
Noname manuscript No.
(will be inserted by the editor)

Towards Live Domain-Specific Languages
From Text Differencing to Adapting Models at Runtime

Riemer van Rozen · Tijs van der Storm

Received: date / Accepted: date

Abstract Live programming is a style of development char-
acterized by incremental change and immediate feedback.
Instead of long edit-compile cycles, developers modify a
running program by changing its source code, receiving im-
mediate feedback as it instantly adapts in response.

In this paper we propose an approach to bridge the gap
between running programs and textual Domain-Specific Lan-
guages (DSLs). The first step of our approach consists of
applying a novel model differencing algorithm, TMDIFF, to
the textual DSL code. By leveraging ordinary text differenc-
ing and origin tracking, TMDIFF produces deltas defined in
terms of the meta model of a language.

In the second step of our approach the model deltas are
applied at runtime to update a running system, without hav-
ing to restart it. Since the model deltas are derived from the
static source code of the program, they are unaware of any
runtime state maintained during model execution. We there-
fore propose a generic, dynamic patch architecture, RMPATCH,
which can be customized to cater for domain-specific state
migration. We illustrate RMPATCH in a case study of a live
programming environment for a simple DSL implemented
in RASCAL for simultaneously defining and executing state
machines.

1 Introduction

The “gulf of evaluation” represents the cognitive gap be-
tween an action performed by a user and the feedback pro-

R.A. van Rozen
Amsterdam University of Applied Sciences
postal address: PO Box 1025 / 1000 BA Amsterdam, The Netherlands
E-mail: R.A.van.Rozen@hva.nl

T. van der Storm
Centrum Wiskunde & Informatica and University of Groningen
postal adress: PO Box 94079 / 1090 GB Amsterdam, The Netherlands
E-mail: T.van.der.Storm@cwi.nl

vided to her about the effect of that action [23]. Live pro-
gramming aims to bridge the gulf of evaluation by short-
ening the feedback loop between editing a program’s tex-
tual source code and observing its behavior. In a live pro-
gramming environment the running program is updated in-
stantly after every change to the code [34]. As a result, de-
velopers immediately see the behavioral effects of their ac-
tions, and learn predicting how the program adapts to tar-
geted improvements to the code. In this paper we are con-
cerned with providing generic, reusable frameworks for de-
veloping “live DSLs”, languages whose users enjoy the im-
mediate feedback of live execution. We consider such tech-
niques to be first steps towards providing automated support
for live languages in language workbenches [8].

In particular, we propose two reusable components, TMD-
IFF and RMPATCH to ease the development of textual live
DSLs, based on a foundation of meta modeling and model
interpretation. TMDIFF is used to obtain model-based deltas
from textual source code of a DSL. These deltas are then
applied at runtime by RMPATCH to migrate the execution of
the DSL program [38]. This enables the users of a DSL to
modify the source and immediately see the effect.

The first component of our approach is the TMDIFF al-
gorithm [43]. TMDIFF employs textual differencing and ori-
gin tracking to derive model-based deltas from changes to
textual source code. A textual difference is translated to a
difference on the abstract syntax of the DSL, as specified by
a meta model. As a result, standard model differencing al-
gorithms (e.g., [1]) can be applied in the context of textual
languages.

The second component, RMPATCH, is used to dynami-
cally adapt model execution to changes in the source code.
This is achieved by “patching” the execution using the deltas
produced by TMDIFF. We call differences applied to run-
ning programs executable deltas. To apply executable deltas
we require that a language is implemented as a model inter-

2 Riemer van Rozen, Tijs van der Storm

foo.lang

“diff”

foo’.lang

Behavior(foo)

?

Behavior(foo’)

execute

?

execute

Fig. 1: How to get from a textual difference between source
code versions to a runtime difference in behavior?

preter [30]. In particular, we require that every class defined
in a language’s meta model has an implementation counter-
part in some programming language (we use Java). The RM-
PATCH architecture supports applying an executable delta on
the instances of those classes while the model is interpreted.
To support runtime state, we allow the runtime classes to ex-
tend the classes of the meta model with additional attributes
and relations. Since the deltas produced by TMDIFF are un-
aware of those attributes and relations, the RMPATCH engine
is designed to be open for extension to cater for migrating
such domain-specific runtime state. RMPATCH has been ap-
plied in the development of a prototype live programming
environment for a simple state machine DSL. A state ma-
chine definition can be changed while it is running, and the
runtime execution will adapt instantly.

The key contribution of this paper is the combination of
textual model differencing and runtime model patching for
adapting models at runtime with “live” textual DSLs, and to
this end:

– We reiterate how textual differencing can be used to match
model elements based on origin tracking information and
provide a detailed description of TMDIFF, including a
prototype implementation (Section 3).

– We present a generic architecture for runtime patching
of interpreted models (Section 4).

– We illustrate the framework using a live DSL environ-
ment for a simple state machine language (Section 5).

This article is an extended version of our previous work
“Origin Tracking + Text Differencing = Textual Model Dif-
ferencing”, published in Theory and Practice of Model Trans-
formations, ICMT, 2015 [43]. In particular, the present pa-
per extends that work with the patch architecture (RMPATCH),
as well as the live state machine case study. For the evalua-
tion of TMDIFF itself we refer to the original paper [43].

2 From Text Differencing to Live Models at Runtime

We motivate our work by taking the perspective of devel-
opers who use textual DSLs to iteratively modify and im-
prove programs. Fig. 1 gives an overview of the challenge

foo.lang

“diff”

foo’.lang

MM

∆(MM)

MM+

Jδ K

MM+

parse/resolve execute

tmdiff 1 rmpatch+ 2

Fig. 2: Applying TMDIFF to obtain model-based deltas and
RMPATCH to migrate models at runtime

of bridging the gap between a developer’s textual model ed-
its and the associated program behavior that the developer
needs to quickly observe, understand and improve.

A developer writes a program (foo) in some language
(lang), which can be executed to obtain its behavior. The de-
veloper then evolves the program to a new version (foo’) by
updating its source, yielding a textual difference. In a tradi-
tional setting, the effect of the change can only be observed
by re-executing the program. However, this involves com-
piling and executing the program from scratch. This can be
a time consuming distraction, losing all dynamic context ob-
served while running foo. In particular, all runtime state ac-
cumulated during the execution of program version foo is
lost when its next version foo’ is executed (again). We aim
to make this experience more fluid and live by obtaining a
“runtime diff” from the textual “diff” between successive
program versions (foo and foo’), and then migrating its exe-
cution (from Behavior(foo) to Behavior(foo’)) at runtime.

Fig. 2 shows an overview of our solution to this prob-
lem. The foo program is mapped to an instance of a meta
model (MM), through parsing and name resolution. Parsing
constructs an initial containment hierarchy of the program
in the form of an Abstract Syntax Tree (AST). Name res-
olution, on the other hand, creates cross references in the
model based on the (domain-specific) referencing and scop-
ing rules of the language, yielding an Abstract Syntax Graph
(ASG). The model is then executed by an interpreter, which
creates a runtime model corresponding to foo. This runtime
model is an instance of an enhanced meta model (MM+),
representing runtime state as additional attributes and rela-
tions. We require that MM+ is an extension of MM.

Whenever the developer evolves the program’s source,
the textual difference between foo and foo’ is now mapped
to a model-based delta over the meta model MM using TMD-
IFF. Such a delta consists of an edit script which changes
the model of foo to a model representing foo’. That delta is
then applied as an executable delta to the executing runtime
model of foo by RMPATCH. Because the executing model
has additional runtime state that could become invalid, RM-
PATCH needs to be augmented with language-specific mi-
grations. The generic part of RMPATCH will only migrate

Towards Live Domain-Specific Languages 3

the parts defined by MM; the domain-specific customization
defines what to do with the extensions defined by MM+. At
specific points during execution, the interpeter will swap out
the old version of the model, and start executing the new
one, without having to restart, and without losing state.

Note that the parts in boxes are the components that are
language-specific. This includes parsing and name resolu-
tion, which often need to be defined anyway, and a model-
based interpreter. TMDIFF is completely language paramet-
ric, and thus can be reused for multiple live DSLs. RMPATCH

is partially generic: it is generically defined for deltas pro-
duced by TMDIFF, but needs to be extended for dealing with
the runtime state extensions defined by MM+.

The rest of the paper is structured as follows. Next in
Section 3 we describe how TMDIFF works. In Section 4, we
show how the deltas produced by TMDIFF are applied at run-
time using the generic patch architecture of RMPATCH. The
customization of this architecture to support runtime state
migration is described as part of our case study based on
state machines in Section 5. We show how this enables a live
programming environment for state machines using a proto-
type interpreter. We conclude the paper with a discussion of
related work and an outline for further research.

3 TMDiff: Textual Model Diff

3.1 Overview

TMDIFF is a novel differencing algorithm that leverages or-
dinary text differencing and origin tracking to derive model-
based deltas from textual source code. Traditional model dif-
ferencing algorithms (e.g., [1]) determine which elements
are added, removed or changed between revisions of a model.
A crucial aspect of such algorithms is that model elements
need to be identified across versions. This allows the algo-
rithm to determine which elements are still the same in both
versions. In textual modeling [11], models are represented
as textual source code, similar to DSLs and programming
languages.

