The language-
independent

Law of Demeter
encodes the ideas of
encapsulation and
modularity in an
easy-to-follow form for
object-oriented
programmers.

Assuring Good Style
for Object-Oriented
Programs

Karl J. Lieberherr and lan M. Holland, Northeastemn University

hen is an objectoriented pro-

gram written in good style? Is

there some formula or rule that
you can follow to write good object-orni-
ented programs? What metrics can you
apply to an object-oriented program to
determine if itis good? What are the char-
acteristics of good object-oriented pro-
grams?

In this article, we put forward a simple
law, called the Law of Demeter, that we be-
lieve answers these questions and helps
formalize the ideas in the literature.'?
There are two kinds of style rules for ob-
jectoriented design and programming:
rules that apply to the structure of classes
and rules that apply to how methods are
written. Here, we focus on style rules that
restrict how methods are written for a set
of class definitions. We have published
style rules for the structure of classes else-
where?

The Law of Demeter restricts the mes-
sage-sending structure of methods. Infor-

0740-7459/89,0900/0038/$01 .00 © 1989 IEEE

mally, the law says that each method can
send messages to only a limited set of ob-
jects: to argument objects, to the self
pseudovariable, and to the immediate
subparts of self. (The self construct in
Smalltalk and Flavors is called “this” in
C++ and “Current” in Eiffel.) In other
words, each method depends on alimited
set of objects.

The goal of the Law of Demeter is to
organize and reduce dependencies be-
tween classes. Informally, one class de-
pends on another class when it calls a
function defined in the other class, We be-
lieve that the Law of Demeter promotes
maintainability and comprehensibility,
but to prove this in absolute terms would
require a Jarge experiment with a statisti-
cal evaluation. Becduse the field of object-
oriented programming is relatively new,
large object-oriented software develop-
ments that can provide data on the bene-
fits of better handling dependencies are
rare. However, we have examined our

IEEE Software

Reproduced with permission of copyright ouner.

Further reproduction prohibited.

own code (about 14,000 lines of Flavors
and C++ code) and are convinced of the
law’s benefits.

We developed the law during the design
and implementation of the Demeter sys
tem, and so we named it after our system.
Demeter providesa high-level interface to
class-based, object-oriented systems. (De-
meter is briefly described in the box on
pp. 4041; fuller descriptions appear in
other papers.>* The examples in this arti-
cle are written in Demeter notation,
which is explained in the same box.) Such
ahigh-levelinterface supports an environ-
ment where code may evolve continu-
ously rather than in sporadic jumps.

To achieve this continuous evolution,
we would like programs to be well be-
haved or well formed in some sense. In
other words, we would like the programs
to follow a certain style that lets them be
modified easily, minimizing changes re-
quired elsewhere in the programs. This
ease of modification is one criterion that
characterizes a good object-oriented pro-
gramming style. Following the Law of De-
meter will result in good style, provided
the programmer follows other well-
known style rules such as minimizing code
duplication, minimizing the number of
arguments, and minimizing the number
of methods.

Every object-oriented programmer
should know what is considered good ob-
ject-oriented programming style, just as
procedural programmers are aware of the
top-down programming paradigm, r*
“thou shalt not use a goto” rule, and o
ers. Many of the style rules for procedura.
programming are also applicable to ob-
ject-oriented programming.

In an earlier paper,® we presented a
proof that any object-oriented program
written in bad style can be transformed
systematically into a structured program
obeying the Law of Demeter. The implica-
tion of this proof is that the Law of De-

September 1989

Law of Demeter definitions

Cllent and supplier. Aprecise definition of the concapt of acquaintance class relies on the
concept of a client and supplier:

Chient. Method Mls a dient of method fattached to class Cif ingide Mmessage f is sentio
anobjectof class Corto C. The exception is that if f is specialized in one or more subclasses
then Mis only a client of fattached to the highest class in the subclass hierarchy. Method M
is aclient of class Cif Mis a client of some method attached to class C.

Supplier. If method M s a client of dlass C as just described then C is a supplier of M.
Informally, a supplier dass of amethod Mis a class whose methods are cailed in M.

Acquaintance class. Apracise definition of an acquaintance dlass is:

Class Cyis an acquaintance class of method Mattached to class Czif Cyis a supplierto M
and Cris not

«an argument class of M, including Ca, nor

*an instance variable dlass of Cz, nor

«a superclass of the above classes.

