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1. Sets vs. prototypes: a philosophical dilemma 
with practical consequences 

Abstract 

A traditional philosophical controversy between representing 
general concepts as abstract sets or classes and representing 
concepts as concrete prowrypes is reflected in a controversy 
between two mechanisms for sharing behavior between 
objects in object oriented progrJmmtng languages. 
l ,~,~rance ,pUts the object world into c/asses, which encode 
behavior shared among a group of ins~,,ces, which represem 
individual membe~ of these sets. The class/instanee 
distinction is not needed if the alternative of asing prototypes 
is adopted. A prototype repre~ms the d4au/t behavior for a 
concept, and new objects can re-use part of the lw~wledge 
uored in the prototype by saying how the new object diHers 
from the prototype. The prototype approach seems to hold 
some advantages for representing default knowledge, and 
incrementally and dynamically modifying concepts. 
Delegation is the mechanism for implementing this in object 
oriented languages. After checking its idiosyncratic behavior, 
an object can forward a message to prototypes to invoke more 
general knowledge. Because class objects must be oreaw.d 
before their instances can be used. arid behavior can only be 
associar~l with classes, inheritance fixes the communication 
patterns between objects at instance creation dine. Because 
any object can be used as a prototype, and any messages can 
be forwarded at any time, delegation is the tno~ flexible and 
general of the two techniques. 
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How do people represent knowledge about generalizations 
they make from experience with concrete situations? 
Philosophers concerned with the theory of knowledge have 
debated this question, but as we shall see, the issue is not 
without practical consequences for the task of representing 
knowledge in object oriented systems. Because much of 
object oriented progrmuming involves constructing 
representations of objects in the real world, our mechanisms 
for storing and using real world knowledge get reflected in 
mechanisms for dealing with objects in computm" languages. 
We'll  examine how the traditional contmvorsy between 
representing concepts as sets versus representing concepts as 
prototypes gives rise to two mechanisms, inheritance and 
delesatlon, for sharing behavior between related objects in 
object oriented languages. 

When a person has experience in a particular situation, say 
concerning a particular elephant named Clyde. facts about 
Clyde can often prove useful when encountering another 
elephant, say one named Fred. If we have mental 
representations of a concept for Clyde, and a concept for 
Fred, the question then becomes: How do the representations 
of Clyde and Fred share knowledge? How can we answm" 
questions, such as Fred's color, number of less. size. etc. by 
reference to what we already know about Clyde? In the 
absence of any mechanism for sharing knowledge between 
related concepts, we'd have to repeat all the knowledge about 
Clyde in a representation of Fred. 

There are two points of view we can consider edop~g.  The 
first is based c~i the idea of abstract sets. Prom learning about 
Clyde, we can consmlct a concept of the set [or class] of 
e/ephants, which abstracts out what we befieve is true about 
all individual animals sufficiently similar m Clyde to be 
called elephants. The de__~dption of the set can enumm'ate all 
the "essential" properties of elephants. We can view Clyde as 
a member or instance of this class. In an object oriented 
sysu~,  the set approach involves creating an object to 
represent t h e s e t  of elephants, and establishing a link 
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representing the membership relation between the object 
representing Clyde and the set object. Since the description 
of the set represents what is true about all its members, we 
can answer questions about Clyde by referring to the 
description of the set. Establishing the same kind of 
membership link between Fred and the set of elephants 
enables Fred and Clyde to share some of the same 
knowledge. If Fred and Clyde share some additional 
properties, such as that of being Indian elephants, that are not 
shared by some other elephants, these can be embodied in a 
subclass object' which shares all the properties of the 
elephant set' adjoining the additional properties relevant to 
India. 

But there's an alternative point of view. We can consider 
Clyde to represent the concept of a prototypical elephant. If I 
ask you to "think of an elephant", no doubt the mental image 
of some particular elephant will pop to mind, complete with 
the characteristics of gray color, trunk, etc. If Clyde was the 
elephant most familiar to you, the prototypical elephant might 
be an image of Clyde himself. If I ask you a question such as 
"How many legs does an elephant have?", a way to answer 
the question is to assume that the answer is the same as how 
many legs Clyde has, unless there's a good reason to think 
otherwise. The concept of Fred can have a connection 
marking its prototype as Clyde, as a mechanism for sharing 
information between the two weighty pachyderms. The 
description of Fred can store any information that is unique to 
Fred himself. If I ask "How many legs does Fred have?', you 
assume the answer is the same for Fred as for Clyde, in the 
absence of any contrary evidence. If you then learn that Fred 
is a three-legged elephant, that knowledge is stored with Fred 
and is always searched before reference'to the prototype is 
made. 