The actual model structure represented by an Abstract
Syntax Graph (ASG) is not first-class, but is derived from
the text by a text-to-model mapping, which, apart from pars-
ing the text into an Abstract Syntax Tree (AST) specifying
a containment hierarchy also provides for reference resolu-
tion. After every change to the text, the corresponding struc-
ture needs to be derived again. As a result, the identities as-
signed to the model elements during text-to-model mapping
are not preserved across versions, and model differencing
cannot be applied directly.

Existing approaches to textual model differencing are
based on mapping textual syntax to a standard model rep-
resentation (e.g., languages built with Xtext are mapped to
EMF [9]) and then using standard model comparison tools

(e.g., EMFCompare [3, 6]). As a result, model elements in
both versions are matched using name-based identities stored
in the model elements themselves. One approach is to inter-
pret such names as globally unique identifiers: match model
elements of the same class and identity, irrespective of their
location in the containment hierarchy of the model. Other
approaches are to match elements in collections at the same
position in the containment hierarchy, to use similarity-based
heuristics or to construct a purpose-built algorithm.

Unfortunately, each of these approaches has its limita-
tions. In the case of global names, the language cannot have
scoping rules: it is impossible to have different model ele-
ments of the same class with the same name. On the other
hand, matching names relative to the containment hierarchy
entails that scoping rules must obey the containment hier-
archy, which limits flexibility in terms of scoping. While
similarity-based matching techniques can deal with scopes,
these may also require fine-tuning the heuristic to obtain
more accurate results for specific languages and uses.

TMDIFF is a language-parametric technique for model
differencing of textual languages with complex scoping rules,
but at the same time is agnostic of the model containment hi-
erarchy. As a result, different elements with the same name,
but in different scopes can still be identified. TMDIFF is based
on two key techniques:

– Origin tracking. In order to map model element identi-
ties back to the source, we assume that the text-to-model
mapping applies origin tracking [13, 40]. Origin track-
ing induces an origin relation which relates source lo-
cations of definitions to (opaque) model identities. Each
semantic model element can be traced back to its defin-
ing name in the textual source, and each defining name
can be traced forward to its corresponding model ele-
ment.

– Text Differencing. TMDIFF identifies model elements
by textually aligning definition names between two ver-
sions of a model using traditional text differencing tech-
niques (e.g., [28]). When two names in the textual rep-
resentations of two models are aligned, they are assumed
to represent the same model element in both models. In
combination with the origin relation this allows TMDIFF

to identify the corresponding model elements as well.

The resulting identification of model elements can be passed
to standard model differencing algorithms, such as the one
by Alanen and Porres [1].

TMDIFF enjoys the important benefit that it is fully lan-
guage parametric. TMDIFF works irrespective of the specific
binding semantics and scoping rules of a textual modeling
language. In other words, how the textual representation is
mapped to model structure is irrelevant. The only require-
ment is that semantic model elements are introduced using
symbolic names, and that the text-to-model mapping per-
forms origin tracking.

4 Riemer van Rozen, Tijs van der Storm

1 machine doors d1

2 state closed d2

3 open => opened

4
5 state opened d3

6 close => closed

7 end

d1: Mach

d2: State d3: State

:Trans
event: "open"

:Trans
event: "close"

Fig. 3: Doors1: a simple textual representation of a state ma-
chine and its model.

Here we introduce textual model differencing using a
simple motivating example that is used as a running example
throughout the paper. Figure 3 shows a state machine model
for controlling doors. It is both represented as text (left) and
as object diagram (right). A state machine has a name and
contains a number of state declarations. Each state declara-
tion contains zero or more transitions. A transition fires on
an event, and then transfers control to a new state.

The symbolic names that define entities are annotated
with unique labels dn. These labels capture source locations
of names. That is, a name occurrence is identified with its
line and column number and/or character offset1. Since iden-
tifiers can never overlap, labels are guaranteed to be unique,
and the actual name corresponding to label can be easily re-
trieved from the source text itself. For instance, the machine
itself is labeled d1, and both states closed and opened are
labeled d2 and d3 respectively.

The labels are typically the result of name analysis (or
reference resolution), which distinguishes definition occur-
rences of names from use occurrences of names according
to the specific scoping rules of the language. For the pur-
pose of this paper it is immaterial how this name analysis
is implemented, or what kind of scoping rules are applied.
The important aspect is to know which name occurrences
represent definitions of elements in the model.

By propagating the source locations (di) to the fully re-
solved model, symbolic names can be linked to model ele-
ments and vice versa. On the right of Fig. 3, we have used
the labels themselves as object identities in the object model.
Note that the anonymous Transition objects lack such la-
bels. In this case, the objects do not have an identity, and
the difference algorithm will perform structural differenc-
ing (e.g., [45]), instead of semantic, model-based differenc-
ing [1].

Figure 4 shows two additional versions of the state ma-
chine of Fig. 3. First the machine is extended with a locked

state in Doors2 (Fig. 4a). Second, Doors3 (Fig. 4b), shows a
grouping feature of the language: the locked state is part of
the locking group. The grouping construct acts as a scope:

1 For the sake of presentation, we use the abstract labels di for the
rest of the paper, but keep in mind that they represent source locations

1 machine doors d4

2 state closed d5

3 open => opened

4 lock => locked

5
6 state opened d6

7 close => closed

8
9 state locked d7

10 unlock => closed

11
12 end

(a) Doors2

1 machine doors d8

2 state closed d9

3 open => opened

4 lock => locking.locked

5
6 state opened d10

7 close => closed

8
9 locking d11 {

10 state locked d12

11 unlock => closed

12 }

13 end

(b) Doors3

Fig. 4: Two new versions of the simple state machine model
Doors1.

it allows different states with the same name to coexist in
the same state machine model.

Looking at the labels in Fig. 3 and 4, however, one may
observe that the labels used in each version are disjoint. For
instance, even though the defining name occurrences of the
machine doors and state closed occur at the exact same lo-
cation in Doors2 and Doors3, this is an accidental result of
how the source code is formatted. Case in point is the name
locked, which now has moved down because of the addition
of the group construct.

The source locations, therefore, cannot be used as (sta-
ble) identities during model differencing. The approach taken
by TMDIFF involves determining added and removed defini-
tions by aligning the textual occurrences of defining names
(i.e. labels di). Based on the origin tracking between the tex-
tual source and the actual model we identify which model
elements have persisted after changing the source text.

This high-level approach is visualized in Fig. 5. src1 and
src2 represent the source code of two revisions of a model.
Each of these textual representations is mapped to a proper
model, m1 and m2 respectively. Mapping text to a model in-
duces origin relations, origin1 and origin2, mapping model
elements back to the source locations of their defining names
in src1 and src2 respectively. By then aligning these names
between src1 and src2, the elements themselves can be iden-
tified via the respective origin relations.

TMDIFF aligns textual names by interpreting the output
of a textual diff algorithm on the model source code. The
diffs between Doors1 and Doors2, and Doors2 and Doors3
are shown in Fig. 6. As we can see, the diffs show for each
line whether it was added (“+”) or removed (“-”). By look-
ing at the line number of the definition labels di it becomes
possible to determine whether the associated model element
was added or removed.

2 The diffs are computed by the diff tool included with the
git version control system. We used the following invocation:
git diff --no-index --patience --ignore-space-change

Towards Live Domain-Specific Languages 5

src1

src2

m1

m2

map

origin1

identify

map

origin2

align ∆

Fig. 5: Identifying model elements in m1 and m2 through
origin tracking and alignment of textual names.

--- a/doors1.sl

+++ b/doors2.sl

@@ -3,0 +4

+ lock => locked

@@ -6,0 +8,3

+

+ state locked

+ unlock => closed

--- a/doors2.sl

+++ b/doors3.sl

@@ -4 +4

- lock => locked

+ lock => locking.locked

@@ -8,0 +9

+ locking {

@@ -10,0 +12

+ }

Fig. 6: Textual diff between Doors1 and Doors2, and Doors2
and Doors3

2.

create State d7

d7 = State("locked",[Trans("

unlock", d2)])

d2.out[1] = Trans("lock", d7)

d1.states[2] = d7

(a) tmdiff Doors1 Doors2

create Group d11

d11 = Group("locking",[d7])

remove d4.states[2]

d4.states[2] = d11

(b) tmdiff Doors2 Doors3

Fig. 7: TMDIFF differences between Doorsi and Doorsi+1
(i ∈ {1,2})

For instance, the new locked state was introduced in
Doors2. This can be observed from the fact that the diff
on the left of Fig. 6 shows that the name “locked” is on
a line marked as added. Since the names doors, closed

and opened occur on unchanged lines, TMDIFF will identify
the corresponding model elements (the machine, and the 2
states) in Doors1 and Doors2. Similarly, the diff between
Doors2 and Doors3 shows that only the group locking was
introduced. All other entities have remained the same, even
the locked state, which has moved into the group locking.

With the identification of model elements in place, TMD-
IFF applies a variant of the standard model differencing in-
troduced in [1]. Hence, TMDIFF deltas are imperative edit
scripts that consist of edit operations on the model. Edit op-
erations include creating and removing of nodes, assigning
values to fields, and inserting or removing elements from

--ignore-blank-lines --ignore-space-at-eol -U0 <old>

<new>.

