Basics

Working and compiling code | 1.0]

Surface quality

Language Proper, idiomatic use of language. No while loop if foreach | 0.8
will do, etc. Generics. Proper use of standard library and
frameworks. No reimplementation of stdlib features.

Tools Integrated use of Eclipse, Subversion, automation using | 0.3
build scripts (incl. parser generator). Proper use of APIs
provided by tools. Unit test frameworks.

Style Consistency in indentation, coding convention and com- | 0.3
ments (JavaDoc). Code over comment. Comments for ra-
tionale.

Names Consistent naming convention. Intention revealing names. | 0.3
Small scopes, no name space pollution. Declarations close
to use. No mutable globals. Proper packaging.

Cruft No debug print statements, commented out code. No dead | 0.3
code. Short methods/functions. Small classes. No God
class.

Design Quality

Simplicity Low cyclomatic complexity. No convoluted designs. Ab- | 2.0
sence of boilerplate code. No work arounds to hide design
flaws. No unneeded indirections.

Encapsulation Programming against interfaces. List vs. ArrayList. | 2.0
Proper use of inheritance (is_a). No fragile base-classes.

Weak coupling, strong cohesion. Open for extension,
closed for modification.

Duplication “Once and only once”, DRY, single point of change. No | 1.5
parallel inheritance hiearchies. Factoring of methods.

Separation of concerns | Single responsibility. Proper packaging of classes. No | 1.5
cyclic dependencies. Sub systems/components.

Total:

[10.0 |