2. P r o t o t y p e s  have  a d v a n t a g e s  fo r  i n c r e m e n t a l  
l e a r n i n g  o f  concep t s  

Thought the concept of a set has proven fruitful in 
mthematics, the prototype approach in some ways 
corresponds more closely to the way people seem to acquire 
knowledge from concrete situations. The difficulty with sets 
stems from their abstractness; people seem to be a lot better at 
dealing with specific examples first, then generalizing from 
them than they arc at absorbing general abstract principles 
fast, and later applying them in particular cases. Prototype 
systems allow creating individual concepts first, then 
generalizing them by saying what aspects of the concept are 
allowed to vary. Set-oriented systems require creating the 
abstract description of the set first, before individual instances 
can be installed as members. 

In mathematics, sets are defined either by enumerating their 
members, or by describing the unifying principles that 
identify membership in the set. We can neither enumerate all 
the elephants, nor are we good at making definitive lists of 

the essential properties of an elephant. Yet the major impetus 
for creating new concepts always seems to be experience with 
examples. If Clyde is our only experience with elephants, our 
concept of an elephant can really be no different than the 
concept of Clyde. After meeting other elephants, the 
analogies we make between concepts like Fred and Clyde 
serve to pick out the important characteristics of elephants. 

Prototypes seem to be better at expressing knowledge about 
defaults. If we assert grayness as one of the identifying 
characteristics of membership in the set of elephants, we can't 
say that there are exceptional white elephants without risking 
contradiction. Yet it is easy to say that Fred, the white 
elephant, is just like Clyde, except that he is white. As 
Wittgenstein observed, it is difficult to say, in advance, 
exactly what characteristics are essential for a concept. It 
seems that as new examples arise, people can always make 
new analogies to previous concepts that preserve some 
aspects of the "defaults" for that concept and ignore others. 

3. I n h e r i t a n c e  i m p l e m e n t s  sets ,  d e l e g a t i o n  
i m p l e m e n t s  p r o t o t y p e s  

Having set the stage with our philosophical discussion of the 
issues of concept representation, we turn now to how these 
issues affect the more mundane details of implementation of 
object oriented programming systems. 

Implementing the set-theoretic approach to sharing 
knowledge in object oriented systems is traditionally done by 
a mechanism called inheritance, fast pioneered by the 
language Simula, later adopted by Smalltalk, flavors and 
Loops, among others. An object called a class encodes 
common behavior for a set of objects. A class also has a 
description of what characteristics are allowed to vary among 
members of the set. Classes have the power to generate 
instance objects, which represent members of a set. All 
instances of a class share the same behavior, but can maintain 
unique values for a set of state variables predeclared by the 
class. To represent Clyde, you create a description for the 
class e l e p h a n t ,  with an instance variable for the elephant's 
name, values of which can be used to distinguish Clyde and 
Fred. A class can give rise m subclasses, which add 
additional variables and behavior to the class. 

Implementing the prototype approach to sharing knowledge 
in object oriented systems is an alternative mechanism called 
delegation, appearing in the actor languages, and several 
Lisp-based object oriented systems, such as Director [Kalm 
79], T [Rees 85], Orbit [Steels 82], and others. Delegation 
removes the distinction between classes and instances. Any 
object can serve as a prototype. To create an object that 
shares knowledge with a prototype, you construct an 
extension object, which has a list containing its prototypes, 
which m y  be shared with other objects, and personal 
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behavior idiosyncratic to the object itself. When an extension 
object receives a message, it first attempts to respond to the 
message using the behavior stored its personal pan. If the 
object's personal characteristics are not relevant for 
answering the message, the object forwards the message on to 
the prototyggs to see if one can respond to the message. This 
process of forwarding is called delegating the massage. Fred 

the elephant would be an extension object that stored 

behavior unique to Fred in its personal pan. and referenced 
the prototype Clyde in its shared part. 

4. Too l s  fo r  r e p r e s e n t i n g  b e h a v i o r  a n d  i n t e r n a l  
s t a t e  a r e  t he  b u i l d i n g  b locks  o f  object o r i e n t e d  
sy s t ems  

Each object oriented system must provide some linguistic 
mechanisms for defining the behavior of objects. The 
philosophy of object oriented programming is to use the 
object representation to encode both the procedures and data 
of conventional languages. Rather than define the procedural 
behavior or the data content of an object all at once, it is 
convenient to break both aspects of an object into a set of 
pans that can be accessed or modified individually by name. 