1 list[Operation] tmDiff(str src1, str src2, obj m1, obj m2) {
2 <A, D, M> = match(src1, src2, m1, m2)
3 ∆ = [new Create(da, da.class) | da ←A]
4 M′ = M + { <da, da> | da ←A }
5 ∆ += [new SetTree(da, build(da, M′)) | da ←A]
6 for (<d1, d2> ←M)
7 ∆ += diffNodes(d1, d1, d2, [], M′)
8 ∆ += [new Delete(dd) | dd ←D]
9 return ∆

10 }

Fig. 8: TMDIFF

collection-valued properties. Figure 7 shows the TMDIFF edit
scripts computed between Doors1 and Doors2 (a), and Doors2
and Doors3 (b). The edit scripts use the definition labels dn
as node identities.

The edit script shown in Fig. 7a captures the difference
between source version Doors1 and target version Doors2. It
begins with the creation of a new state d7. On the following
line d7 is initialized with its name (locked) and a fresh col-
lection of transitions. The transitions are contained by the
state, so they are created anonymously (without identity).
Note that the created transition contains a (cross-)reference
to state d2. The next step is to add a new transition to the out
field of state d2 (which is preserved from Doors1). The target
state of this transition is the new state d7. Finally, state d7 is
inserted at index 2 of the collection of states of the machine
d1 in Doors1.

The edit script introducing the grouping construct locking
between Doors2 and Doors3 is shown in Fig. 7b. The first
step is the creation of a new group d11. It is initialized with
the name "locking". The set of nested states is initialized
to contain state d7 which already existed in Doors2. Finally,
the state with index 2 is removed from the machine d4 in
Doors3, and then replaced by the new group d11.

In this section we have introduced the basic approach of
TMDIFF using the state machine example. The next section
presents TMDIFF in more detail.

3.2 TMDiff in More Detail

Top-level Algorithm

Figure 8 shows the TMDIFF algorithm in high-level pseudo
code. Input to the algorithm are the source texts of the mod-
els (src1, src2), and the models themselves (m1, m2). The
first step is to determine corresponding elements in m1 and
m2 using the matching technique introduced above. We fur-
ther describe the match function later in this section.

Based on the matching returned by match (line 2), TMD-
IFF first generates global Create operations for nodes that
are in the A set (line 3). After these operations are created,
the matching M is “completed” into M′, by mapping ev-

6 Riemer van Rozen, Tijs van der Storm

1 Matching match(str src1, str src2, obj m1, obj m2) {
2 P1 = project(m1)
3 P2 = project(m2)
4 <Ladd , Ldel> = split(diff(src1, src2))
5
6 i = 0, j = 0; A = {}, D = {}; I = {}
7 while (i < |P1| ∨ j < |P2|) {
8 if (i < |P1| ∧ P1[i].line ∈ Ldel)
9 D += {P1[i].ob ject}; i += 1; continue

10 if (j < |P2| ∧ P2[j].line) ∈ Ladd)
11 A += {P2[j].ob ject}; j += 1; continue
12 if (P1[i].ob ject.class = P2[j].ob ject.class)
13 I += {<P1[i].ob ject, P2[j].ob ject>}
14 else
15 D += {P1[i].ob ject}; A += {P2[j].ob ject}
16 i += 1; j += 1
17 }
18 return <A, D, I>;
19 }

Fig. 9: Matching model elements based on source text diffs.

ery added object to itself (line 4). This ensures that reverse
lookups in M′ for elements in m2 will always be defined.
Each entity just created is initialized by generating SetTree
operations which reconstruct the containment hierarchy for
each element da using the build function (line 5). The func-
tion diffNodes then computes the difference between each
pair of nodes originally identified in M (lines 6–7). The edit
operations will be anchored at object d1 (first argument). As
a result, diffNodes produces edits on “old” entities, if possi-
ble. Finally, the nodes that have been deleted from m1 result
in global Delete actions (line 8).

Matching

The match function uses the output computed by standard
diff tools. In particular, we employ a diff variant called
Patience Diff 3 which is known to often provide better results
than the standard, LCS-based algorithm [31].

The matching algorithm is shown in Fig. 9. The function
match takes the textual source of both models (src1, src2)
and the actual models as input (m1, m2). It first projects out
the origin and class information for each model (lines 1–2).
The resulting projections P1 and P2 are sequences of tuples
〈x,c, l,d〉, where x is the symbolic name of the entity, c its
class (e.g. State, Machine, etc.), l the textual line it occurs
on and d the object itself.

As an example, the projections for Doors1 and Doors2
are as follows:

P1 =

[〈doors, Machine, 1, d1〉,
〈closed, State, 2, d2〉,
〈opened, State, 5, d3〉]

3 See: http://bramcohen.livejournal.com/73318.html

1 list[Operation] diffNodes(obj ctx, obj m1, obj m2, Path p,
2 Matching M) {
3 assert m1.class = m2.class;
4 ∆ = []
5 for (f ←m1.class.fields) {
6 if (f .isPrimitive && m1[f] 6= m2[f])
7 ∆ += [new SetPrim(ctx, p+[f], m2[f])];
8 else if (f .isContainment)
9 if (m1[f].class = m2[f].class)

10 ∆ += diffNodes(ctx, m1[f], m2[f], p+[f], M)
11 else
12 ∆ += [new SetTree(ctx, p+[f], build(m2[f], M))]

13 else if (f .isReference && M−1[m2[f]] 6= m1[f])

14 ∆ += [new SetRef(ctx, p+[f], M−1[m2[f]])]

15 else if (f .isList)
16 ∆ += diffLists(ctx, m1[f], m2[f], p+[f], M)
17 }
18 return ∆

19 }

Fig. 10: Differencing nodes.

P2 =

[〈doors, Machine, 1, d4〉,
〈closed, State, 2, d5〉,
〈opened, State, 6, d6〉,
〈locked, State, 9, d7〉]

The algorithm then partitions the textual diff in two sets
Ladd and Ldel of added lines (relative to src2) and deleted
lines (relative to src1) (line 4). The main while-loop then
iterates over the projections P1 and P2 in parallel, distributing
definition labels over the A, D and I sets that will make up
the matching (lines 6–17). If a name occurs unchanged in
both src1 and src2, an additional type check prevents that
entities in different categories are matched (lines 12–15).

The result of matching is a triple M = 〈A,D, I〉, where
A ⊆ Lm2 contains new elements in m2, D ⊆ Lm1 contains
elements removed from m1, and I ⊆ Lm1 × Lm2 represents
identified entities (line 18), where Lm1 and Lm2 are labels of
elements in m1 and m2 respectively.

For instance the matchings between Doors1, Doors2, and
between Doors2 and Doors3 are:

M1,2 = 〈{d7},{},{〈d1,d4〉,〈d2,d5〉,〈d3,d6〉}〉
M2,3 = 〈{d11},{},{〈d4,d8〉,〈d5,d9〉,〈d6,d10〉,〈d7,d12〉}〉

Next we explain how the matching result is used for dif-
ferencing nodes.

Differencing

The heavy lifting of TMDIFF is realized by the diffNodes
function. It is shown in Fig. 10. It receives an existing entity
as the current context (ctx), the two elements to be com-
pared (m1 and m2), a Path p which is a list recursively built

http://bramcohen.livejournal.com/73318.html

Towards Live Domain-Specific Languages 7

up out of names and indexes and the matching relation to
provide reference equality between elements in m1 and m2.
diffNodes assumes that both m1 and m2 are of the same class
(line 3). The algorithm then loops over all fields that need
to be differenced (lines 5–17). Fields can be of four kinds:
primitive (lines 6–7), containment (lines 8–12), reference
(lines 13–14) or list (lines 15–16). For each case the appro-
priate edit operations are generated, and in most cases the
semantics is straightforward and standard. For instance, if
the field is list-valued, we delegate differencing to an auxil-
iary function diffLists (not shown) which performs Longest
Common Subsequence (LCS) differencing using reference
equality. The interesting bit happens when differencing ref-
erence fields. References are compared via the matching M,
highlighted in Figure 10.

In order to know whether two references are “equal”,
diffNodes performs a reverse lookup in M on the reference
in m2 (line 13). If the result of that lookup is different from
the reference in t1 the field needs to be updated. Recall that
M was augmented to M′ (cf. Fig. 8) to contain entries for
all newly created model elements. As a result, the reverse
lookup (line 14) is always well-defined. Either we find an
already existing element of m1, or we find a element created
as part of m2, highlighted in Fig. 10.

3.3 Implementation in RASCAL

We have implemented TMDIFF in RASCAL, a functional pro-
gramming language for meta programming and language
workbench for developing textual DSLs [16]. The code for
the algorithm, the application to the example state machine
language, and the case study can be found on GitHub4.

Since RASCAL is a textual language workbench [7] all
models are represented as text, and then parsed into an ab-
stract syntax tree (AST). Except for primitive values (string,
boolean, integer etc.), all nodes in the AST are automati-
cally annotated with source locations to provide basic origin
tracking.

Source locations are a built-in data type in RASCAL (loc),
and are used to relate sub-trees of a parse tree or AST back
to their corresponding textual source fragment. A source lo-
cation consists of a resource URI, an offset, a length, and be-
gin/end and line/column information. For instance, the name
of the closed state in Fig. 4 is labeled:

|project://textual-model-diff/input/doors1.sl|(22,6,<2,8>,<2,14>)

Because RASCAL is a functional programming language,
all data is immutable and first-class references to objects are
unavailable. Therefore, we represent the containment hier-
archy of a model as an AST, and represent cross-references
by explicit relations rel[loc from, loc to], once again using
source locations to represent object identities.