Informally, an acquaintance dass of method Mis a supplier class that is not an argument
class of Mnor an instance-variable class of the class fo which Mis attached.

Preferred-acquaintance class. A preferred acquaintance class of method Mis either a
class of objects created directly in M (Dy calling the acquaintance class’s constructor) or a
class of a global variable usedin M. .

Preferrod-supplier ciass. Preferred supplier classes are defined formally in terms of
preferred acquaintance classes:

Class Bis a prefered supplier of method M (attached to class C) if Bis a supplierof Mand
one of the following conditions holds:)

» Bis an instance-variable class of Cor a superclass of such aclass,

» Bis an argument class of M, including C or a superciass of such aclass, or

+ Bis a preforred acquaintance class of M.

informally, the preferred supplier classes are made up of a method's preferred acquaint-
ance classes and its instance-variable and argument dlasses. The relationships between
supplier and acquaintance classes and their preferred subsets are given in Figure A.

. Preferred lier clas:
Acquaintance classes reter sulppn classes

F 1

Instance-variabie
and
argument classes

Acquaintance classes
to be avoided

I
Supplier classes

Figure A. Refationships between supplier and acquaintance classes and their preferred sub-
sets.

39

Reproduced with permission of copyright owner.

meter does not restrict what a program-
mer can solve, it restricts only how he
solvesit.

We challenge object-oriented programn-
mersto check if their programs follow our
Jaw and, where they do not, to consider
whether they should. We believe all pro-
grammers who use object-oriented pro-
gramming techniques should adopt our
law. (The box on p. 47 describes instantia-
tions of the Law of Demeter for common
object-oriented languages.)

Forms of the law

The Law of Demeter has two forms: the
class and object forms. The class form
comes in o versions: the minimization
and strict versions. The strict version is a
special class form that rigorously restricts
the dependencies between classes. The
minimization version allows additional
dependencies between classes but asks
that you minimize them and document
them by declaring acquaintance classes.

Class form. The class form’s versions
are expressed in terms of classes and can
be supported by a law-enforcement tool.

Every class in an object-oriented design
or program is a potential supplier of any
method. However, it is best to limit a
method’s suppliers to a small set of pre-
ferred classes. To define these preferred
supplier classes, we introduced the con-
cept of an acquaintance class.®’ A precise
definition of an acquaintance relies on
the concept of a supplier; the box on p. 39
gives these precise definitions. Informally,
a method’s supplier class is a class whose
methods are called in the method. A
method’s acquaintance class is a supplier
class that is not an argument nor an in-
stance-variable class. A method's preferred
acquaintance class is either a class of ob-
jects created directly in a method (by call-
ing the acquaintance class’s constructor)
or a class of global variables used in a
method.

Acquaintance classes are typically used
for three reasons:

* Stability: If aclass is stable or if its inter-
face will be kept upwardly compatible, it
makes sense o use it as an acquaintance
class in all methods. The user specifies
such global acquaintance classes sepa-

40

rately, and they are included in the ac-
quaintance classes of all methods.

¢ Efficiency: To gain efficiency, the user
might need access to the instance vari-
ables of other classes. In C++ terminology,
these are classes of which the method is a
friend function.

* Object construction.

Minimization version. The minimization
version of the Law of Demeter’s class form
is the easiest to define:

Mirimize the number of acquaintance
classes over all methods.

We count the number of acquaintance
classes for all methods: If a class appears as

Demeter system overview

Demeter's key contribution is to improve programmer productivity by several factors for an
important part of the development process: the preparation of a personalized software library for
working with the objects defined by dasses.

The key ideas behind the Demeter system are to use a more expressive class notation than
in existing object-oriented languages and to take advantage of the expressiveness by providing
many custom-made utilities similar to a personalized library. Thase utilities are provided for a
specific object-orientedlanguage like C++ or Flavors and greatly simplify the programming task.

Examples of utilities Demeter generates or applies generically are class definitions in a lan-
guage, application skeletons, parsers, pretty printers, type checkers, object editors, recompita-
tion minimizers, pattern matchers, and unifiers. The Demeter system helps the user define the
classes (both their structure and the high levels of their functionality) with several support tools,
including a consistency checker (semantic rules and type checking at the design level), a
learning tool that leams class definitions from example object descriptions, an LL(1) corrector for
left-to-right scans with one look-ahead token producing a leftmost derivation, a script generator
based on wish lists, and an application-development plan generator.