An object's internal state consists of vm, iables or 
ucqu~nmnces, which can be accessed in most object oriented 
systems by sending the object a message consisting of the 
variable's name. An object's procedure for responding to 
messages [in actors, we say its script] can be composed of a 
set of procedures called met~ts, each of which is specialized 
for handling only a certain subset of the messages the object 
receives, identified by name. Breaking up an object's state 
into named variables means that different portions of the state 
can be modified incrementally, without affecting the others. 
Breaking up an object's behavior into named methcda means 
that different portions of the behavior can be modified 
incrementally, without affecting the otben. The language 
must then provide ways of combining groups of methods and 
variables to form objects, and some means of allowing an 
object to share behavior [implemented as methods and 
variables] residing in previously defined objects. We will call 
these composite objects e x ~ m u .  These building blocks 
are represented in the illustration "Tools for sharln 8 
knowledge', with "icons" to be used in further discussion. 

mJ 

r 

O 
Many object oriented languages supply primitive linguistic 
mechanisms for creating objects with methods, variables and 
extensions. An alternative approach, which is advocated in 
the actor formalism, is to define methods, variables and 
extensions as objects in their own right, with their behavior 
determined by a message passing protocol among ther~ 
Obviously, an object representing a method cannot itself have 
methods, otherwise infinite recursion would result. Using 
simple objects ~mitive to the system, a variable is defined to 
be an object that remembers a name and a value, and 
responds to access and modification messages. A method 

responds only to those messages for which it is designed, 
rejecting others. Extension objects use delegation to forward 
messages from one part of the object to another to locate the 
appropriate response. 

Everyone who is already convinced of the utility of object 
oriented programming shouldn't have much trouble 
discernin 8 the advantages of using object oriented 
prognunming in the implementation of the knowledge sharing 
mechanisms. Foremost among them is the ability to define 
other kinds of objects which implement alternatives to the 
standard versions. Instead of an ordinary variable, one might 
like to have "active" variables that take action when changed. 
"read-only" variables, maybe even "write-only" variables, 
each of which could be defined as a different type of variable 
object. Alternative kinds of method objects can use differing 
strategies to combine behavior from contrihodng 
components, replacing the so-called "method combination" 
feature of the flavors system, and tll~d~g "multiple 
inheritance" easier. Different kinds of extension objects can 
make different efficiency u'adeoffs on the issue of copying 
venus sharing. 

Tool* for ~iharlna Knowlc~ln 

Methods 

Variables  

O~cts which have a 
procedm for respondin8 
to only to a particular 
kind of messa8 • 

Objem which u.ore a 
value and can n=peed 
to memql~ to d m ~  it 

Extensions 

\ 
,b 

I I  4. 

O b ~  which bare a 
pen~ud m of methods 
md vmtablu ud  lutve 
a pointer to,,, object 
with ,hind knowtedge 

The mechanisms for sharing knowledge in object oriented 
languages have now grown so complicated that it is 
impossible to reach universal conse~us on the best 
mechanism Using object oriented wogranuning itself to 
implement the basic b. i~iqg blocks of state and behavior is 
the best approach for allowing e x p e m t a t i o n  and co- 
existence among competing fonnnlisms. 
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5. A Logo example illustrates the differences 
between delegation and inheritance 

An example from the domain of Logo turtle graphics will 
illustrate how the choice betwecn delegation and inheritance 
fffec~ the control and data structures in an object oriented 
system. The delegation approach is illustrar~l in the figure 
dded "Skaring Knowledge with Delegatfon". The first thing 
we would like to do is create an object representing a pen,  
which remembers a location on the screen, and can be moved 
to a different location, drawing lines between the old and new 
locations. 

Sharlna Knowledge with I~ l~ . , t lnn 

~ / (so, zoo) '~::/~'/ %~!* " , Pen .t 

legMes t Pen at 
/ (leO, 200) 

A Turtle at 
(50, 200) with 
heading 90 

We start out by creating a prototypical pen  object, which has 
a specific location on the screen x=200, y=50, and behavior 
to respond to the draw message. When we would like to 
create a new pen object, we need only describe what's 
different about the new pen from the first one, in this case the 
x variable. Since the y is the same and behavior for the draw 
message is the same, these need not be repca~L 

The draw method will have to use the value of the x 
variable, and it's important that the correct value of x is used. 
When the draw method is delegsced fxom the new pen to the 
old pen, even though the draw method of the original pen is 
invoked, it should be the x of the new pen that is ~_~1 

To irsurc this, whenever a message is dclegatod, it must also 
pass along the object that originally rece/ved the messa~. 
This is called the SELF variable ill Simul~ Smslltalk 
flavors, although I find the term "self" a little misleading, 
since a method originally defined for one kind of object often 

winds up sending to a "self' of a different kind. In actor 
terminology, this object is called the client, since the 
object being delegated to can be thought of as performing a 
service for the original object. When a pen delegates a draw 
message to a prototypical pen, it is saying "I don't know how 
to handle the draw message. I'd like you answer it for me if 
you can, but if you have any further questions, like what is 
the value of my x variable, or need anything done, you 
should come back to me and ask." If the message is 
delegated further, all questions about the values of variables 
or requests to reply to messages are all referred to the object 
that delegated the message in the first place. 