4 https://github.com/cwi-swat/textual-model-diff

Events
Model

+ State

RMPATCH

Delta

Edit Textual
Model

TMDIFF

Programming Environment Running Program

Fig. 11: Approach: using TMDIFF and RMPATCH for live
programming with textual models

In prior work [43], we have evaluated TMDIFF on the
version history of file format specifications written in Der-
ric, a real-life DSL that is used in digital forensics analysis
[37]. We found that TMDIFF reliably computes small deltas

between consecutive versions of the Derric specifications of
JPEG, GIF, and PNG.

4 RMPatch: Generic Runtime Model Patching

4.1 Overview

The previous section described the TMDIFF algorithm to ob-
tain model-based deltas from textual source files. Here we
introduce RMPATCH, a generic architecture to apply these
deltas to runtime models that drive the execution of the mod-
els of a language. During interpretation of such a model,
users edit the textual model using a live programming envi-
ronment that embeds TMDIFF for generating deltas for suc-
cessive model versions, as shown in Fig. 11 on the left. These
edit scripts are applied by RMPATCH to migrate the model as
part of the running program to reflect the new version of the
source code, as shown in Fig. 11 on the right. Together TMD-
IFF and RMPATCH provide a foundation for the design and
implementation of live programming environments, where
textual models can be edited while they are executing.

In order to provide a unified approach for recording and
replaying model differences, we record a runtime history of
events such as user interactions and changes to the source
code as edit operations on the runtime model. This history
can be used for implementing “undo”, persisting applica-
tion state (cf. event sourcing), and back-in-time debugging.
When the developer edits a textual model and saves a modi-
fied version, the programming environment applies TMDIFF

to the current and the previous version of the textual model.
It then passes the resulting delta to RMPATCH, which pauses
the interpreter, applies the delta to the runtime model, pos-
sibly migrating runtime state, and continues the interpreter.
Similarly, we also represent the effects of other events as
deltas, e.g., resulting from a user pressing a button or a sen-
sor firing. In Fig. 11 the oval “events” represents these cases.

https://github.com/cwi-swat/textual-model-diff

8 Riemer van Rozen, Tijs van der Storm

4.2 Models at Runtime

Live programming environments enable adapting models at
runtime as text. Specifically, a model is an instance of a static
meta model of a language represented by an ASG, which
is obtained from text through parsing and name resolution.
RMPATCH requires that a model interpreter is implemented
in an object-oriented language, like Java. In particular, it re-
quires reflection for interpreting executable deltas that create
objects and assign values to fields. The interpreter executes
a model as a runtime model, an instance of a runtime meta
model, which extends the static meta model of the language
by adding additional attributes and relations to model run-
time state, and methods that implement behavior.

For instance, a state machine can be executed by in-
terpreting incoming events and updating a current state at-
tribute. In between such transitions, the run-time model may
need to be migrated however, because, in a live program-
ming environment, the source code of the state machine may
have changed in the meantime. At dedicated points in the
execution, the interpreter must check for pending deltas (as
produced by TMDIFF), and if there are any, apply them to the
run-time model, before continuing execution.

4.3 Applying Deltas at Runtime

The deltas produced by TMDIFF are converted to run-time
edit operations that can be evaluated against an instance of
the runtime meta model. Every change computed by TMDIFF

can be mapped to a change at run time, because the model
of the source is subsumed by the run-time model. Apply-
ing a runtime delta contributes a sequence of atomic edits to
the runtime history of the running program. The edit opera-
tions produced by TMDIFF, however, are unaware of any ad-
ditional state maintained in the run-time models. For avoid-
ing information loss and invalid run-time states, RMPATCH

can be extended with custom state migrations. Migration ef-
fects are represented as model edits too, making them part
of the run-time history.

Recall that TMDIFF produces edit scripts as shown in
Figure 7:

create State d7 // create

d7 = State("locked",[Trans("unlock", d2)]) // setTree

d2.out[1] = Trans("lock", d7) // insertTree

d1.states[2] = d7 // insertRef

Such a script is represented as a list of edits, such as create,
setTree, insertTree and insertRef. In addition to these
four, TMDIFF generates delete, setPrim, remove, insertRef
and setRef operations. Create and delete are global oper-
ations, creating or deleting objects from the model, respec-
tively. The other, relative operations traverse a path through
the features of their owner object, the object operated on,

(e.g., d7, d2, or d1), and modify the traversed field accord-
ingly. For instance, the last operation in the edit script above,
inserts state d7 in the machine’s (d1) list of states at index 2.

The edit operations setTree and insertTree take trees
as arguments. Java makes no distinction between a tree ar-
gument’s containment references and cross references, and
encodes both as object references. We therefore flatten tree
operations to a sequence of create, setPrim, setRef and
insertRef operations. As a result RMPATCH only imple-
ments these operations, and delete and remove.

Owner objects are represented using opaque identities
used internally by TMDIFF. RMPATCH maintains an object-

Space table that maps these identities to Java objects. The
create and delete operations respectively add and remove
objects in this table. Since the identities are not stable across
versions of a model, RMPATCH uses the TMDIFF matching
(see Section 3.2) information to adjust the object space to
reflect the situation after the edit operations have been ap-
plied.

Applying the edit operations to the runtime model is im-
plemented using the Visitor pattern [10]. A base visitor de-
fines visit methods for each type of edit operation, and
modifies the current model according to the semantics of the
operation. When an edit has been applied, it is added to the
global history object to support undo and replay.

The application of edit operations to a run-time model is
unaware of invariants concerning the run-time state exten-
sions of that model. Naively applying a TMDIFF delta to the
run-time model of a DSL program, might bring its execution
in an inconsistent state. For instance, in the case of state ma-
chines, what happens if the current state is removed? What
happens if the last remaining state is removed? These ques-
tions cannot be answered in a generic, language indepen-
dent way. We therefore allow the base visitor to be extended
with custom state migration logic to address such questions.
If such additional migration steps are realized as edit opera-
tions as well, they can also be added to the global application
history, to ensure that undo and replay maintain consistency.

The next section describes how these technique have been
applied in the development of a live programming environ-
ment for the state machine language of Section 3.

5 Case Study: Live State Machine Language

5.1 Overview

Here we present a case study based on the simple State Ma-
chine Language (SML) used as the running example in Sec-
tion 3. We have used both TMDIFF and RMPATCH to obtain
a live programming environment for SML, called LiveSML.
The static and run-time meta models of SML are shown in
Fig. 12.

Towards Live Domain-Specific Languages 9

Mach

– name: String

Element

– name: String

Group State

Trans

– event: String

Mach’

State’

– count: int

states
*

states

*

transitions

*

target

state

(a) Meta model (b) Runtime extension

Fig. 12: Static and run-time meta model of SML

Source code perspective

(a) Editing Doors1

Runtime perspective

(b) Running Doors1

d1: Mach

d2: State d3: State

:Trans
event: "open"

:Trans
event: "close"

(c) Static model of Doors1

d1: Mach

d2: State
count: 1

d3: State
count: 0

:Trans
event: "open"

:Trans
event: "close"

state

(d) Runtime model of Doors1

Fig. 13: LiveSML: the left shows the source code perspec-
tive with the IDE at the top and the static model at the bot-
tom. The right shows the runtime perspective with the state
machine GUI at the top, and the (extended) run-time model
at the bottom.

The run-time model (Fig. 12b) can be seen as an exten-
sion of the static meta model (Fig. 12a); it includes all the
attributes and relations of the static model. However, to rep-
resent run-time state, there are additional attributes and rela-
tions that do not exist in the static meta model. For instance,
run-time machines (Mach objects) have a state field, repre-
senting the current state. Furthermore, the State objects are
extended with a count field, indicating how many times this
state has been visited.

1 class MigrateSML extends ApplyDelta {
2 private Mach machine; //runtime model to migrate

3
4 @Override
5 public void visit(Create create) {
6 super.visit(create);
7
8 Object x = create.getCreated(this);
9 if (x instanceof Mach) { //new machine

10 this.machine = (Mach) x;
11 }
12 else if (x instanceof State) { //new state

13 Edit e = new SetPrim(reverseLookup(x),
14 new Path(new Field("count")), 0);
15 e.accept(this);
16 }
17 }
18
19 @Override
20 public void visit(Insert insert) {
21 super.visit(insert);
22
23 Object owner = insert.getOwner(this);
24 if (machine != null && machine.state == null
25 && owner == machine) {
26 // Added a group or state to a machine

27 // without a current state.

28 goToInitialState();
29 }
30 }
31
32 @Override
33 public void visit(Delete delete) {
34 super.visit(delete);
35
36 Object x = delete.getDeleted(this);
37 if (machine != null && x == machine.state) {
38 // Deleted the current state.

39 goToInitialState();
40 }
41 }
42
43 private void goToInitialState(){
44 State s = machine.findInitial();
45 Edit e1 = new Set(reverseLookup(machine),
46 new Path(new Field("state")), s);
47 e1.accept(this); //Set the current state.

