers, E.W.: An O(ND) Difference Algorithm and its Variations. Algorithmica 1(1-4) (1986)
251–266

13. Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.A.: Constructing Models with the Human-
Usable Textual Notation. In Czarnecki, K., Ober, I., Bruel, J.M., Uhl, A., Völter, M., eds.:
Model Driven Engineering Languages and Systems. Volume 5301 of LNCS. Springer Berlin
Heidelberg (2008) 249–263

14. Stephan, M., Cordy, J.R.: A Survey of Model Comparison Approaches and Applications. In:
MODELSWARD. (2013) 265–277

15. Tichy, W.F.: The String-to-string Correction Problem with Block Moves. ACM Trans. Comput.
Syst. 2(4) (1984) 309–321

16. van den Bos, J., van der Storm, T.: Bringing Domain-Specific Languages to Digital Forensics.
In: ICSE’11, ACM (2011) Software Engineering in Practice.

17. van den Bos, J., van der Storm, T.: A Case Study in Evidence-based DSL Evolution. In:
ECMFA’13, Springer (2013) 207–219

18. van der Storm, T., Cook, W.R., Loh, A.: The Design and Implementation of Object Grammars.
Science of Computer Programming 96, Part 4(0) (2014) 460–487 Selected Papers from the
Fifth International Conference on Software Language Engineering (SLE 2012).

19. van Deursen, A., Klint, P., Tip, F.: Origin Tracking. Symbolic Computation 15 (1993)
523–545

20. Yang, W.: Identifying Syntactic Differences Between Two Programs. Softw. Pract. Exper.
21(7) (1991) 739–755

15

	 Origin Tracking + Text Differencing = Textual Model Differencing