Suppose now we'd like to create a t u r t l e  at the same 
location as the original pen, using the original pen as a 
prototype. How is a t u r t l e  cLifferent from a pen? A tunic 
shares some of the behavior of a pen, but has additional state, 
namely it's h e a d i n g .  Remembering a heading is essential 
in imnlementine the additional behavior of being able to 
respond to f o r w a r d  and back  messages by relying on the 
behavior of the response to the draw message. We may 
choose either to provide a new behavior for the turtle's draw 
operation, or rely on the draw operation provided by the 
original pen.  

Let's look at the same example with the inheritance approach 
to sharing knowledge as found in Simula and Smallteik, 
instead of delegation. This is ilIustratecl in the figure tided 
"Shoring knowledge with bdser~ance'. With inheritance, it is 
necessary to create objects representing classes. To make a 
pen, it is first necessary to make a pen c l a s s  object, which 
specifics both the behavior and the names of variables. 

Individual pens are created by supplying values for all the 
instance variables of the pen class, creating an instance 
object. Values for all the variables must be specified, even if 
they do not have unique values in the instance. No new 
behavior may be attached to an individual pen. Extending 
behavior is accomplished by a different operation, that of 
creating a new subclass. The step which goes from a instance 
to behavior stored in its class is performed by a "hard-wired" 
lookup loop in systems like Simula and Smallta]k, not by 
message passing, as in the delegation approach. 

To extend pens with new behavior, we must f'wst ereate a new 
class object. Here a t u r t l e  c l a s s  adds a new variable 
heading along w/th new behavior for the forward 
message. Notice that the variables from the pen class, x and 

y. were copiod down into the nm/c class. An individual 
nude instance must supply values for all the variables of its 
class, superclus, and so on. This copying leads to larger 
instance objects for classes further and further down the 
inheritance hierarchy. The lookup of methods, p e ~  by 
a primitive, unchangeable routine in~e_~_ of me___~ge passing, 
starts a search for mcthods in the class of an object, and 
proceeds up the subclass-to-supesclass chain. 
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How does a method inherited from the pen class to the turtle 
class access a method implemented in the turtle class? Since 
inheritance systems usually do not use message passing to 
communicate from subclass to superclass, they can't pass the 
turtle object along in the message, as we would in delegation. 

Sharine Knowledge with Inherit=nee 
I ~  ~ Pen Class 

,mltan~t[~ ~ I APen~al 

8ub4~lMll~ ~ 

A Pen st 
(100, Z00) 

Turtle Chum 

A Turtle at 
(SO, 2SO) with 
beadin8 90 

Instead, most use variable binding to bind a special variable 
s e l f  to the object that originally ~ceives a message. We 
shall see later on that this leads to trouble. 

In addition, inheritance systems also allow the "shortcut" of 
binding all the variables of an instance so that they can be 
referenced dix~fly by code running in methods as free 
variables. While this is sometimes more efficient, it short- 
circuits the message passing mechanism, defeating the 
independence of internal representation which is the hallmark 
of object oriented programming. Since variable references 
use different linguistic syntax than message sends, ff we 
wanted to change the coordinate representation from x and y 
to polar coordinates using r h o  and t h e t a ,  we'd have to 
change all the referencing methods. Sticking to message 
passing to access x and y means that even if the coordinates 
were changed to polar, we could still provide methods that 
compute the rectangular coordinates from the polar, and the 
change would be transparent. 

I hope these diagrams leave you with the impression that the 
delegation approach is simpler. To create two pens and a 
turtle, the inheritance approach requires the additional steps 

of creating pen class objects and turtle class objects. Also, 
wc have m have two different kinds of links between objects, 
the subclass link and the instance link, whereas the deles•riCh 
approach only requires a message passing relationship 
between the linked objects. 

6. A r e  i n h e r i t a n c e  a n d  d e l e g a t i o n  e q u a l l y  
p o w e r f u l ?  

• An obvious question to ask about the preceding discussion of 
inheritance and delegation is whether the two techniques have 
the same expressive power. The answer is no. 

Given delegation, it is easy to see how we could implement 
the functionality of inheritance. We can create specbl 
class objects that respond to messages to create new 
instances. We need only arrange that the class objects 
observe the copying of variables from the superclass chain 
when they create instances. Instance objects are given 
behavior that implements the lookup of  variables and 
methods, roughly as follows. 

I f  I ' m  an INSTJ~NCE o b j e c t  
and X = o a o £ ~  a messmgo  
w i t h  • SELECTOR and 8omo J U g G ~ H T S :  

Xf t h o  SELECTOR m a t ~ h o s  
ono  o f  t h o  VA1aL14BLB names  
i n  my CLASS [o= 8UPFJACLI~8, o t o .  ] ,  

X = o t u r n  t h e  c o r z ~ s p o n d i n g  v a l u o ,  
s t o = o d  £n m y s o l f .  