48
49 if (s != null){
50 Edit e2 = new Set(reverseLookup(s),
51 new Path(new Field("count")), s.count+1);
52 e2.accept(this); //Increment current state count.

53 }
54 }
55 }

Fig. 14: MigrateSML extends ApplyDelta for SML state mi-
gration

LiveSML consists of two application components, shown
in the top row of Fig. 13. On the left, Fig. 13a shows the pro-
gramming environment of LiveSML, which consists of an

10 Riemer van Rozen, Tijs van der Storm

s0 s1 s2 s3 s4 s5 s6 s7

/0 Doors1 Doors2 Doors3 Doors1

click
open

click
close

click
lock

Fig. 15: Interleaved coevolution of models Doorsn and application run-time states sn over time

Eclipse-based IDE for editing state machines, implemented
in RASCAL. The editor shows the Doors1 state machine.

On the right, Fig. 13b shows the execution of Doors1 as
an interactive GUI. The user can click buttons correspond-
ing to events defined in the state machine. The main window
shows a textual rendering of the state state machine in tab-
ular form. An asterisk indicates which state is the current
one, and the column marked with the pound symbol indi-
cates how many times a state has been visited. The bottom
row shows the actual Doors1 state machine models. Fig. 13c
shows the static state machine model that represents the tex-
tual source code of Doors1 shown in the editor. Fig. 13d
shows the same state machine, represented as a dynamic
model that is executing at runtime, which is shown in the
GUI.

When a developer edits a textual model and saves a mod-
ified version, the programming environment applies TMDIFF

to the current and the previous version of the textual model.
It then passes the resulting delta to the executing program
that embeds RMPATCH. Similarly, when the user triggers an
event, the program calculates its own delta for updating its
model elements. As a result, runtime model transformations
result either from textual model edits or user-level applica-
tion events.

5.2 Migrating Domain-Specific Runtime State

Since the deltas produced by TMDIFF only take the static
meta model of the source into account, the generic RMPATCH

system needs to be extended to support dealing with the state
and count attributes. Note that in most cases, RMPATCH will
simply leave these attributes intact, but in special cases, the
outcome would lead to an inconsistent state of the execution.

We define domain-specific state migration logic by ex-
tending the ApplyDelta visitor provided by RMPATCH, as
shown in Fig. 14. The class ApplyDelta defines a visit

method for each kind of edit supported by RMPATCH. For
LiveSML, we address the following cases:

– Creation of a new machine. Initially there is no ma-
chine because we start with an empty object space. We
store a reference to the machine when it is first created
(lines 9 and 10).

– Creation of a new state. The count attribute is initial-
ized to 0 (lines 12–15).

– Insertion of an element in an uninitialized machine.
When a state or group is inserted into a machine that has
no current state (lines 24–29), it is initialized to the ini-
tial state (lines 43–54). The initial state is the first state
in the textual model.

– Deletion of the current state. When a machine’s cur-
rent state is deleted (lines 36–37), it is reinitialized to
the initial state (lines 43–54).

Each domain-specific migration is represented using edit
operations. For each required side effect, new edit objects
are created. For instance, initializing the count field of a new
state to 0, is enacted by a SetPrim edit, anchored at the new
state, with a path to field “count”. Applying these operations
through the extended visitor (MigrateSML) adds them to the
application history of LiveSML.

5.3 Evolving and Using State Machines with LiveSML

The key point of LiveSML is that state machines can be
edited and used at the same time. In a sense, the source and
run-time models coevolve in lockstep: changes to the code
are interleaved with user events, – both transform the run-
time model using deltas. To illustrate this coevolution, we
present a prototype live editing scenario with LiveSML.

Fig. 15 shows its general time line. The top row shows
five successive versions of the state machine definition, start-
ing in the version where there is no state machine at all (/0).
The bottom row shows successive states of the executing
state machine. Some state changes are triggered by source
changes (e.g., from s0 to s1), while others result from user
interactions (e.g., s2 to s3).

The details of the application state transitions are listed
in Table 1. The first two columns indicate the start source
model and run-time model state. The third column (“Event”)
captures what happened (“saving” or “clicking an event but-
ton”). Each event causes a sequence of edits δi to be ap-
plied to the runtime model. Edits correspond directly to the
operations generated by TMDIFF. One additional operation
(rekey) is used to realign the internal object identities of the
runtime model with the opaque identities used by TMDIFF;
this operation is needed because the TMDIFF identities are

Towards Live Domain-Specific Languages 11

Model State Event Edit Operation Origin

/0 s0 Save Doors1 δ1 create lang.sml.runtime.State d2 TMDIFF /0 Doors1
δ2 d2.count = 0 side effect
δ3 create lang.sml.runtime.State d3
δ4 d3.count = 0 side effect
δ5 create lang.sml.runtime.Mach d1
δ6 d2 = State(name("closed"),[Trans("open",d3)])
δ7 d3 = State(name("opened"),[Trans("close",d2)])
δ8 d1 = Mach(name("doors"),[d2,d3])
δ9 d1.state = d2 side effect
δ10 d2.count = 1 side effect

Doors1 s1 Click open δ11 d1.state = d3 user action
δ12 d3.count = 1

Doors1 s2 Click close δ13 d1.state = d2 user action
δ14 d2.count = 2

Doors1 s3 Save Doors2 δ15 create lang.sml.runtime.State d7 TMDIFF Doors1 Doors2
δ16 d7.count = 0 side effect
δ17 d7 = State(name("locked"),[Trans("unlock",d2)])
δ18 insert d2.transitions[1] = Trans("lock",d7)
δ19 insert d1.states[2] = d7
δ20 rekey d1 → d4
δ21 rekey d2 → d5
δ22 rekey d3 → d6

Doors2 s4 Click lock δ23 d4.state = d7 user action
δ24 d7.count = 1

Doors2 s5 Save Doors3 δ25 create lang.sml.runtime.Group d11 TMDIFF Doors2 Doors3
δ26 d11 = Group("locking",[d6])
δ27 remove d4.states[2]
δ28 insert d4.states[2] = d0
δ29 rekey d4 → d8
δ30 rekey d5 → d9
δ31 rekey d6 → d10
δ32 rekey d7 → d12

Doors3 s6 Save Doors1 δ33 remove d8.states[2] TMDIFF Doors3 Doors1
δ34 remove d9.transitions[1]
δ35 delete d11
δ36 delete d12
δ37 d13.state = d9 side effect
δ38 d9.count = 3 side effect
δ39 rekey d8 → d13
δ40 rekey d9 → d14
δ41 rekey d10 → d15

Table 1: Interleaved coevolution of models Doorsn and run-time states sn over time

not stable across revisions. The last column shows the origin
of the edit operations: an edit can originate from a TMDIFF

delta, a migration side-effect (as described in Section 5.2),
or a user action. The sequence of δi (i ∈ 1...41) represents
the full history of runtime model transformations.

Finally, Table 2 shows, yet again, the sequence of source
models and program states of the LiveSML session, – this
time showing both the editor and the runtime GUI. From
left to right, the upper row shows states s0 to s3, and the
bottom row s4 to s7. An empty cell indicates that nothing
has changed in the editor with respect to the previous state.

We now briefly describe how each run-time model state
sn in the sequence results from textual model edits and user
actions.

– s0. The application starts and the initial model is /0. Both
the editor and GUI are empty.

– s1. Doors1 is entered into the editor, and saved. In re-
sponse, the environment computes the difference TMD-
IFF /0 Doors1. As a result, the GUI shows the execution
of Doors1. Both state count attributes are initialized to
zero (δ2 and δ4). The machine’s initial state is closed
(marked by *) and its count is set to one (δ9 and δ10).

– s2. The user clicks button open, which triggers the tran-
sition and produces δ11 and δ12.

12 Riemer van Rozen, Tijs van der Storm

s0 s1 s2 s3

s4 s5 s6 s7

Table 2: Sequence of screen shots of LiveSML’s programming environment (top) and running application (bottom) while in
application state si (i ∈ 0, ...,7) of the interactive session with LiveSML.

– s3. The user clicks button close, which triggers the tran-
sition and produces δ13 and δ14.

– s4. The model is modified such that it becomes Doors2.
In response, the environment computes the difference
between Doors1 and Doors2. The count attribute of the
locked state is initialized to zero (delta16). The UI now
also displays buttons for the lock and unlock events.

– s5. The user clicks button lock, which triggers the transi-
tion and produces operations δ23 and δ24.

– s6. The model is modified such that it becomes Doors3.
In response, the environment computes the difference
between Doors2 and Doors3. This time, there are no mi-
gration side effects because the change has no semantic
effect: grouping is just a scoping mechanism.

– s7. Finally, the model is modified such that it becomes
Doors1 again. As a result of applying the differences, the
current state locked is removed and therefore the current
state is reinitialized to the first state closed (δ37). Ac-
cordingly, its count is set to three (δ38). Note that the
buttons lock and unlock have been removed from the UI
since no such events exist anymore.

The sequence of states of this LiveSML session shows the
fine-grained interleaving of edit operations originating from
different sources. The execution of the state machine adapts
to both user events and changes in the source code. As such,
LiveSML provides a very fluid developer experience. Long
edit-complice cycles are completely eliminated.

Towards Live Domain-Specific Languages 13

6 Discussion and Related Work

This paper presents an approach for live programming envi-
ronments for textual DSLs that builds on two reusable com-
ponents: TMDIFF and RMPATCH. We reflect on limitations,
challenges and future work, and discuss related work.