One of Demeter's primary goals is to develop an environment that eases the evolution of a
class hierarchy. Such an environment must provide tools for the easy updating of existing
software (the methods or operations defined on the class hierarchy). We are striving to produce
an environment that will let software be grown in a continuous fashion rather than in the sporadic
jumps that undoubtedly lead to major rewrites. We believe a continuous-growth environmentwill
lead to the fast-prototyping/system-updating development cycle common in the artificial-intelli-
gence community.

Ctass deflinitions. Demeter describes classes with three kinds of class definitions: construc-
tion, afternation, and repetition. A collection of these class definitions is called a class dictionary.
The class dictionary below partially defines a reference section of a fibrary:

class ReferenceSec has parts
ref_book_sec : BooksSec
archive ; Archive

end class ReferenceSec.

class Archive has parte
arch_microfiche : MicroficheFiles
arch_docs : Documents

end dass Archive.

class BooksSec has parts
ref_books : ListofBooks
ref_catalog : Catalog

endclass BooksSec.

class ListofBooks is list
repeat {Book)
end class ListofBooks.

class Catalogis list
repeat {Catalog_Entry}
end class Catalog.

class Book has pants

IEEE Software

Further reproduction prohibited.

an acquaintance class of several methods,
itis counted as many times as it appears.
If a statically typed language like C++or
Eiffel is extended with a facility to declare
acquaintance classes, it is straightforward
to modify the compiler to check adher-
ence to the minimization version in the
following sense: Each supplier that is an

acquaintance class is declared in the list of
the method's acquaintance classes.

To easily check the law at compile time
or even at design time, the user must pro-
vide the following documentation for
each method: (1) the types of each of the
arguments and the result and (2) the ac-
quaintance classes. The documentation

title : String

author : String

id : Bookldentitier
endclass Book.

A construction-class definition is used to build a class from several other classes and has the

form

class C has parts
part_name_1:8C_1
part_name_2:SC_2

;An_name_n :SC_n
endclass C.

An abject of class Cis defined as being made up of nparts (called its instance-variable values),
and each part has a name (called an instance-variable name) followed by a type (called an
instance-variable type). This means that for any instance (or element) of dass C the name
part_name_irefersto an element of class SC_i. The following example describes a kbrary class .
consisting of a reference section, a loan section, and a journal section:

class Library has parts
reference : ReferenceSec
loan :LoanSec
journal : JoumalSec

end class Library.

We use the following naming convention: instance variable names begin with a lowercase letter
and class names begin with an uppercase letter. :
An alternation-class definition lets you express a union type. A class definition of the form

class Cis either
AorB
endclass C.

states that an element of Cis an element of class Aor class 8 (exclusively). For example,

class Book_ldentifier is either
ISBN or LibraryOfCongress
end class Book_|dentifier,

expresses the notion that when you refer to the identifier of a book you are actually refeming to

its ISBN code or its Library of Congress code.

A repetition-class definition is simply a variation of the construction-class definition where all
the parts have the same type and you do not specify the number of parts invoived. The class

definition
class Cis list

repeat {A}
endclass C.

defines elements of Cto be lists of zero or more elements of A,

Notation. We use two notations in the Demeter system: A concise notation based on the
EBNF extended Backus-Naur form and an expanded notation of our own that is largely self-ex-
planatory. In this article, we use our expanded notation. The abstract syntax is identical for the
concise and expanded notations: Only the syntactic “sugar” is changed.

September 1989

gives the reader of the method a list of
types he must know about to understand
the method. The law-enforcement pro-
gram must track the following additional
information about each method: (1) the
message sendings inside the method and
(2) the classes of the objects created di-
rectly by the method.

Strict version. The strict version of the
Law of Demeter’s class form says:

All methods may have only preferred-
supplier classes.

These classes are made up of a method’s
preferred acquaintance classes and its in-
stance-variable and argument classes.
{Precise definitions are in the box on p.
39.) In essence, the strict version relies on
restricting acquaintance classcs.

Figure 1 shows five examples of pre-
ferred-supplier definitions. To send mes-
sage f1o object s, we use the C++ function-
call notation (“s->f{)"is the same as “send
s the message f”). In Figure 1, class Bisa
preferred supplier of method M.,

Applying the strict version of the law's
class form has several benefits.