O t h o = w £ s o ,  X l o o k  f o r  • I T H O D  
whoso  MAMB m a t o h o 8  

t h e  8ELECTOR o f  t h e  m u n g o  
I n  t h o  l i s t  o f  lo¢~:]L I~TIE[OD8 

of  my C L U B .  
I f  X l a n d  ono ,  

Z b £ n d  t h o  v a r i a b l o  81LF t o  m¥8o2£  
[ tho ZNSTANCZ ob:)oot].  

Z b £ n d  t h o  namos o£  
t h e  v a = £ a b l o 8  o £  my CIJtSS, 

[and a l l  t h o  v a r £ a b l o 8  
up  t h o  8UPERCLA88 c h a i n ]  

t o  t h e £ =  v a l u o s  £n t ~ o  XNSTJLMCB. 
Thon I £ n v o k o  the  J~THOD. 

X£ t h o z l ' e  no  m o t h o d  
£n my CLA88's  BTIZ0D l £ s t ,  

I t r y  t o  f i n d  8 mot~hod 
£n t h o  8UPERCLA88, 
a n d  s o  on  up  t h o  8UPBRCLA88 ohaLn.  

How about the other way? Can inheritance implement 
delegation? Unfortunately noL The reason is s little tricky to 
understand, but it has to do with the treatmcat of the s e l f  
variable, which prevents a proper implementation of 
forwarding of messages. 

Often, a method for handling a message may need m ask the 
object that o r i i ~ d l y  received the message to perf~m some 
service. A turdc object which receives s b a c k  message 
would like to turn it into a f o r w a r d  message sent to the 
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same object, but negating the number of steps, so that b a c k  
100 is like f o r w a r d  - i 0 0 .  In delegation, when a method 
is delegated a message, it receives a component called the 
c l i e n t  in the d e l e g a t e  message, which has the object 
that originally received the message. 

In inheritance systems, a distinguished variable named s e l f  
is automatically bound to the recipient of a message during 
the execution of code for a method. When the method search 
proceeds from the original class to a superclass, the v~lue of 
the self variable doesn't change, so that superclass methods 
can reply to the message "as if '  they were methods of the 
original object. However, when a user sends a message, the 
self variable is always re-bound, so that it is generally not 
possible for the user to designate another object to reply in 
place of the object which originally received the message. 
True delegation cannot be implemented in these systems. 

An example, illustrated in the figure 'The SELF Problem" 
will make this clear. Suppose we would like to extend a 
particular C u t t l e  object to create a tunic which draws 
dashed instead of solid lines. The obvious way to do this is to 
have the dashed-Cuttle intercept the forward message 
and break up the in~rval into pieces, delegating • message to 

draw a series of shorter fines to a solid-line t u r t l e .  If, in 
an inheritance system, the dashed-line turtle simply sends • 
forward message to the solid-line turtle, then self will be 
bound to the solid-line turtle. Our e~lier implementation of 
back in terms of forward will then stop worldng, since • 
message to the dashed-line turtle to go back will try to send a 
f o r w a r d  message to s e l  f and draw a solid line insteadl 

Be careful about confusing this example with an alternative 
implementation using inheritance systems, which would 
create a d a s h e d - t u r t l e  c l a s s  as a subclass of 

s o l i d - t u r t l e  c l a s s .  While such an implementation 
could have the correct behavior with respect to the b a c k  
message, it still wouldn't count as an implementation of 
delegation. Remember, what we were Irying to do was to see 
if an object could forw~! messages to SOme other oJreody 
exLst~n& object. A dashed tunic instance wouldn't be 

forwarding any messages to an instance of solid turtle, since 
it would just inherit copies of the variables and methods from 
solid turtle. 

7. W h a t  a b o u t  e f f ic iency?  

The efficiency comparison between delegation and 
inheritance boils down to time/space IradeoHs. Some have 
argued that inheritance is more efficient because it requires 
fewer messages, but this comes at the cost of increasing the 
size of objects. Because variables are copied down from 
superelass to subclass, instances become larger and larger the 
farther down you get in the inheritance hierarchy. With 
delegalion, each object need only specify what's different 
about it from already existing prototypes, so the size of 

The ".KF.I.F" .robltm 

A Turtle that 
draws solid lines 

Wheo rm amla~l to SO BACK mine STEPS: 
I s~d a PORWARD n~ssage~ 
nesming the umber of STEPS, 
to "whoever Sot the BACK message" 
['SEtFI. 