6.1 Towards Live Domain-Specific Languages

Live DSLs aim for a low representation gap between do-
main, notation and run time. Users can adapt runtime models
directly from the textual source. We assume that the runtime
meta model extends the static language meta model, such as
is the case in LiveSML. This design choice facilitates ap-
plying changes of the source code to the running program.
The assumption does not hold in general, however. For in-
stance imperative languages have more complex mappings
between code and execution. Such languages therefore offer
less direct affordances over a program’s execution, breaking
the continuous link between the mental model of the pro-
grammer, the code and the running program.

Edit scripts are commonly used to encode model differ-
ences between versions of models representing the abstract
syntax of a language. Edit scripts precisely encode what
changed and in which order, but not why these effects hap-
pen. Typically, language semantics refers to a formal defini-
tion that does include the precise causal relationships from
which these runtime changes result, which also enables for-
mal proofs. In our approach the behavioral evolution of ex-
ecuting models is influenced by the way model differences
are computed. When entities are not detected as “the same”
between versions the corresponding runtime objects will be
removed or added, even if this was not the behavior intended
by the user of the modeling language. This problem is not
unique to our application of TMDIFF, since any differencing
algorithm will have to use heuristics to match model ele-
ments. We hypothesize, however, that in the context of live
programming where immediacy of feedback is paramount,
changes tend to be small and local, reducing the risk of un-
intuitive matchings.

One question is whether replacing TMDIFF by an alter-
native algorithm would provide a better programmer expe-
rience. For instance, SiDiff [15, 36], DSMDiff [24] or EM-
FCompare [6] may result in a more accurate matchings for
specific circumstances. SiDiff in particular would be a can-
didate since it is independent from any kind of scoping rules
used to create references between model elements. SiDiff
can be configured to make the algorithm perform better based
on certain language features. Unfortunately, adjusting the
weights used in comparing language features, often requires
substantial empirical testing [17].

The question is if similarity-based heuristics would of-
fer more predictable differences, and as a result more pre-

dictable run time adaptation. Our hypothesis is that TMDIFF

has the benefit that its mechanism for identifying model el-
ements stays close to the textual source representation of a
model, which is precisely the material the modeler is ma-
nipulating. Comparing alternative differencing approaches
in terms of predictability and run time performance is part
of future work.

Our experience in using TMDIFF and RMPATCH shows
that migrating runtime state is complex. Even for a relatively
simple language like LiveSML, the extensions of RMPATCH

to migrate state must account for many possible transforma-
tion scenarios. Since edit operations are applied in sequence,
one must make careful assumptions about the existence or
absence of objects and references. The key question is then
if the correct interleaving of migration edits with the original
edits produced by TMDIFF could be automatically derived.
In future work we plan to address this challenge by sep-
arately modeling and maintaining migration scenarios that
abstract from underlying edits, and use dependency analy-
sis to derived possible orderings of runtime model modifica-
tions.

Assessing if RMPATCH scales to larger systems requires
additional case studies on real-world live DSLs, in particular
those whose source and runtime meta models differ more
substantially than in the case of LiveSML. To investigate
this question further, we plan to apply RMPATCH to Micro-
Machinations, a visual language and execution engine that
enables game designers to adapt a game’s mechanics while it
is running [42]. Its live programming environment is called
Mechanics Design Assistant (MeDeA) [41].

The runtime meta model of Micro-Machinations adds
a new level of dynamic instantiation: at runtime there are
“instance” level models which are not directly represented
by textual source code, but which depend on source-defined
entity definitions. Such languages require a pipeline of cou-
pled transformations between source and runtime. The ques-
tion is how modification effects propagate in a well-defined
way. This problem is not unlike migrating objects after a
change in class (e.g., in Smalltalk), or database migration
upon schema change. In fact, these kinds of migrations are
instances of the general class of coupled transformations [19]
where a transformation of one model induces a “coupled”
transformation on another (possibly over a different meta
model). Further research is needed to formalize runtime patch-
ing presented here using this framework. This could help to
precisely delineate the scope and limitations of RMPATCH-
like runtime adaptation.

Reversible transformations support features for program-
ming environments such as undoing edits, rollback, restor-
ing system states, replaying and debugging. RMPATCH op-
erations can be augmented with extra information to make
every edit operation – and thus complete edit scripts – re-
versible. The question is to what extent such features can

14 Riemer van Rozen, Tijs van der Storm

be support by generic, reusable components. Although it
is clear how to “unapply” edit operations on the runtime
model, performing this same operation on the textual source
code requires more advanced machinery, such as origin track-
ing, source code formatting and reversing source-to-source
transformations.

At this time, TMDIFF and RMPATCH offer no special sup-
port for model merging, which, for instance, would be inter-
esting for hypothetical exploration of dynamic what-if sce-
narios. Further research is needed to investigate how differ-
ent deltas produced by TMDIFF can be combined for this
purpose and how to resolve merge conflicts at runtime.

6.2 Limitations of TMDiff

Unlike RMPATCH, the TMDIFF algorithm can be used inde-
pendently. In this section we identify a number of limitations
of TMDIFF as a separate component and discuss directions
for further research.

The matching of entities uses textual deltas computed
by diff as a guiding heuristic. In rare cases this affects
the quality of the matching. For instance, diff works at the
granularity of a line of code. As a result, any change on a line
defining a semantic entity will incur the entity to be marked
as added. The addition of a single comment may trigger this
incorrect behavior. Furthermore, if a single line of code de-
fined multiple entities, a single addition or removal will trig-
ger the addition of all other entities. Nevertheless, we expect
entities to be defined on a single line most of the time.

If not, the matching process can be made immune to
such issues by first pretty-printing a textual model (with-
out comments) before performing the textual comparison.
The pretty-printer can then ensure that every definition is on
its own line. Note, that simply projecting out all definition
names and performing longest common subsequence (LCS)
on the result sequences abstracts from a lot of textual context
that is typically used by diff-like tools. In fact, this was our
first approach to matching. The resulting matchings, how-
ever, contained significantly more false positives.

Another factor influencing the precision of the match-
ings is the dependence on the textual order of occurrence of
names. As a result, when entities are moved without any fur-
ther change, TMDIFF will not detect it as such. We have ex-
perimented with a simple move detection algorithm to mit-
igate this problem, however, this turned out to be too com-
putationally expensive. Fortunately, edit distance problems
with moves are well-researched, see, e.g., [35]. A related
problem is that TMDIFF will always see renames as an ad-
dition and removal of an entity. In general, edit scripts con-
sisting of long sequences of atomic operations are hard to
understand. However, user-level composite operations such
as renaming and more complex refactorings can be detected

in existing sequences of atomic operations, e.g., using the
approach proposed by Langer et al. [21], or the rule-based
semantic lifting approach proposed by Kehrer et al. [14].

6.3 Related Work

The key contribution of this paper intersects two areas of
related work: model differencing and dynamic adaptation of
models at runtime. Below we discuss important related work
in both these areas.

6.3.1 Model Differencing

Much work has been done in the research area of model
comparison that relates to TMDIFF. We refer to a survey of
model comparison approaches and applications by Stephan
and Cordy for an overview [33]. In the area of model com-
parison, calculation refers to identifying similarities and dif-
ferences between models, representation refers to the encod-
ing form of the similarities and differences, and visualiza-
tion refers to presenting changes to the user [17, 33]. Here
we focus on the calculation aspect.

Calculation involves matching entities between model
versions. Strategies for matching model elements include
matching by 1) static identity, relying on persistent global
unique entity identifiers; 2) structural similarity, comparing
entity features; 3) signature, using user defined comparison
functions; 4) language specific algorithms that use domain
specific knowledge [33]. With respect to this list, our ap-
proach represents a new point in the design space: matching
by textual alignment of names.

The differencing algorithm underlying TMDIFF is directly
based on Alanen and Porres’ seminal work [1]. The identifi-
cation map between model elements is explicitly mentioned,
but the main algorithm assumes that model element identi-
ties are stable. Additionally, TMDIFF supports elements with-
out identity. In that case, TMDIFF performs a structural diff
on the containment hierarchy (see, e.g., [45]).

TMDIFF’s differencing strategy resembles the model merg-
ing technique used Ensō [39]. The Ensō “merge” operator
also traverses a spanning tree of two models in parallel and
matches up object with the same identity. In that case, how-
ever, the objects are identified using primary keys, relative to
a container (e.g., a set or list). This means that matching only
happens between model elements at the same syntactic level
of the spanning tree of an Ensō model. As a result, it can-
not deal with “scope travel” as in Fig. 4c, where the locked

state moved from the global state to the locking scope. On
the other hand, the matching is more precise, since it is not
dependent on the heuristics of textual alignment.

Epsilon is a family of languages and tools for model
transformation, model migration, refactoring and compari-
son [18]. It integrates HUTN [32], the OMG’s Human Us-

Towards Live Domain-Specific Languages 15

able Text Notation, to serialize models as text. As result,
which elements define semantic identities is known for each
textual serialization. In other words, unlike in our setting,
HUTN provides a fixed concrete syntax with fixed scoping
rules. TMDIFF allows languages to have custom syntax, and
custom binding semantics.