For example, if the interface of classes
C, through C, are changed, only the pre-
ferred-client methods of these classes re-
quire modification. A class’s preferred-cli-
ent methods are usually a small subset of
all methods in a program; this reduces the
set of methods that need to be modified.
This benefit clearly shows that the Law of
Demeter limits the repercussions of
change. We used a set of classes in this ex-
ample benefit because changing the
interface for a group of classes is a com-
mon task, one that is prompted by de-
pendencies between interfaces.

You can change a class’s interface in
many ways. For example, you might mod-
ify an interface by changing an argument
or return type, by adding or deleting an
argument, by changing a name of a
method, or by adding or deleting a
method.

Using the law can also control the pro-
gramming complexity. For example,
when reading a method, you need be
aware only of the functionality of the
method’s preferred supplier classes.
These preferred suppliers are usually a
small subset of all classes of the applica-

41

Reproduced with permission of copyright owner.

sinstance variable class:
class C has parts
~s:B
implementsinterface
M) returns Ident
{calls s~> £()}
end class C.

;argument class:
class C has parts
;none
implenien ts interface
M(s: B) returns Ident
{calls s—> ()}
end class C.

;argument class:
class B has parts
;none
implements interface
M() returns Ident
{calls self -> £()}
; in C++, self is called this
end class B.

;newly created object class:
class C has parts
:none
implements interface
M(} returns Ident
; new_objectis a new object of
;classB
{calls new_object —> ()}
end class C.

;sisof type B, global
class C has parts
;none
implements interface
M() returns Ident
{calls s ~> f()}
end class C.

Flgure 1. Examples of client and supplier
definitions. Comment lines begin with a
semicolon.

tion and, furthermore, are closely related
to the class to which the method is at-
tached. This relationship makes it easier
to remember those classes and their
functionality.

Object form. It is easy to extend a C++
compiler to check for the class form’s
strict version, but the price you pay for
compiletime enforceability is that some
programs that violate the spirit of the law
will pass the test and that some programs
that follow the spirit of the law will be re-
Jected. The object version of the law says:

42

All'methods may have only preferred-

supplier objects.

This form expresses the spirit of the basic
law and serves as a conceptual guideline
for you to approximate in programming,

While the object version of the law ex-
presses what is really wanted, it cannot be
enforced at compile time. The object ver-
sion serves as an additional guide in addi-
tion to the class version of the law.

The object form uses preferred-supplier
objects, which are similar to preferred-
supplier classes. A method’s supplier ob-
jectis an object towhich a message is sent
in that method. A method’s preferred-
supplier objectsare

¢ the immediate parts of the pseudovari-
able self,

e the method’s argument objects
(which includes the pseudovariable self),
or

» the objects that are either objects cre-
ated directly in the method or objects in
global variables. ‘

The programmer determines the gran-
ularity of the “immediate subparts” of self
for the application at hand. For example,
the immediate parts of a list class are the
clements of the list. The immediate parts
of a regular class object are the objects
stored in instance variables.

Principles

The motivaton behind the Law of De-
meter is to ensure that the software is as
modular as possible. The law cffectively
reduces the occurrences of nested mes-
sage sendings (function calls) and simpli-
fies the methods.

The Law of Demeter has many implica-
tions for widely known software-engineer-
ing principles. Our contribution is to con-
dense many of the proven principles of
software design into a single statement
that can easily be used by the object-ori-
ented programmer and that can be easily
checked at compile time.

Principles covered by the law include:

¢ Coupling control. It is a well-known
principle of software design to have mini-
mal coupling between abstractions (like
procedures, modules, and methods). The
coupling can be along several links, An
important link for methods is the Uses
link (or call/rewurn link) that is cstab-

Further reproduction prohibited.

lished when one method calls another.
The Law of Demeter effectively reduces
the methods you can call inside a given
method and therefore limits the coupling
of methods for the Uses relation. The law
therefore facilitates reusability of meth-
ods and raises the software’s abstraction
level.

¢ Information hiding. The Law of De-
meter enforces one kind of information
hiding®; structure hiding. The law gener-
ally prevents a method from directly re-
trieving a subpart of an object that lies
deep in that object’s Part-of hierarchy. In-
stead, you must use intermediate meth-
ods to traverse the Part-of hierarchy in
controlled, small steps. In some object-ori-
ented systems, the user can protect some
of the instance variables or methods of a
class from outside access by making them
private. This important feature comple-
ments the law to increase modularity. But
the law benefits even those systems with
privacy: It promotes the idea that the in-
stance variables and methods that are
public should be used in arestricted way.