A "rm~le that 
draws dadwd lia~ 

w b m  rm u k c d  to go PoRwARD, 
! sok the Trade who draws sc4id lines 
to SO PORWARD abort dimmcm. 
s l t am~ly  widl the pen up and down 
until the dimmce is covmed. 

objects does not necessarily depend on the depth in the 
hierarchy of shared objects. A look at the diagram illustrating 
the data slructures for pen and turtle objects will confirm 
inheritance's speed advantage and delegation's space 
advantage. 

Smaller objects make for faster object creation times, which 
can be important in systems that create large numbers of 
sm.U objects with short lifetimes, as opposed to small 
numbers of large objects with Ion s lifetimes. Reducing the 
size of objects may also improve the efficiency of virtual 
memory, by improving locality of refacnce,, allowing • 
higher density of frequently referenced objects in the primary 
memory. With a copying garbage collector, such as that 
described in [Lieberman and Hewitt 83], smaller objects can 
improve the efficiency of garbage collection by reducing the 
copying overhead. 

Implementors shouldn't get scared away by the search 
required to find methods and variables in the delegation 
approach. There's a simple,, effective trick for reducing the 
search time: ¢ n c h ~  the result of lookups. Caches are • way 
of trading space for speed, mitigating any ucsative effects of 
the speed-for-space mmeoff made by delegetion. Caches 
make • more effective use of the extra memm7 than 
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incttscriminately copying instance variables, because the 
memory they do use is sure to be in constant use. Caches 
don't restrict flexibility in interactively modifying the 
programming environment the way copying and compilation 
optimizations do. 

On conventional machines, probably no implementation of 
delegation is going to surpass variable lookup via registers 
and stack indexing for raw speed. But in their zeal to speed 
up variable lookup, implementors have forced decisions such 
as large object size on object-oriented languages, which 
adversely affect efficiency. Parallel machines with large 
address spaces will make the attractiveness of such register- 
oriented optimizations fade. 

Smalltalk[Krasner 84] reports a 93% "hit rate" for a 
moderately sized cache, 1000 objects. This means that any 
savings realized by inheritance over delegation in lookup 
could at best affect the remaining 7%. The best thing to do 
seems to be to keep a global cache, and invalidate it whenever 
any changes are made to the sharing hierarchy. A change will 
then slow the system down for the next 1000 messages, or 
whatever time the cache takes to fill up again. "Smarter" 
alternatives, such as per-object caches are probably not worth 
the extra trouble they would cause for incremental software 
modification, since the hit rate on a global cache is so high. 
Since both inheritance and delegation can be implemented 
almost equally efficient•y, it seems that there's little reason to 
sacrifice the extra flexibility of delegation on efficiency 
grounds. 

8. R e - d i r e c t i n g  I / 0  s t r e a m s  I l lu s t r a t e s  a n  
i m p o r t a n t  a p p l i c a t i o n  o f  d e l e g a t i o n  

Many object oriented systems make good use of object 
oriented programming techniques to implement input-output 
streams. Such a stream is an object that receives messages to 
input or output a character, a line 6f text, an expression. 
Systems usually have global variables designating the 
"cmrent" sources of input and output, which is by default 
bound to an object representing the stream of characters being 
displayed on the window of a screen of an interactive display. 

The name "sue•re" suggests the continual flow of characters 
or pixels between the user and the system. A very useful kind 
of object is that which implements a "dam" to divert the 
stream to other destinations, or "plumbing" which connects 
one stream with another. A dr/bb/e f//e is a sequential file 
maintaining a record on disk of the history of input-output 
interactions, to provide a more permanent recording of 
interactions than the ephemeral twinkling of pixeis. A dribble 
file can be implemented by replacing the stream which 
represents interactions at the terminal with one that writes 
them to disk also. 

The dribble stream needs the ability to masquerade as the 
terminal steam. It should have the same responses to all the 
messages that the ordinary terminal stream, and also provide 
the additional behavior of writing to the disk. The streams 
should be considered indistinguishable from the point of view 
of all programs which perform input-output 

To implement the dribble saw.am cleanly, we'd like it to be 
the case that the implementation of the dribble stream 
shouldn't have to know the precise details of the 
implementation of the stream which it is replacing. We 
might, for example, like to use a single dribble stream with 
both a stream to a directly connected interactive terminal and 
a stream interacting over a network. 

Can.  • d r i b b l e  s t r e a m  " m | ¢ a u e r t d e "  • c  • terlTdn M s t r e a m  :, 

Terminal Stream 

q k • Z / O  lg l :OSm•  plroteQged by qpteuee 11o l i  tLmtn, . . . . . .  , , I  4we t o  ~ l l Z l  ~i ~.I~. +/I'lL e I I 

~ 1  Disk Stream 

Oll l lq la te l  In  

Dribble Strum 

The implementation using delegation is convenient and 
straightforward. Messages which do character output are 
intercepted and the disk output is interposed. 
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If I'm • DRIBBLE-STREAM and 
I got any other message, 
I s:i.mply d e l e g a t e  t h e  message 

t o ' ¢ . h •  STREAM. 