Lin et al. describe DSMDiff, a signature-based differ-
encing approach which is intended specifically for Domain-
Specific Modeling Languages [24]. DSMDiff uses a signature-
based matching over node and edge model elements, aug-
mented by structural matching when the signature-based match-
ing produces multiple matching candidates.

Maoz et al. propose semantic differencing, an approach
that defines diff operators for comparing two models where
the resulting differences are presented as a set of semantic
diff witnesses, instances of the first model that are not in-
stances of the second [26]. These instances are concrete ex-
amples explaing how the models differ. Maoz and Ringert
relate syntactic changes to semantic witnesses by defining
necessary and sufficient sets of change operations [25].

Langer et al. present a general approach for semantic
differencing that can be customized for specific modeling
languages. This approach is based on the behavioral seman-
tics of a modeling language [20]. Two versions of a model
are executed to capture execution traces that represent its se-
mantic interpretation. Comparing these traces then provide a
“semantic” interpretation of the difference between the two
versions. In contrast, our approach starts at the opposite end:
instead of using execution traces to explain syntactic differ-
ences, we use syntactic differences to drive the execution in
the first place.

Cicchetti et al. propose a representation of model differ-
ences which is model-based, transformative, compositional
and metamodel independent [4]. Differences are represented
as models that can be applied as patches to arbitrary mod-
els. Although no special extension points are offered for
supporting runtime state migrations, the model-based dif-
ferences themselves could be used to represent them.

6.3.2 Dynamic Adaptation

“Models at runtime” is a well-researched topic, as, for in-
stance, witnessed by the long running workshop on Mo-
dels@run.time [12]. Executable modeling can be consid-
ered a subdomain of models at runtime, where a software
system’s execution is defined by a model interpreter. Exe-
cutable modeling was pioneered in the context of the Ker-
meta system [5, 30]. Kermeta is also the basis for recent
work on omniscient debugging features for xDSMLs [2].
Omniscient debuggers allow the execution of a program or
model to be reversed and replayed. This work can be posi-
tioned on an orthogonal axis of “liveness”, where the focus
is on providing better feedback through time travel. We con-

sider our delta-based approach to be a fruitful ground for
further exploration of such features. In the LiveSML case
study we already have implemented a reversible history of
application state. However, a particular challenge will be to
apply reversed edits back to the source code of a DSL pro-
gram.

Models at runtime in general are often motivated from
the angle of dynamic adaptation. For instance, Morin et al. [29]
describe an architecture to support adaptation at runtime through
aspect weaving. However, this work focuses on adapting be-
havior and dynamically selecting alternative variants of be-
havior, rather than changing the runtime models themselves.

The specific requirements for runtime meta modeling are
explored by Lehmann et al. [22]. The authors present a pro-
cess to identify the core runtime concepts occurring in run-
time models. In particular, they propose to identify possible
model adaptations at runtime, to explicitly address potential
runtime consistency issues. In our case we allow any kind of
modification, but leave the door open to implement arbitrary
runtime state migration policies.

RMPATCH requires the runtime meta model to be an “ex-
tension” of the static meta model. This relation is similar to
the concept of “subsumption” in description logics [27]. Al-
though we have not yet explored this link in more detail,
it would allow formal checking of whether a runtime meta
model is suitable for live patching. Another assumption un-
derlying RMPATCH is that it should be possible to pause the
model interpreter at a stable point in the execution in order to
apply the runtime modifications. This is related to the con-
cept of quiescence explored in the area of dynamic software
updating [44].

7 Conclusion

Live programming promises to improve developer experi-
ence through immediate and continuous feedback. These ben-
efits have not yet been explored from the perspective of exe-
cutable domain-specific modeling languages. In this paper
we have described a framework for developing “live tex-
tual languages”, based on a meta modeling foundation. Our
framework consists of two components.

First, we presented TMDIFF, a novel model differencing
algorithm, based on textual differencing and origin track-
ing. Origin tracking traces the identity of an element back
to the symbolic name that defines it in the textual source
of a model. Using textual differencing these names can be
aligned between versions of a model. Combining the origin
relation and the alignment of names is sufficient to identify
the model elements themselves. It then becomes possible to
apply standard model differencing algorithms. TMDIFF is a
fully language parametric approach to textual model differ-
encing. A prototype of TMDIFF has been implemented in the
RASCAL meta programming language [16].

16 Riemer van Rozen, Tijs van der Storm

The second component, RMPATCH, represents an archi-
tecture for dynamically adapting runtime models which en-
code the execution of the model. RMPATCH receives model
deltas from TMDIFF, and evolves the execution accordingly.
To avoid information loss and invalid runtime states, RM-
PATCH can be extended to define custom, language-specific
migration policies. RMPATCH is used in the development of
a live state machine DSL, which allows simultaneous edit-
ing and using of state machine definitions.

To the best of our knowledge, this paper is the first work
connecting the worlds of model differencing and dynamic
adaptation of models at runtime. Nevertheless, some impor-
tant directions for further research remain. The most impor-
tant directions are formalizing the relation between static
meta model and (extended) runtime meta model of a DSL,
investigating how dependencies between edit operations can
be inferred and used to (re)order their application, and de-
termining how to separately model and maintain run-time
state migration scenarios at a higher level of abstraction. Ul-
timately, we expect that delta-based runtime adaptation pro-
vides a fertile foundation for developing live programming
support for executable DSLs.

Acknowledgements

We thank the reviewers for their insightful comments that
helped improve this paper.

References

1. Marcus Alanen and Ivan Porres. Difference and Union of Models.
In Perdita Stevens, Jon Whittle, and Grady Booch, editors, «UML»
2003 - The Unified Modeling Language, Modeling Languages and
Applications, 6th International Conference, San Francisco, CA,
USA, October 20-24, 2003, Proceedings, volume 2863 of Lecture
Notes in Computer Science, pages 2–17. Springer, 2003.

2. Erwan Bousse, Jonathan Corley, Benoit Combemale, Jeff Gray,
and Benoit Baudry. Supporting Efficient and Advanced Omni-
scient Debugging for xDSMLs. In Proceedings of the 2015 ACM
SIGPLAN International Conference on Software Language Engi-
neering, pages 137–148. ACM, 2015.

3. Cédric Brun and Alfonso Pierantonio. Model Differences in the
Eclipse Modeling Framework. UPGRADE, The European Journal
for the Informatics Professional, 9(2):29–34, 2008.

4. Antonio Cicchetti, Davide Di Ruscio, and Alfonso Pierantonio.
Model Patches in Model-Driven Engineering. In Sudipto Ghosh,
editor, Models in Software Engineering: Workshops and Symposia
at MODELS 2009, Denver, CO, USA, October 4-9, 2009, Reports
and Revised Selected Papers, pages 190–204, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg.

5. Benoit Combemale, Xavier Crégut, and Marc Pantel. A Design
Pattern to Build Executable DSMLs and Associated V&V Tools.
In Software Engineering Conference (APSEC), 2012 19th Asia-
Pacific, volume 1, pages 282–287. IEEE, 2012.

6. Eclipse Foundation. EMF Compare Project. https://www.

eclipse.org/emf/compare/.

7. Sebastian Erdweg, Tijs van der Storm, Markus Völter, and et al.
The State of the Art in Language Workbenches. In Martin Er-
wig, Richard F. Paige, and Eric Van Wyk, editors, Software Lan-
guage Engineering - 6th International Conference, SLE 2013,
Indianapolis, IN, USA, October 26-28, 2013. Proceedings, vol-
ume 8225 of Lecture Notes in Computer Science, pages 197–217.
Springer, 2013.

8. Sebastian Erdweg, Tijs van der Storm, Markus Völter, Laurence
Tratt, Remi Bosman, William R. Cook, Albert Gerritsen, An-
gelo Hulshout, Steven Kelly, Alex Loh, Gabriël Konat, Pedro J.
Molina, Martin Palatnik, Risto Pohjonen, Eugen Schindler, Kle-
mens Schindler, Riccardo Solmi, Vlad Vergu, Eelco Visser, Kevin
van der Vlist, Guido Wachsmuth, and Jimi van der Woning. Eval-
uating and Comparing Language Workbenches: Existing Results
and Benchmarks for the Future. Computer Languages, Systems &
Structures, 44, Part A:24 – 47, 2015. Special issue on the 6th and
7th International Conference on Software Language Engineering
(SLE 2013 and SLE 2014).

9. Moritz Eysholdt and Heiko Behrens. Xtext: Implement Your Lan-
guage Faster Than the Quick and Dirty Way. In Proceedings of the
ACM International Conference Companion on Object Oriented
Programming Systems Languages and Applications Companion,
OOPSLA ’10, pages 307–309, New York, NY, USA, 2010. ACM.

10. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-oriented Software.
Addison-Wesley, 1995.

11. Thomas Goldschmidt, Steffen Becker, and Axel Uhl. Clas-
sification of Concrete Textual Syntax Mapping Approaches.
In Proceedings of the European Conference on Model Driven
Architecture—Foundations and Applications (ECMDA-FA), vol-
ume 5095 of LNCS, pages 169–184, 2008.

12. Sebastian Götz, Nelly Bencomo, and Robert France. Devising the
future of the Models@Run.Time workshop. SIGSOFT Softw. Eng.
Notes, 40(1):26–29, 2015.

