
Basics
Working and compiling code 1.0
Surface quality
Language Proper, idiomatic use of language. No while loop if foreach

will do, etc. Generics. Proper use of standard library and
frameworks. No reimplementation of stdlib features.

0.8

Tools Integrated use of Eclipse, Subversion, automation using
build scripts (incl. parser generator). Proper use of APIs
provided by tools. Unit test frameworks.

0.3

Style Consistency in indentation, coding convention and com-
ments (JavaDoc). Code over comment. Comments for ra-
tionale.

0.3

Names Consistent naming convention. Intention revealing names.
Small scopes, no name space pollution. Declarations close
to use. No mutable globals. Proper packaging.

0.3

Cruft No debug print statements, commented out code. No dead
code. Short methods/functions. Small classes. No God
class.

0.3

Design Quality
Simplicity Low cyclomatic complexity. No convoluted designs. Ab-

sence of boilerplate code. No work arounds to hide design
flaws. No unneeded indirections.

2.0

Encapsulation Programming against interfaces. List vs. ArrayList.
Proper use of inheritance (is_a). No fragile base-classes.
Weak coupling, strong cohesion. Open for extension,
closed for modification.

2.0

Duplication “Once and only once”, DRY, single point of change. No
parallel inheritance hiearchies. Factoring of methods.

1.5

Separation of concerns Single responsibility. Proper packaging of classes. No
cyclic dependencies. Sub systems/components.

1.5

Total: 10.0