It works to take care of only the single-character input and 
output messages because presumably all higher level 
messages like p r i n t  of a object are ultimately implemented 
in terms of the single-character versions. The method which 
performs a higher level print operation would ultimately send 
a character output message to its client [send to s e l f ] .  

Surprisingly, many inheritance systems make it difficult to 
implement this simple extension to the behavior of streams. 
One villain is the insistence of systems like flavors and 
Smalltalk on defming separate procedures for handling each 
type of message. Attempting to try to implement 
d r i b b l e - s t r e a m  as a subclass of s t r eam in systems of 
this ilk, we would find that there's no easy way to say "... and 
send all of the irrelevant messages through to the original 
stream". We would be forced to define one method to 
intercept the character output message to write to the disk, 
another to intercept the p r i n t  message, another to intercept 
the p r i n t - l i n e  message, and so on for every relevant 
message. Every time another message was ~d4_~ to the 
original stream, another method would have to be added to 
the d r i b b l e - s t r e a m ,  with tediously repetitive code. This 
also has the unfortunate effect of making the implementation 
of d r i b b l e - s t r e a m  now sensitive to the details of exactly 
which messages its embe~__ed stream accepts, inhibiting the 
ability to re-use the implementation with different types of 
sU~Jtms. 

Adding to the system the def'mition of a dribble-stream 
class or flavor would only give the ability to create new 
instances of dribble stream objects. It would not be possible 
to create a dribble stream which used a previously existing 
stream object. We'd then have to make new terminal 
streams, network streams, or other kind of streams, to be able 
to take advantage of the recording functionality. We 
shouldn't have to reproduce every kind of stream in the 
system just to have the dribble capabilityl 

If, instead, we attempt to make a dribble stream which holds 
the interaction su~un as one of its instance variables, we face 
the problem that there is no way for the dribble stream to 
cocmcfly forward a message like p r i n t  to the value of the 
variable. Because of the way these systems handle the s e l f  
variable, the forwarding of messages to the original stream 
won't work, for the same reason as in the turtle example. 
Sending a p r i n t  message to the instance variable would re- 
bind the s e l f  variable, so it would result in sending lower- 
level messages directly to the interaction stream and not to 
the dribble stream. So it seems as though any straightforward 
attempt to implement the dribble stream as a simple 
behavioral extension in many inheritance systems is doomed. 

9. Parallelism causes problems in inheritance 
systems because of the SELF variable 

There's,an additional problem in the case that the stream can 
accept messages from more than one parallel process. 
Because the stream holds modifiable state [such as a screen 
bi t••p] ,  the stream must be protected against t~ ing  errors 
resulting from two processes u~ing to write to the stream at 
the same time. A technique such as serializer objects 
[Hewitt, Attardi, Liebermen 79] or monitors must be used. 

This means that when the sueam receives a write message, it 
"locks", so that subsequent messages to the stream must walt 
in a queue for the stream to finish processing the first write 
message. 

Now, if a message to a serialized dribble sweam tries to 
process a p r i n t  message by sending a 
character-output ~ g e  to the self variable, it will 
find self bound to a serialized stream which is locked 

waiting for that very p r i n t  message to completel Dendlockl 

Since delegation uses message passing, when the dribble 
stream delegates to a tennimd sum•n, it can supply [as the 
client in the delegate message] an snser/~/zed version of 
itself, which can lnecess the message without waiting. 

I0. Delegation is more flexible than Inheritance 
f o r  c o m b i n i n g  b e h a v i o r  f r o m  m u l t i p l e  s o u r c e s  

Often, an object will want to utilize behavior that appears in 
more than one oth~ already exindng objecL The behavior 

that a system needs to implement a particular "rearms" can be 
packaged up as a single object, and somedmes an object will 
want to combine several of these features to implement its 
behavior. For example, window objects might have tides, 
borders, size adjustments, etc. A particular window object 
may choose some of these features and not others. Features 
may be independent of one another, or they nay interact 

The soludon in inheritance systems is to create a class object 
that mentions a list of other classes whose behavior it wishes 
to share. A l l  the methods and variables mentioned in any of 
the classes are inherited by the combined object. Systems 
like flavors allow optionally, on a per-n~thod basis, 
supplying an opdon for how to combine behavior when more 
than one component conuibutes a method. Typical opdons 
are to invoke all the contributing methods, impose an order 
on them, or return a list of the results. 