¢ Information restriction. Our work is
related to the work by David Parnas and
colleagues’ on the modular structure of
complex systems. To reduce the cost of
software changes in their operational
flight program for the A-7E aircraft, they
restricted the use of modules that provide
information subject to change. We take
this point of view seriously in our object-
oriented programming and assume that
any class could change. Therefore, we re-
strict the use of message sendings by ap-
plying the Law of Demeter, Information
restriction complementsinformation hid-
ing: Instead of hiding certain methods,
you make them public but you restrict
their use.

* Information localization. Many soft-
ware-engineering textbooks stress the im-
portance of localizing information, and
the Law of Demeter focuses on localizing
type information, When you study a
method, you have only to be aware of
classes that are very closely related to the
class to which the method isattached. You
can effectively be ignorant (and indepen-
dent) of the rest of the sysiem. As the say-
ing goes, ignorance is bliss. This impor-
tant aspect of the law helps reduce
programming complexity. The law also

|EEE Software

controls how visible message names are:
In a method, you can use only message
names that are in the interface of the pre-
ferred-supplier classes. This too localizes
information.

¢ Structural induction. The Law of De-
meter is related to the fundamental thesis
of denotational semantics: The meaning
of a phrase is a function of the meanings
of its immediate constituents. This goes
back to Frege’s work on the principle of
compositionality,'® which facilitates struc-
turakinduction proofs for program prop-
erties such as correctness with respecttoa
specification.

Example

To show how you can apply the Law of
Demeter, consider a program thatviolates
both the strict and the minimization ver-
sions of the law’s class form. For this exam-
ple, we use the classes defined by the class-
dictionary fragment for a library in Figure
2

In C++, sending a message means call-
ing a (virtual) member function. In the
C++ examples, the types of data members
and function arguments are pointer types
to classes. Although the examples are in
C++, the terms we use to explain the pro-
gram can also be understood by users of

Smalltalk and Flavors.

The fragment of a C++ program in Fig-
ure 3 searches the reference section for a
book. (To keep the example small, we
used direct access to instance variables in-

stead of using access methods.) The -

search_bad_style function attached to
ReferenceSec passes the message to its
book (BooksSec), microfiche (Micro-
ficheFiles), and documentation sections
(Documents). _

This function breaks the Law of De-
meter. The first message marked /*#*/
sends the message arch_microfiche to ar-
chive, which returns an object of type
MicroficheFiles. The method next sends
this returned object the search message.
However, MicroficheFiles is not an in-
stance variable or argument type of class
ReferenceSec.

Because the structure of all the classes
are clearly defined by the class dictionary,
you might be tempted to accept the
method search_bad_style in Figure 3 asa
reasonable solution, even though it vio-
lates the Law of Demeter. But consider a
change to the classdictionary. Assume the
library installs new technology and re-
places the microfiche and document sec-
tions of the archive with CD-ROMs or
videodiscs:

class Library has parts -
reference : ReferenceSec
loan : LoanSec
journal : JournalSec

end class Library.

class ReferenceSec has parts
ref_book_sec : BooksSec
archive : Archive

end class ReferenceSec:

class Archive has parts
arch_microfiche : MicroficheFiles
arch_docs : Documents

end class Archive.

class MicroficheFiles has parts

end class MicroficheFiles.

class Documents has pafts

end class Documents.

class BooksSec has parts

end class BooksSec.

Figure 2. Class-dictionary fragment for a
library.

class ReferenceSec {

public:
Archive * archive;
BooksSec * ref_book_sec;

return
(ref_book_sec->search(book) Il

}

return
(ref_book_sec=>search(book) i

'

b

class Archive {

public:
MicroficheFiles ¥ arch_microfiche;
Documents * arch_docs;

boolean search_bad_style (Book* book) {

/**/ archive->arch_microfiche~>search(book) Il
/#**/ archive->arch_docs->search(book));

boolean search_good_style (Book * book) {

archive~->search_good_style (book));

boolean search_good_style (Book#* book) {

return

)
5
public:
)

class Documents {
public:

}i

class Book {

k...