13. Pablo Inostroza, Tijs van der Storm, and Sebastian Erdweg. Trac-
ing Program Transformations with String Origins. In Davide
Di Ruscio and Dániel Varró, editors, Theory and Practice of
Model Transformations, volume 8568 of LNCS, pages 154–169.
Springer, 2014.

14. T. Kehrer, U. Kelter, and G. Taentzer. A Rule-Based Approach
to the Semantic Lifting of Model Differences in the Context of
Model Versioning. In 2011 26th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE 2011), pages
163–172, Nov 2011.

15. Timo Kehrer, Udo Kelter, Pit Pietsch, and Maik Schmidt. Adapt-
ability of Model Comparison Tools. In Proceedings of the 27th
IEEE/ACM International Conference on Automated Software En-
gineering, ASE 2012, pages 306–309, New York, NY, USA, 2012.
ACM.

16. Paul Klint, Tijs van der Storm, and Jurgen Vinju. Rascal: A
Domain-Specific Language for Source Code Analysis and Ma-
nipulation. In Proceedings of the 2009 Ninth IEEE International
Working Conference on Source Code Analysis and Manipulation,
SCAM ’09, pages 168–177, 2009.

17. Dimitrios S Kolovos, Davide Di Ruscio, Alfonso Pierantonio,
and Richard F Paige. Different Models for Model Matching:
An Analysis of Approaches to Support Model Differencing. In
ICSE Workshop on Comparison and Versioning of Software Mod-
els (CVSM’09), pages 1–6. IEEE, 2009.

18. Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. The
Epsilon Transformation Language. In Theory and practice of
model transformations, pages 46–60. Springer, 2008.

19. Ralf Lämmel. Coupled Software Transformations. In First Inter-
national Workshop on Software Evolution Transformations, pages
31–35, 2004.

https://www.eclipse.org/emf/compare/
https://www.eclipse.org/emf/compare/

Towards Live Domain-Specific Languages 17

20. Philip Langer, Tanja Mayerhofer, and Gerti Kappel. Seman-
tic Model Differencing Utilizing Behavioral Semantics Specifica-
tions, pages 116–132. Springer International Publishing, 2014.

21. Philip Langer, Manuel Wimmer, Petra Brosch, Markus Her-
rmannsdörfer, Martina Seidl, Konrad Wieland, and Gerti Kappel.
A Posteriori Operation Detection in Evolving Software Models.
Journal of Systems and Software, 86(2):551 – 566, 2013.

22. Grzegorz Lehmann, Marco Blumendorf, Frank Trollmann, and
Sahin Albayrak. Meta-Modeling Runtime Models. In Models in
Software Engineering, pages 209–223. Springer, 2010.

23. Henry Lieberman and Christopher Fry. Bridging the Gulf be-
tween Code and Behavior in Programming. In Proceedings of
the SIGCHI conference on human factors in computing systems
(CHI’95), pages 480–486. ACM Press/Addison-Wesley Publish-
ing Co., 1995.

24. Yuehua Lin, Jeff Gray, and Frédéric Jouault. DSMDiff: A Differ-
entiation Tool for Domain-Specific Models. European Journal of
Information Systems, 16(4):349–361, 2007.

25. S. Maoz and J. O. Ringert. A Framework for Relating Syntactic
and Semantic Model Differences. In 2015 ACM/IEEE 18th In-
ternational Conference on Model Driven Engineering Languages
and Systems (MODELS), pages 24–33, Sept 2015.

26. Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. A Man-
ifesto for Semantic Model Differencing. In Juergen Dingel and
Arnor Solberg, editors, Models in Software Engineering: Work-
shops and Symposia at MODELS 2010, Oslo, Norway, October
2-8, 2010, Reports and Revised Selected Papers, pages 194–203,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

27. Deborah L. McGuinness and Alexander Borgida. Explaining Sub-
sumption in Description Logics. In IJCAI (1), pages 816–821,
1995.

28. Webb Miller and Eugene W. Myers. A File Comparison Program.
Softw. Pract. Exper., 15(11):1025–1040, 1985.

29. Brice Morin, Olivier Barais, Jean-Marc Jezequel, Franck Fleurey,
and Arnor Solberg. Models at Runtime to Support Dynamic Adap-
tation. Computer, 42(10):44–51, 2009.

30. Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel.
Weaving Executability into Object-Oriented Meta-languages. In
Model Driven Engineering Languages and Systems, pages 264–
278. Springer, 2005.

31. Eugene W. Myers. An O(ND) Difference Algorithm and its Vari-
ations. Algorithmica, 1(1-4):251–266, 1986.

32. Louis M. Rose, Richard F. Paige, Dimitrios S. Kolovos, and
Fiona A.C. Polack. Constructing Models with the Human-Usable
Textual Notation. In Krzysztof Czarnecki, Ileana Ober, Jean-
Michel Bruel, Axel Uhl, and Markus Völter, editors, Model Driven
Engineering Languages and Systems, volume 5301 of LNCS,
pages 249–263. Springer Berlin Heidelberg, 2008.

33. Matthew Stephan and James R. Cordy. A Survey of Model Com-
parison Approaches and Applications. In Slimane Hammoudi,
Luís Ferreira Pires, Joaquim Filipe, and Rui César das Neves, ed-
itors, Proceedings of the 1st International Conference on Model-
Driven Engineering and Software Development (MODELSWARD
2013), pages 265–277. SciTePress, 2013.

34. Steven L Tanimoto. A Perspective on the Evolution of Live Pro-
gramming. In 1st International Workshop on Live Programming
(LIVE’13), pages 31–34. IEEE, 2013.

35. Walter F. Tichy. The String-to-string Correction Problem with
Block Moves. ACM Trans. Comput. Syst., 2(4):309–321, 1984.

36. Christoph Treude, Stefan Berlik, Sven Wenzel, and Udo Kelter.
Difference Computation of Large Models. In Proceedings of the
the 6th Joint Meeting of the European Software Engineering Con-
ference and the ACM SIGSOFT Symposium on The Foundations of
Software Engineering, ESEC-FSE ’07, pages 295–304, New York,
NY, USA, 2007. ACM.

37. Jeroen van den Bos and Tijs van der Storm. Bringing Domain-
Specific Languages to Digital Forensics. In Proceedings of

the 33rd International Conference on Software Engineering
(ICSE 2011), pages 671–680. ACM, 2011. Software Engineering
in Practice.

38. Tijs van der Storm. Semantic Deltas for Live DSL Environments.
In Proceedings of the 1st International Workshop on Live Pro-
gramming, LIVE ’13, pages 35–38, Piscataway, NJ, USA, 2013.
IEEE Press.

39. Tijs van der Storm, William R. Cook, and Alex Loh. The Design
and Implementation of Object Grammars. Science of Computer
Programming, 96, Part 4(0):460–487, 2014. Selected Papers from
the Fifth International Conference on Software Language Engi-
neering (SLE 2012).

40. Arie van Deursen, Paul Klint, and Frank Tip. Origin Tracking.
Symbolic Computation, 15:523–545, 1993.

41. Riemer van Rozen. A Pattern-Based Game Mechanics Design
Assistant. In Proceedings of the 10th International Conference on
the of Foundations of Digital Games (FDG 2015). Society for the
Advancement of the Science of Digital Games, June 2015.

42. Riemer van Rozen and Joris Dormans. Adapting Game Mechanics
with Micro-Machinations. In Proceedings of the 9th International
Conference on the Foundations of Digital Games (FDG 2014).
Society for the Advancement of the Science of Digital Games,
2014.

43. Riemer van Rozen and Tijs van der Storm. Origin Tracking +
Text Differencing = Textual Model Differencing. In Theory and
Practice of Model Transformations, pages 18–33. Springer, 2015.

44. Yves Vandewoude, Peter Ebraert, Yolande Berbers, and Theo
D’Hondt. Tranquility: A low disruptive alternative to quiescence
for ensuring safe dynamic updates. IEEE Trans. Softw. Eng.,
33(12):856–868, December 2007.

45. Wuu Yang. Identifying Syntactic Differences Between Two Pro-
grams. Softw. Pract. Exper., 21(7):739–755, 1991.

Riemer van Rozen is a lecturer and
researcher at the Amsterdam Uni-
versity of Applied Sciences (AUAS),
and a PhD candidate at the Software
Analysis and Transformation group
at Centrum Wiskunde & Informat-
ica (CWI). Since 2011 he has col-
laborated with industry in several ap-
plied research projects on languages
and tools that speed-up development
and improve software quality. His re-
search focuses on generic solutions
for domain-specific languages and
live programming environments in
general, and automated game design
in particular. For more information,
visit http://vrozen.github.io.

Tijs van der Storm is senior re-
searcher in the Software Analysis and
Transformation group at Centrum
Wiskunde & Informatica (CWI), and
professor in software engineering at
the University of Groningen. His re-
search focuses on improving pro-
grammer experience through new and
better software languages, and devel-
oping the tools and techniques to en-
gineer them in a modular and inter-
active fashion. For more information,
see http://www.cwi.nl/~storm.

http://vrozen.github.io
http://www.cwi.nl/~storm

	Introduction
	From Text Differencing to Live Models at Runtime
	TMDiff: Textual Model Diff
	RMPatch: Generic Runtime Model Patching
	Case Study: Live State Machine Language
	Discussion and Related Work
	Conclusion