The problem with this style of combining behavior from 
multiple sources is that it fixes the pattern of communication 
between objects before the time an instance object is created. 
This limits the extent to which behavior from pp~viously 
existing objects can be used dynamically. By contrast, with 
delegation, the communication patterns can be determined at 
the time a message is received by an object. 
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With delegation, a Bathed for an extension object can simply 
access the prototypicai objects from which it deflve# behavior 
on the s h a r e d  List. A window which wants to invoke the 
draw action of a pre~ously de~ned r e c t a n g l e  object 
acting as its borders can simply delegate the draw message 
to the recmnBle object Thus delegation doesn't require 
"method combination" or an inventory of esoteric combining 
operations. The behavior is simply prooanmml in the 
method for the combined extension object. Should a 
programmer wish to build a library of common combination 
techniques, it is easily done by constructing variants on the 
sumdard method  object, so delegation could he made as 
concise as method combination in inhm'itanee systems. With 
inheritance, if a window class includes a "bo~ders m/x/n", the 
window instance does not contain an independent object 
representing its borders, so it is not possible to send a 
message to the borders of a window independent of the 
window object itself. The window class merely contains a 
m/xmre of the methods and variables inherited from the 
borders and other contributing components. 

In highly responsive in~ractlve systems, it is often necessary 
to wait until a message is received to determine how behavior 
from component objects will be utilized. Here's a simple 
example in which dynamic utilization of behavior from 
multiple sources is required, illustrated in the figure 
"Delegation allows communication patterns to be decided at 
run time". 

A bordered b i t m a p  can be built from a rectangle, 
which can display its borders, and a bLtmap which can 
transf~ an array of pixels to the screen. What should the 
draw response for the bordered bitmap be7 With 
inheritance, you create a hordered-bitmap class 
inhents both from rectangle and bitmap, saying that 
both draw methods are to be use~ Fu~. 

But now suppose we'd like to give the user the option of 
changing dynamically which behavior is used. When the 
bitmap is dragged across the screen, the u~n~= of the entire 
array on every mouse movement might be too slow, so it 
might be preferable to give the use~ tha option of just 
dragging the outline of the bitmap instead. A reasonable 
thing to do is to give the user an on-screen toggle switch to 
decide the behavior, and the user can potenl~dly change the 
behavior at any time. So the behavior of the bardered biamp 
cannot be decided before the object is =cmnd. With 
delelpuion, when the bordered bitmap gets a draw n~essage, 
it can decide whether to delegate the message to the rectangle 
object that it contains, or to the bitmap object, or both. 

lnh~tance s y s ~  are also plagued by what I call the 
one-Insurers c/ass prob£em. When systems are composed of 
l m ~  numhen of objects with slightly vmying behavior, you 
wind up having to ca'ente new class objects often just to have 
one or s few instances. It is necessary to cn'.ate ad-hoc 
classes such as "window w:Lth 8 wlde  b o r d e r  

tLmem roman f o n t  and no t f t l e " j n s t  tocombine 
features for a single inmnce. 

b h ,  l a l l n n  | l l e l n  enmmnn lee f l nn  lmtl@l.ns 

to he deemed st run rims 
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II. Delegation is advantageous for highly 
• Interactive, Incremental software development 

An important issue ~o consid= when evaluatin8 the aadco~  
between inheritance and delegation is the consequences for 
incremental software developmant. As we have seen above, 
inheritance tends to encourage copying of variables and 
methods while delegation encourages sharing. H a 
prototypicai object chanses behavior, then all objects which 
mention that protoOypo on their s h a r e d  list will 
automatically "feel" the change. H changes m~¢ ~ to an 
inheritance hierarchy, such as adding a new instance variable, 
or changin 6 the class sn'uctm'e, information copied from the 
old data slrucntrns may be rendered obsolete. Broadcasting 
the result of changes to copies puts a burden on the operations 
which m,1~. inc~menlal changes in the software 
environment. An ¢xumne example of Ibis ocenn in Ihe 
flavon system, whece a~bmply adding a method m 
v a n i l l a - f l a v o r ,  the root Of the inhea'itence hierarchy, 
~uJts in r a ~ m ~ o n  of eve~ flavor in the ~ s)smnl 
This effectively prohibits any smxliflcadons to objects near 
the top of  the inheriumce hiamchy. 

Though delegation has been the minority viewpoint in object 
orienl~! languages, it is slowly be(xNrnin~ ~ I I  
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important for its added power and flexibility. Part of the 
reason for neglect of the delegation approach has been 
historical. Simula, one of the first object oriented languages, 
adopted the inheritance technique. It fixed communicadon 
patterns between objects at compile time, as was appropriate 
for a compiled language of the Algol family. The specific 
mechanisms for this were then "inherited" by Smalltalk and 
others, without reconsidering whether the approach was still 
appropriate for an interpretive language in a more highly 
interactive programming environment. I hope the preceding 
discussion has convinced you that the approach of modeling 
concepts using prototypes and implementing behavior in 
object oriented languages using delegation has distinct 
advantages over the alternative point of view using classes 
and inheritance. 
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