(arch_hicroﬁch&>xmch(bmk)]
arch_docs->search(book));

class MicroficheFiles {

boolcan search (Book * book) {}

boolean search (Book* book) {}

Figure 3. A C++ fragment o search the reference section for a book. Function search_bad_style violates the Léw of Demeter.

September 1989

Reproduced with permission of copyright ouner.

‘ WicroficheFies
1 1
1 2
a)

(

7

MicroficheFiles
1

Archive
1

(v)

Figure 4. Dependency graph representations of (a) the bad-style code in Figure 3 and

the (b) good-style code. The numbers labeling the edges between classes indicate the
number of function calls from one class to functions of another dass.

class Archive has parts
cd_rom_arch : CD_ROM_File
end class Archive.

class CD_ROM_File has parts
cd_c_system : ComputerSystem
discs: CD_ROM_Discs

end class CD_ROM_File.

You now have to search all the methods,
including the search_bad_style method,
for references to an archive with micro-
fiche files. It would be easier to limit the
modifications only to those methods at-
tached to class Archive. You accomplish
this by rewriting the methods in good
style, which results in search_good_style
functions attached to ReferenceSec and
Archive.

Using good style also reduces the cou
pling for the Uses relation: In the original
version, ReferenceSec was coupled with
BooksSec, Archive, MicroficheFiles, and
Documents, but it now is coupled only
with BooksSec and Archive.

Another way to examine the effects of
using the Law of Demeter is to translate a
program — in both good and bad style —
into a dependency graph. In the graphs,
the nodes are classes. An edge from class A
to class B has an integer label that indi-
cates how many calls that A’s functions
make to class B's. If a label is omitted from
an edge, itsvalue is 1. Access to an instance
variable is interpreted as a call to read the
instance variable. Figure 4a shows the
graph for the program that violates the
Law of Demeter; Figure 4b shows the
graph for the one that follows the law.

Valid violations

The striciversion of the class form of the
Law of Demeter is intended to be a guide-
line, not an absolute restriction. The min-
imization version of the law’s class form
gives you a choice of how strongly you
want to follow the strict version of the law:
The more nonpreferred acquaintance
classes you use, the less strongly you ad-

44

here to the strict version. In some situa-
tions, the cost of obeying the strict version
may be greater than the benefits. How-
ever, when you willingly violate the law,
you take on the responsibility of declaring
the required acquaintance classes, which
is useful documentation for future main-
tainers of your software.

As an example of where the cost of ap-
plying the law is higher than its benefits,
consider the following prototypical meth-
od, which is in bad style, coded in both
Flavors and C++. In Flavors, itis)

(defmethod (C:M) (p)
(... (send (send p :F1) :F2) ...))

In C++,itis

void C::M (A* p)
tp->Fi() ->F2();
/7 ...

where p is an instance of class A and FJ
returns a subpart of p. If the immediate
composition of A changes, the method M
may also have to change because of FI.

This is a situation when it is reasonable
to leave this bad-style code as it is: FI is
intended to serve as a black box, and the
programmer knows only about the types
of its arguments and the return type. In
this case, the maintainer of F/ must ensure
that any updates to FJ are upwardly com-
patible so users of the function are not pe-
nalized for using it.

Consider another example that shows
where the costs of using the lawmight out-
weigh its benefits. For an application that
solves differential equations, the class dic-
tionary may have the following defini-
tions:

class Complex_Number has parts

real_part : Real
imaginary_part: Real

end class Complex_Number.

In Flavors, some code using these defini-
tions would be

Further reproduction prohibited.

{defmethod (Vector :R) (c)
(

i;cnd (send c :real_part)
:project self) ...))

The same code in C++is

void Vector:R(Complex_Number* c)
{
c~>real_part > project(this)
}

The method Ris in the same form as Min
the previous example and is in bad style
for the same reason. The question here is
whether it is important to hide the struc-
ture of complex numbers and to rewrite
the method. In this application, where the
concept of a complex number is well de-
fined and well understood, it is unneces-
sary to rewrite the method so that the law
is obeyed.

In general, if the application concepts
are well defined and the classes that im-
plement those concepts are stable, such
violations are acceptable,

Writing programs that follow the Law of
Demeter decreases the occurrences of
nested message sending and decreases
the complexity of the methods, but it in-
creases the number of methods. The in-
crease in methods is related to the prob-
lem that there can be too many
operations in a type.® In this case, the ab-
straction may be less comprehensible,
and implementation and maintenance
more difficult, if you apply the law. There
might also be an increase in the number
of arguments passed to some methods.

