
Token Interception for Syntax Embedding

Tijs van der Storm1,2

1 Centrum Wiskunde & Informatica
2 Universiteit van Amsterdam
Amsterdam, The Netherlands

storm@cwi.nl

Abstract. Syntax embedding is an attractive implementation pattern for the de-
velopment of domain-specific languages (DSLs). However, parsing a source text
containing different embedded DSL fragments currently requires complicated
techniques and tools. In this paper I present token interception as a simple and
elegant implementation pattern for implementing syntax embedding. The result-
ing architecture supports general, multi-level and dynamic embeddings of syntax.
The pattern is used in the implementation of context-free syntax embeddings in
Clojure.

1 External DSLs Internally

Embedding is an attractive DSL implementation pattern because it allows the facilities
and libraries provided by the host language to be reused [14]. Yet, the syntax of such
internal DSLs is constrained by the semantic and syntactic flexibility of the host lan-
guage. External DSLs, on the other hand, are implemented using elaborate tools such
as parser generators, attribute grammar systems, or transformation systems. As a result
DSLs implemented this way may enjoy complete syntactic freedom, but this comes at
the cost of host language integration.

Syntax embedding comfortably sits between these two worlds. The objective is to
combine the host language integration of embedding, with the syntactic freedom of
provided by external language tools.

There are many techniques for implementing syntax embedding. One approach con-
sists of statically combining the grammars of host language and embedded language
and then use that grammar to parse the source code that contains the embedded frag-
ments [5, 6, 12]. A drawback of this approach is that the syntax of an embedded lan-
guage has to be processed external of the main program itself and there is a separate
step to generate the parser for the combined language. Another approach is to use a ex-
tensible parsing algorithm to dynamically modify the “current” grammar during pars-
ing [1, 3, 4, 7–9, 13].

In general, these algorithms are either rather complicated or restricted because it
is hard to scope the effects of modifying a parser at run time. The class of allowed
grammars is often restricted to LL(k) [10], PEG [13, 17], or some specific class [4] in
order to better understand the effects of changing the parser during parsing. Grammars
thus have to be written in a specific form, for instance in order to remove left recursion.
More powerful algorithms such as used in [1, 9], require strategies or heuristics to deal



(ns stm)

(use ’metagrammar)

(def *stm-grammar* #grammar(

Decls ::= stm:Decl*;

Decl ::= state:State ;

Decl ::= actions:Actions;

Decl ::= commands:Commands;

Decl ::= events:Events;

State ::= "state" id Actions? Trans* "end";

Actions ::= "actions" "{" id+ "}";

Trans ::= trans: id "=>" id;

Commands ::= "commands" Command+ "end";

Command ::= command: id id;

Events ::= "events" Event+ "end";

Event ::= event: id id;))

Fig. 1: Concrete grammar for a state machine language

with ambiguous parses. It is often unclear whether it is possible to introduce ambiguities
between host language and embedded language.

In this paper I present token interception, an implementation technique for syntax
embedding that is simple to understand, and flexible enough to allow a large class of
languages to be embedded. It does not suffer from the problems indicated above. The
idea is to see tokenizer and parser as co-routines that can be suspended and resumed
upon intercepting certain tokens. During suspension different tokenizers and/or parsers
can be given control to hijack parts of the input stream. The pattern has been used
in the implementation of SYNFUL LISP, an extension of Clojure that allows dynamic,
multi-level embedding of languages defined by arbitrary context-free grammars3.

Organization First, Section 2 presents an overview of the embedding capabilities of
SYNFUL LISP. Then, in Section 3 the token interception implementation pattern is pre-
sented in generic terms. After that, the implementation of SYNFUL LISP using token
interception is described in Section 4. The approach is then evaluated in a lightweight
assessment. Finally, the paper is concluded with final remarks.

2 SYNFUL LISP

2.1 Introduction

SYNFUL LISP is a small extension of the programming language Clojure4 which allows
embedding of languages defined by context-free grammars within Clojure source files5.

3 SYNFUL LISP handles arbitrary context-free grammars with one restriction: parentheses
should always be balanced.

4 http://www.clojure.org
5 The sources of SYNFUL LISP can be downloaded from http://www.cwi.nl/˜storm/synful-

lisp.tar.gz.



(def grant #stm(

events

doorClosed D1CL

drawOpened D2OP

lightOn L1ON

doorOpened D1OP

panelClosed PNCL

end

...

state unlockedPanel

panelClosed => idle

end))

(stm/stm [

(stm/events ([

(stm/event "doorClosed" "D1CL")

(stm/event "drawOpened" "D2OP")

(stm/event "lightOn" "L1ON")

(stm/event "doorOpened" "D1OP")

(stm/event "panelClosed" "PNCL")]))

...

