
JVM Implementation Strategies

Many programming languages today target the Java Virtual Machine (JVM) as platform.
For instance, Clojure, Groovy, JRuby, Rhino JavaScript, SICP Scheme, ABCL Common
Lisp all compile to JVM bytecode. The goal of this project is to investigate strategies for
realizing certain language features on the JVM.

In particular, you are expected to:

• Perform a literature study on compilation strategies for stack-based VM architec-
tures.

• Study the implementation of existing languages such as those mentioned above.

• Identify and categorize core language features that are challenging realize on the
JVM. Amongst others, this may include: efficient dispatch, closures, tail recursion,
call-by-reference, non-local control-flow (continuations) etc.

• Perform benchmarks with respect to performance of the various implementation
strategies.

• Perform qualitative analyses of the trade-offs involved.

Requirements: affinity with programming language semantics and compiler construc-
tion. Very strong programming skills in Java.

Contact: Drs. Paul R. Griffioen (p.r.griffioen@cwi.nl), Dr. Tijs van der Storm (storm@
cwi.nl).

p.r.griffioen@cwi.nl
storm@cwi.nl
storm@cwi.nl


Hybrid Partial Evaluation of JavaScript

Partial evaluation is a technique to optimize programs by partitioning the program in-
put into static values and dynamic values. A partial evaluators evaluates a program
using only the static value. The residual program is often faster than the original since
all processing of static input is eliminated.

A special case of using partial evaluation is to turn an interpreter of a program into
a compiler. Recently, this approach has seen increased interest for the implementation
of efficient model- or domain-specific language (DSL) compilers.

To illustrate the essence of this approach, consider the following function: eval(P, I)→
O. This interpeter function takes a program P and some input I and produces some
output O. A partial evaluator operates as follows: peval(eval, P) → evalP. The partial
evaluator peval produces a specialized version of the interpreter evalP; this program
can be considered the compiled version of P. All the code to inspect the input program P
is compiled away from the interpreter.

The goal of this project is to apply the technique of Hybrid Partial Evaluation [1] to
JavaScript. This means you will develop a partial evaluator for JavaScript, so that DSL
interpreters implemented in JavaScript can be partially evaluated to obtain compiled
code. You will implement this partial evaluator in JavaScript itself. The thesis should
reflect a solid understanding of this topic; it should describe the workings and limita-
tions of the partial evaluator in minute detail. You are furthermore expected to evaluate
the partial evaluator by measuring the performance gain.

Requirements: affinity with programming language semantics and compilers. Strong
skills in JavaScript programming.

References:

1 Amin Shali and William R. Cook. Hybrid Partial Evaluation. 2011. http://www.cs.
utexas.edu/~wcook/Drafts/2011/javape.pdf

2 William R. Cook and Ralf Lämmel. Tutorial on Online Partial Evaluation. 2011.
http://softlang.uni-koblenz.de/dsl11/

3 Arjun Guha et al. The Essence of JavaScript. 2010. http://www.cs.brown.edu/~sk/

Publications/Papers/Published/gsk-essence-javascript/

Contact: Dr. Tijs van der Storm (storm@cwi.nl).

NB: this project could also be executed for languages other than JavaScript, e.g., Ruby, Clojure,
Dart etc.

http://www.cs.utexas.edu/~wcook/Drafts/2011/javape.pdf
http://www.cs.utexas.edu/~wcook/Drafts/2011/javape.pdf
http://softlang.uni-koblenz.de/dsl11/
http://www.cs.brown.edu/~sk/Publications/Papers/Published/gsk-essence-javascript/
http://www.cs.brown.edu/~sk/Publications/Papers/Published/gsk-essence-javascript/
storm@cwi.nl


Code Completion Framework Rascal

Rascal is a meta programming language and language workbench for source code anal-
ysis and transformation. One of the key application areas is the development of domain-
specific languages (DSLs). Rascal provides IDE integration with Eclipse, so that you can
easily provide IDE features for you DSL. Currently these features include: outlining, er-
ror marking, hyperlinking, hover documentation strings and context-menus. Rascal
provides these services using call-backs, or hooks: the DSL developers only has to write
(Rascal) functions for parsing, name-analysis, outline construction etc. Rascal uses the
IMP Meta-IDE framework to connect these functions to Eclipse.

The goal of this project is to design a generic interface for language-parametric content-
completion (autocomplete, “intellisense”) in Rascal. When the user of a DSL hits Ctrl-
Space a popup should appear with a selection of valid completions. The GUI part is
handled by Eclipse/IMP; your goal is to allow the developers of a DSL to provide a
function that returns a list of completions based on the (partial) parse tree of the pro-
gram that is being edited.