Conformance

Given a method that does not satisfy the
law, how can you transform it so that it
conforms to the law? In an earlier paper,’
we described an algorithm to transform
any object-oriented program into an
equivalent program that satisfies the law’s
strict version,

There are other — but less automatic —
ways to achieve this goal that may help you
derive more readable or intuitive code.
They also may help you minimize the
number of arguments passed to methods
and the amount of code duplication. Two
such techniques are called lifting and
pushing. - .

Using the following recursive defini-
tion, we use these techniques to transform

IEEE Software

class Grammar is list void Grammar::parse (Symbol* rule_name)
repeat {Rule} {this —>look_up(rule_name) —> parse__details();}
end class Grammar.
Body* Grammar:look_up(Symbotl* rule_name)
class Rule has parts {.

body : Body .x:eturn rule —> look_up(rule_name) ~> get_body();
end class Rule. }
(a) void Body::parse__deiails()
{...}
(c)

(defmethod (Grammar :parse) (rule_name)
(send (send self :look_up rule_name) :parse_details))

" (defmethod (Grammar :look_up) (rule_name)

.(;end (send rule :look_up rule_name) :get_body))

(defmethod (Body :parse_details) ()
)
(b) ' (d)

Figure 8. Example code that violates the Law of Demeter: (a) class dictionary, (b) Flavors code, (¢) C++ code, and (d) its dependency
graph. .

(defmethod (Grammar :parse) (rule_name)
(send (send self :look_up rule_name) :parse_details))

(defmethod (Grammar :look_up) (rule_name)

(send rule :look_up rule_name))

(defmethod (Rule :parse_details) () 1 Grammar
.(.s.end self :get_body) ...) ’ 2
\
@ 4 Rule Body

void Grammar::look_up(Symbol* rule_name)
{this -> look_up(rule_name) —> parse_details():}

Rule* Grammar::look_up(Symbol# rule_name)
{... return rule ->look_up(rule_name);}

void Rule::parse_details()
{... this->get_body(); ...}

(b) ' (c)

Figure 8. Version of the Figure 5 éxample code transformed with the lifting technique 1o conform to the Law of Demeter: (a) Flavors
code, (b) C++ code, and (c¢) its dependency graph.

September 1989 45

class Grammar has parts
ruleList: RuleList

end class Grammar.

class RuleList is list
repeat {Rule}

end class RuleList.

class Rule has parts
body : Body

end class Rule.

(a)

(defmethod (Grammar :parse) (rule_name)

(send (send-self :look_up rule_name) :parse_details))

(defmethod (Grammar :look_up) (rule_name)
; returns object of type Rule -

i.s;:nd ruleList :look_up rule_name))
(defmethod (RuleList slook_up) (rule_name)
) |
(defmethod (Rule :parse_details) ()
)
(b)

void Grammar::parse(Symbol* rule_name)
{this => look_up(rule_name) —> parse_details();}

Rule* Grammar::look_up(Symbol* rule_name)

{...
ruleList-> look_up(rule_name);
' .
void RuleList::look_up (Symbol* rule_name)
{...}

void Rule::parse_details()
{...}

(c)

(d)

Figure 7. Example code that violates the Law of Demeter and that cannot be fixed with the lifting technique: (a) class dictionary, (b)

Flavors code, (¢) C++ codse, and (d) its dependency graph.

(defrﬁelhod (Grammar :parse) (rule_name)
(send self :look_up_parse rule_name))

(defmethod (Grammar :look_up_parse) (rule_name)
(send ruleList :look_up_parse rule_name))

(defmethod (RuleList :look_up_parse) (rule_name)
(send (send-self :look_up rule_name) :parse_details))

(a)
void Grammar::parse(Symbol* rule_name)
{this > look_up_parse(rule_name);}

void Grammar::look_up_parse(Symbol* rule_name)
{ruleList—> look_up_parse(rule_name);)

void RuleList::look_up_parse(Symbol* rule_name)
{this > look_up(rule_name) -> parse_details();}

(®)

Grammar

1

)
RuleList

(c)

Fligure 8. Version of the Figure 7 example code transformed with the pushing technique 1o conform to the Law of Demeter: (a) Flavors

code, (b) C++ code, and (¢) its dependency graph.