(stm/state ("unlockedPanel" [

(stm/trans "panelClosed" "idle")]))])

Fig. 2: Embedded state machine syntax (left) and the resulting AST (right)

The basic idea is very similar to ordinary Lisp reader macros, which allow the reader to
be extended with arbitrary parsing code [2,15]. In SYNFUL LISP, the reader is extended
with parsers derived from context-free grammars instead.

There are three steps in using the extension:

1. Define a context-free grammar for an embedded language; this is done using the
embedded language for grammars.

2. Hook it into Clojure’s Lisp reader with a grammar specific dispatch token τ, and a
symbol corresponding to its semantic function or macro f .

3. Use the embedded syntax delimited by # τ(...).

Since the Clojure facilities of functions and macros are used to implement the semantics
of embedded fragments, SYNFUL LISP can be classified as a homogeneous embedding
approach [16].

An example of a context-free grammar for state machines is displayed as Clojure
module in Figure 16. The first line states that the following definitions are within the
name space stm. Next, the metagrammar module is imported with the Clojure use di-
rective. Finally, a (global) variable *stm-grammar* is defined to be equal to the value of
the embedded grammar (delimited by #grammar( and )).

Grammar productions are defined using well-known grammatical constructs, such
as * for iteration and ? for optionality. Currently, the lexical structure of embedded lan-
guages is fixed: the grammar formalism has special symbols for terminal types identifier
(id), numbers (int) and strings (str). Literals used in the grammar (e.g., "state") are
automatically reserved and excluded from id to avoid ambiguities. Productions can be
labeled to indicate AST node types. For instance the non-terminal Decls is labeled stm.

The state machine syntax can be hooked into the Lisp reader with the following
statement:

6 This language is based on Martin Fowler’s introductory example at
http://martinfowler.com/dslwip/Intro.html.



(embed "stm" *stm-grammar* "Decls" "stm" ’quote)

This can be read as the following instruction to the reader: when you encounter "stm"
after the dispatch character "#", start parsing the characters that follow (enclosed in
parentheses) using *stm-grammar*, using "Decls" as start non-terminal. When parsing
is finished, construct an AST the node types of which are in name space stm, and apply
the function/macro/form quote to it. In this case, the semantic “function” (quote) just
returns the original AST.

The state machine syntax is immediately usable after the embed statement. The left-
hand side of Figure 2 shows an excerpt of embedding state machine syntax in Clojure.
Because the semantic function passed to embed is quote, the variable grant is bound
to the AST of the embedded fragment. The AST is shown on the right-hand side of the
figure. Note how the forward slash (/) is used to qualify the symbols in the AST using
the name space provided to embed.

Escaping to Clojure In SYNFUL LISP, it is possible to escape to ordinary Clojure
code using the “‘“ (backtick) character7. Where an escape occurs, is indicated in the
grammar using the special terminal symbol form.

To illustrate its use, consider changing the rule for Command in Figure 1 to Command

::= command: id form;. This means, that instead of using an identifier to identify the
command code, this rule allows arbitrary Clojure code to occur after the command
name. The following example simply prints out a log message when the unlockPanel

is executed.

#stm(commands unlockPanel ‘(print "panel unlocked") end)

The corresponding AST is:

(stm/stm [(stm/commands ([(stm/command "unlockPanel"

(print "panel unlocked"))]))])

An interpreter function for state machines could then use Clojure’s eval to evaluate
such Clojure fragments. On the other hand, a compiler macro could just leave the Clo-
jure fragments in the expanded code.

3 Token Interception

Consider a typical parsing tool chain: a tokenizer converts a stream of characters into
a stream of tokens. This stream of tokens is input to a parser, which in turn produces
an abstract syntax tree (AST). A token interceptor sits in between the tokenizer and the
parser; it wraps a tokenizer, and acts like a tokenizer to the parser.
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Fig. 3: Class diagram illustrating the token interception pattern

Figure 3 shows a class diagram highlighting the important relations in the pattern.
Tokenizers are assumed to be a kind of Iterators that produce streams of tokens. Inter-
ceptors publish the same interface as tokenizers, but also wrap another, base tokenizer.
Finally, parsers query tokenizers for the next token.

An interceptor acts as a filter: it may decide not to pass all tokens to the parser, but
instead process some of them differently, for instance, by sending the tokens to a dif-
ferent parser. The result of this “child” parse can be provided to the original (“parent”)
parser as ordinary tokens. Thus, one parser’s parse tree is another parser’s token.

A typical scenario illustrating token interception is displayed in the message se-
quence chart of Figure 4. In this diagram, tokenizers and interceptors are queried by
parsers, via the next method. The next method is expected to return the next available
token.