In particular, you are expected to:

• Perform a solid related work study on content-completion approaches, such as
implemented by xText, Spoofax, JetBrains MPS, Eclipse-JDT.

• Design and implementation of the content-completion interface in Rascal.

• Evaluation using case studies using real-life DSLs and programming languages.
This will include performance evaluation.

Requirements: excellent Java programming skills. Affinity with domain-specific lan-
guages and model-driven engineering.

Contact: Dr. Jurgen Vinju (jurgenv@cwi.nl), Dr. Tijs van der Storm (storm@cwi.nl).

jurgenv@cwi.nl
storm@cwi.nl


Grammar Debugging in Rascal

Rascal is a meta programming language and language workbench for source code anal-
ysis and transformation. One of the unique features of Rascal is its support for context-
free grammars to define the syntax of programming languages. Developing a grammar,
however, can be daunting task.

In this project the goal is to design a debugging interface for the Rascal parser. This
should allow a grammar developer to step through the parsing process in order to un-
derstand the causes of parse errors and ambiguities.

In particular, you are required to:

• Perform a literature study on parser debugging and parser state visualization.

• Study and understand the Rascal parsing algorithm.

• Implement the necessary debugger hooks into the Rascal parser.

• Use the Rascal visualization library to visualize the parser state; the link with the
context-free grammar should be explicit.

• Show that the debugger helps in finding the cause of parse errors and ambiguities.

Requirements: excellent Java and Rascal programming skills. Affinity with parsing
algorithms is useful.

Contact: Contact: Prof. Dr. Paul Klint (paulk@cwi.nl), Dr. Jurgen Vinju (jurgenv@
cwi.nl), Dr. Tijs van der Storm (storm@cwi.nl).

paulk@cwi.nl
jurgenv@cwi.nl
jurgenv@cwi.nl
storm@cwi.nl


ATL Model Transformation in Rascal

In model-driven engineering (MDE) software is developed by constructing high-level
(possibly domain-specific) models and subsequently transforming these to low-level
models or code. A popular language for model transformation is [1]. Models are de-
scribed using object-oriented meta models (class diagrams). An ATL script takes a num-
ber of models (instances) as input and produces one or more target models. In this
project, the goal is to develop an interpreter prototype for ATL in [Rascal], which does
not use object-oriented instance graphs as underlying representation, but values typed
as algebraic datatypes (ADTs), sets and relations. A requirement is a textual notation
for meta models (see e.g., [2]) and models. Your task is to evaluate if ADTs and relations
form suitable building blocks for representing and transforming models in Rascal. You
will test your prototype by executing existing ATL model transformations.

References:

1 ATL. http://www.eclipse.org/atl/

2 KM3. http://en.wikipedia.org/wiki/KM3

Contact: Dr. Tijs van der Storm (storm@cwi.nl)

http://www.eclipse.org/atl/
http://en.wikipedia.org/wiki/KM3
storm@cwi.nl


Batches for JavaScript

Batch services are a new approach to distributed computation in which clients send
batches of operations for execution on a server and receive hierarchical results sets in re-
sponse. Batch services provide a simple and powerful interface to relational databases,
with support for arbitrary nested queries and bulk updates. One important property of
the system is that a single batch statement always generates a constant number of SQL
queries, no matter how many nested loops are used. Additionally, batches can be used
for arbitrary remote computation too.

The goal of this project is implement batches in JavaScript. This means extending
JavaScript with a “batch” statement (similar to a for-loop). The statements within a
batch will be analyzed and lifted into a script to be sent to the server. When the server
returns the result to the client, the data has to be reintegrated in the client code. This
means that batch code will be split into code that is run on the server and code that is
run on the client.

You will evaluate your implementation by comparing the performance of typical
and worst-case database usage scenarios against existing ORM solutions.

References:

1 Ben Wiedermann and William R. Cook. Remote Batch Invocation for SQL Databases.
The 13th International Symposium on Database Programming Languages (DBPL),
2011. http://www.cs.utexas.edu/~wcook/Drafts/2011/batchdb.pdf

2 http://www.cs.utexas.edu/~wcook/projects/batches/index.htm

http://www.cs.utexas.edu/~wcook/Drafts/2011/batchdb.pdf
http://www.cs.utexas.edu/~wcook/projects/batches/index.htm


Translating Java to Ruby?