46

IEEE Software

Reproduced with permission of copyright owner. Further reproduction prohibited.

programsinto forms that satisfy the Law of
Demeter. The definition is that Bis a part
class of A if Bis an instance-variable class of
Aorif Bis a part class of an instance-vari-
able class of A,

Consider the following program that vi-
olates the law's strict version. In Flavors,
the method is

(defmethod (C:M) ()
(send (send self :ml) :m2))

while in C++ itis

void C::M()
{this~>m1 () ->m2();}
and Tis the class of the object rewurned by
ml. Tis nota preferred supplier class of M.
We distinguish two cases:
e Tisa partclass of C
e Cisapartclassof T.

Lifting. This technique is applicable in
the first case (T is a part class of (). The
idea is to make ml return an object of an
instance-variable or argument class of C
and to adjust m2 accordingly. Method »2
is lifted up in the class hierarchy, from
being attached to class T'to being attached
to an instance-variable class of C,

For example, suppose you want to parse
an input using some grammar. A gram-
mar is made up of a list of rules such as
that in Figure 5. This program fragment
uses one acquaintance class (class Bodyin
the method parse for Grammar) and is
represented by Figure Sband 5c.

The problem with the fragment is that
method look_up of Grammar returns an
object of type Body thatis not an instance-
variable type of Grammar. To transform
the first method into good style, you must
make the look_up method return an in-
stance of Rule and then you must adjust
parse_details. Figure 6 shows this modi-
fied version. This improved program frag-
ment uses no acquaintance class.

But thislifting approach does not always
work. Consider Figure 7. This program
fragment uses one acquaintance class
(class Rule in method parse of Grammar).
Here, you cannot transform the first
method into good style by lifting the re-
turn type of the look_up method.

Pushing. This technique is applicable in
both cases (T'is a part class of Cand Cisa

September 1989

Forms for popular Iatguages

To use the Law pf Demeter effectively, you must customize it to your language. Here are
forms we have derived for several popular object-oriented languages. For C++, wa give the
class form's strict version; for the other languages, we give the object form of the law. This
choiceis arbitrary, but for the statically typed languages C++ and Eiffel, the class form is most
useful because it can be checked by a modified compiler. Eiffel users will have little difficulty
in formulating the class form,

C++, class form’s strict version. in allmember functions Mof class C, you may use only
members (function and data) of the following classes and their base classes:

*C

« data-member classes of C,

«argumentclassesof M, - *

« classes whose constructor functions are called in M, or

+ the classes of global variables used in M.

Common Lisp Object System, object form. We assume that the CLOS user can deter-
mine for each generic lunction the number of method-selection arguments (not necessarily
all required ones) and that this number is part of the interface of the generic function. A
method-selection argument is an argument used to identify the applicable methods.

All function calls inside method Mmust use only the following objects as method selection
arguments:

* M's argument objects,

« immediate parts of method-selection arguments of M, or

+ an object that s either an object created directly by Mor an object in a global variable.

Eiffel, object form. In all calls of routines inside routine M, the entity object must be one of
the following objects:

« an argument object of M,

« an attribute object of the class in which Mis defined, or

» an object created directly by M.

Flavors, object form. In any method Mattached to class Cyou may send messages only
1o the following objects:

* M's argument objects,

* the instance variable objects of C, or

+ an object that is either an object created directly by M or an objectin a global variable.

Smalitalk-80, object form. In all message expressions inside method M the receiver
must be one of the following objects:

« an argument object of M, including objects in pseudovariables Self and Super,

* animmediate part of Self, or :

« an object thatis either an object created directly by M or an object in a global variable.

part class of 7, respectively). (The second
case is slightly more complicated because
it involves traveling up the object hierar-
chy, but the general technique is the same
as for the first case.) It is just a variation of
the top-down programming technique of
pushing the responsibility for doing the
work to a lower level procedure.

In the lifting example, a problem arose
because the Grammar class has the task of
sending the parse_details message. This

task is really the responsibility of RuleList,
which knows more about Rule details
than Grammar. Figure 8 shows an im-
proved design that does not use any ac-
quaintance classes.

The redesign has introduced an addi-
tional method. If you view list classes as
stable (for example, as is true in Small-
talk), there is no need for the redesign
and itis justified to keep the acquaintance
class.

47