The figure shows four active objects: Tokenizer, Interceptor, parser1 and parser2.
Parser1 is the currently active parser object, which asks the Interceptor object for the
next token. The interceptor delegates this request to the Tokenizer object which does
the actual tokenization; it analyzes the input and returns “token” objects.

Most of the time, the Interceptor will just return the tokens received from the
Tokenizer to parser1. However, in the diagram, the token received from the tokenizer
is a special opening quote "<%"8. Instead of returning the token to parser1, a different
parser (parser2) is invoked through the parse method.

In this example, the parser2 object will use the same tokenizer (in fact, interceptor),
as was used by parser1, but this is not required. Again, most of the tokens Interceptor
receives from Tokenizer will be returned directly to parser2. However, the special
closing quote "%>" indicates that the embedded fragment that is currently being pro-
cessed ends here. Therefore, upon intercepting this token, the Interceptor returns the
end-of-file (EOF) token to parser2 to indicate that all input has been consumed. As a
result, the parse invocation will return control to the Interceptor with a parse tree. Fi-
nally, the Interceptor wraps this tree as token and provides it to parser1 as the return
value of the first next invocation in the diagram.

7 As a result the character cannot be used as a literal in the grammars that are used for describing
embedded languages.

8 This is just an example; it could be anything.
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Fig. 4: Message sequence chart illustrating the control flow of token interception

3.1 Multi-Level

The example of Figure 4 shows only one level of embedding. Token interception can
easily accommodate multiple levels of embedding, including escaping: embedding the
host language itself within the embedded fragment.

Multiple levels of embedding can be supporting by letting the interceptor maintain
the nesting level of quotes and anti-quotes. Note that in the example, "<%" and "%>"

are used to go from the host language to the embedded language; to go from embedded
language to yet another embedding might be triggered by different quote tokens.

To escape from embedded language to host language can be catered for as well. This
requires the interception of an anti-quote. If such a token is intercepted, the original
parser is invoked (again), and the resulting tree is wrapped as a token for the second-
level parser (e.g., parser2).

In the example, the second parser just uses the current interceptor as for its tok-
enizer. This does not have to be the case, of course. The Interceptor object could,
for instance, instantiate a new interceptor object, wrapping this, Tokenizer or a com-
pletely different tokenizer. Embedded languages, therefore need not conform to the
same lexical structure as the host language. The only requirement is that the closing
quote (e.g., "%>") can be detected.

3.2 On Demand

The token interception scheme as described in this paper, can be seen as an example
of lazy, demand-driven or stream-like programming: an interceptor converts a stream
of tokens to another stream of tokens. This happens lazily due to giving control to the



public EmbeddingInterceptor extends Interceptor {

private int nesting = 1;

public Token next() {

Token t = tokenizer.next();

if (t.is("(")) nesting++;

if (t.is(")")) {

nesting--;

if (nesting == 0) return Token.EOF;

}

if (t.is("‘"))

return new Form(LispReader.read(tokenizer.input));

return t;

}

public boolean hasNext() {

return nesting == 0 ? false : tokenizer.hasNext();

}

}

Fig. 5: Embedding interceptor class

parsers at the end of the processing pipe line. Because the interceptors are the target of
the next query of the parsers, they can decide to temporarily suspend an active parsing
process, and resume them when appropriate.

The fact that the input is processed one token at the time, has the advantage that
processing of earlier fragments of the input may have an effect on the way later parts
of the input will be tokenized and/or parsed. For instance, a description of a grammar
somewhere at the beginning of a file, can be effectively used to parse later parts of the
same file.

4 Implementation of SYNFUL LISP

The Lisp reader of Clojure is a hand-written recursive descent parser using a number
of dispatch tables to invoke the right parse function for a certain character. One of
the tables used in the Clojure reader is the dispatchMacros table, which dispatches
based on characters after the # character. This table has been modified so that for any
alphabetic character after #, the reader branches to the routine which starts the grammar-
based parsing, the EmbeddingReader.

The EmbeddingReader consumes all letters after the #-character to obtain the name
of the grammar that should be used. This grammar is then looked up in a table. The
tokenizer is instantiated for the current input stream, then wrapped in a token interceptor
and passed to the parser derived from the grammar. The nature of token interception is
discussed below. Currently, embedded fragments are parsed using a version of the GLR
algorithm [11].



Component Source lines of code (SLOC)
Parser generator + GLR 2617
Embedding 1245
Modifications to Clojure 4

Table 1: Source code statistics of SYNFUL LISP

The default tokenizer categorizes the input stream in token types string, literal, iden-
tifier, integer while discarding white-space and comments. These tokens are intercepted
by a token interceptor similar to the one displayed in Figure 5. Finally, the GLR parser
communicates to the interceptor instead of directly to the tokenizer.