A common task in software engineering and maintenance is porting “old” code to new
platforms. This can be an extremely expensive operation, especially if it means translat-
ing from one programming language to another. There are tools to (semi-)automatically
perform such migrations, for instance from Visual Basic 6 to Visual Basic.NET, or from
one dialect of Cobol to another.

In this project we are interested in an tool for the (semi-)automatic migration of Java
code to Ruby. You will use Rascal and its JDT library to transform Java code to Ruby.
Since in general this is hardly possibly [1], you will have to define a meaningful scope
for the translation. In you thesis you should be able to show you understand the seman-
tic differences between Java and Ruby, and elaborate why translation is so hard in this
case. You should also accurately document you assumptions and motivations. The re-
sulting tool should be evaluated through running of test suites of existing Java projects
against the generated Ruby code.

1 Andrey A. Terekhov and Chris Verhoef. The Realities of Language Conversions. IEEE
Software, November 2000. http://www.cs.vu.nl/~x/cnv/s6.pdf

Contact: Dr. Tijs van der Storm (storm@cwi.nl).

http://www.cs.vu.nl/~x/cnv/s6.pdf
storm@cwi.nl


Ruby on Google Native Client

Today the Web browser functions as a new kind of application platform. The combi-
nation of HTML5 with fast JavaScript interpreters makes the Web a viable platform for
desktop-like applications. Nevertheless, existing code that is not developed using these
technologies is not easily ported to the (client-side) Web. In this project, the goals is to
use Google Chrome’s Native Client [1, 2] to run Ruby applications in the browser.

You are required to

• Find out how the latest Ruby interpreter (1.9.3) can be compiled using the Na-
tive Client APIs of Google Chrome. Preferably, you provide a general strategy for
embedding programming language interpreters in Chrome.

• Design and implement an API to allow Ruby programs to access the HTML5 DOM
Tree and Canvas element, so that interactive graphical applications can be devel-
oped in Ruby.

• Evaluate your approach by showing that it works for a large class of Ruby pro-
grams. You will have to elaborate and analyze the limits, restrictions and con-
straints.

Requirements: affinity with bleeding-edge Web technology; strong programming lan-
guage skills in C/C++. Knowledge of Ruby.

Contact: Dr. Tijs van der Storm (storm@cwi.nl).

References:

1 http://code.google.com/p/nativeclient

2 http://www.chromium.org/nativeclient/reference/research-papers

storm@cwi.nl
http://code.google.com/p/nativeclient
http://www.chromium.org/nativeclient/reference/research-papers


TEX.js

TEX (in combination with LATEX) is a popular document typesetting system, originally
developed by Donald Knuth in the 1980’s [2]. TEX is implemented using a literate pro-
gram tool called WEB [4]: from a single document both the source code and the doc-
umentation is generated. TEXis unique in the sense that its documentation generated
from the WEB source is published as a book [3].

The goal of this project is to use Rascal to automatically transform the existing im-
plementation of TEX to a JavaScript-based implementation so that it can be run in a
Web-Browser.

Particular challenges include:

• Investigate different implementations of TEX and analyze the trade-offs in using
any one of them for producing a JavaScript implementation. For instance, some
are in C, others in Pascal. Some of them support Unicode, others do not.

• Develop a high-quality grammar to parse the input code (e.g., Pascal).

• How to compile the Pascal/C code to equivalent JavaScript?

• What are good file-system/OS abstractions that can be used in the browser?

• How to deal with the output of TEX: there are TEX implementations that produce
Device-Independent (DVI) files [5], PDF [1] files, Postscript files.

• How to interface with fonts?

To evaluate the result of this research you will show that you can reproduce (vanilla)
LATEX documents using TEX.js. An example test could be your thesis.

Requirements: affinity with TEX/LATEX; good skills in both Rascal and JavaScript.
References

1 PDF.js. https://github.com/mozilla/pdf.js

2 TEX. http://en.wikipedia.org/wiki/TeX

3 The TEXbook http://www.tex.ac.uk/ctan/systems/knuth/dist/tex/

4 CWEB. http://sunburn.stanford.edu/~knuth/cweb.html

5 DVI. http://en.wikipedia.org/wiki/Device_independent_file_format

Contact: Dr. Tijs van der Storm (storm@cwi.nl).

https://github.com/mozilla/pdf.js
http://en.wikipedia.org/wiki/TeX
http://www.tex.ac.uk/ctan/systems/knuth/dist/tex/
http://sunburn.stanford.edu/~knuth/cweb.html
http://en.wikipedia.org/wiki/Device_independent_file_format
storm@cwi.nl