The next method of the interceptor in Figure 5 returns the next token in the input
stream. First the actual next token is assigned to t by delegating to the next method
in the wrapped tokenizer. Then, if the retrieved token corresponds to the literal string
"(", the level of nesting is increased by one. If, on the other hand, the token corresponds
to a closing parenthesis, the nesting is decreased by one. Furthermore, if in the latter
case nesting reaches 0, this means that the last, outermost closing parenthesis has been
encountered. In other words, it means that the embedded fragment is stops here. The
token itself is not passed to the parser. Instead the end-of-file token is sent to indicate
that the complete string has been processed9. Otherwise, i.e. if nesting > 0, the token
itself is returned in the last statement of the next method.

In order to support escaping to ordinary Clojure code within embedded syntax frag-
ments, the tokenizer intercepts “‘“ (backtick) tokens, and branches back to the original
Clojure LispReader. The resulting form is wrapped in a special Form token, which is
handled by the parser as a special token, like int, str, and id.

4.1 Assessment

The implementation of syntax embedding using token interception in Clojure was achieved
with a relative small amount of code. High-level size statistics in terms of source lines
of code (SLOC) are displayed in Table 1. The largest component is the implementation
of LR(0) parser generator and the GLR algorithm. This component is generic and is ac-
tually reused from a different project. The communication between the Clojure reader
and the GLR parser, including the interception code is currently 1245 SLOC. Only 4
lines of original Clojure code had to be modified to make SYNFUL LISP.

The experiment suggests that token interception indeed is a simple and elegant so-
lution for implementing syntax embedding in Clojure. The encouraging size statistics,
however, require some qualification. The current implementation could be so small for
a number of reasons:

9 The astute reader will have noticed that this “trick” to detect the end-of-input only works if the
embedded fragment itself does not contain any unbalanced parentheses. It is for this reason
that grammars that feature productions with unbalanced parentheses are rejected. Since most
languages only feature parentheses in a balanced way anyway, this is considered to be a small
price to pay.



– Hooking into the Lisp reader is easy because it already uses dispatch tables.
– Escaping to Clojure is simple, since the Lisp reader only recognizes a single syn-

tactic type (expressions) and does not require and end-of-input token.
– S-expressions are a natural fit for AST representation. As a result, uniform integra-

tion of the result of embedded fragments into the main program is trivial.

It is instructive to look one step ahead, reflect upon the experiment of this paper, and
try to assess how token interception could be used to implement syntax embedding, in
other languages, such as Java.

Assuming a tokenizer and parser for Java are available and both are in the shape
required by the token interception pattern, one would proceed as follows:

– The Java tokenizer should be adapted to produce a special token, say#, which can
be intercepted. The interceptor can then determine the grammar that should be used
from the letters after # just as in SYNFUL LISP.

– The grammars used for embedded fragments may or may not use the same tokenizer
that is used by the Java parser; this is a design decision. In both cases, the tokenizer
should at least produce tokens for ( and ) and escape quotes.

– The escaping quote is parametrized in the non-terminal type that is allowed. For
instance, if escaping to both statements and expressions is required, they must be
triggered by different escape quotes. If the original Java parser requires an EOF
token (as most bottom-up parsers do), the escape quote should be accompanied by
a closing quote10.

– The Java grammar/parser should be adapted to be able to deal with the result of
parsing embedded fragments. For instance, special token types should be added to
accept the wrapped trees for sub parses.

As far as semantics is concerned, this would require a lot of additional work in the back
end of the Java processing pipe line. The token interception pattern, however, is only
concerned with mid-stream switching of parsers, and does not affect the way parsed
results are processed in later phases.

A more substantial evaluation would compare the features of SYNFUL LISP to other
syntactic embedding approaches, while at the same estimating the complexity, size and
flexibility of the implementation. Such an evaluation would be largely qualitative, since
the trade-offs and design decisions made in different systems complicate comparison. I
consider such an evaluation as an important direction for future work.

5 Concluding Remarks

Syntax embedding is an attractive pattern for the implementation of DSLs. It leverages
context-free syntax for language definition, while at the same time providing tight inte-
gration with a general host purpose language. I have presented token interception as a
simple pattern for implementing general, dynamic and multi-level syntax embeddings.
The pattern has been used in the implementation of SYNFUL LISP, an extension of Clo-
jure that supports embedded languages described by arbitrary context-free grammars.
10 This was not needed in the case of Clojure, since the Lisp reader knows when it has finished

parsing an expression.
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