
Software Construction
2011-2012

Tijs van der Storm (storm@cwi.nl)

Monday, January 9, 2012

mailto:storm@cwi.nl
mailto:storm@cwi.nl

What this course is
about

• You all know programming, right?

• But what is good code?

• How to reason about good code?

• Think about it.

Monday, January 9, 2012

This course is not about
• Data structures

• Algorithms

• Programming language X

• Paradigm X (though: OO)

• GUI programming

• Web applications

• Concurrency

• Performance

• Graphics programming

• Mathematics

• Computational
complexity

• ...

Monday, January 9, 2012

Uncle Bob*

*Robert Martin, http://cleancoder.posterous.com/software-craftsmanship-things-wars-commandmen

Monday, January 9, 2012

http://cleancoder.posterous.com/software-craftsmanship-things-wars-commandmen
http://cleancoder.posterous.com/software-craftsmanship-things-wars-commandmen

Uncle Bob*

*Robert Martin, http://cleancoder.posterous.com/software-craftsmanship-things-wars-commandmen

This course is not about the software
craftmenship movement...

Monday, January 9, 2012

http://cleancoder.posterous.com/software-craftsmanship-things-wars-commandmen
http://cleancoder.posterous.com/software-craftsmanship-things-wars-commandmen

Uncle Bob*

*Robert Martin, http://cleancoder.posterous.com/software-craftsmanship-things-wars-commandmen

This course is about not writing crap.

This course is not about the software
craftmenship movement...

Monday, January 9, 2012

http://cleancoder.posterous.com/software-craftsmanship-things-wars-commandmen
http://cleancoder.posterous.com/software-craftsmanship-things-wars-commandmen

Representative books

Monday, January 9, 2012

Learning goals

• Create good low level designs

• Produce clean, readable code

• Reflect upon techniques, patterns,
guidelines etc.

• Assess the quality of code

• Apply state of the art software
construction tools

Monday, January 9, 2012

Overview

• Lectures

• Theory

• Research paper

• Lab assignment

• Concluding

Monday, January 9, 2012

Lectures

Monday, January 9, 2012

Lectures

• Introduction (today)

• Syntax analysis

• Domain-specific languages

• Code quality

• Debugging

Monday, January 9, 2012

Guest lectures

• Jeroen van den Bos: DSL for digital
forensics

• Eelco Visser: Linguistic abstraction for the
Web

Monday, January 9, 2012

“Theory”

Monday, January 9, 2012

Two tests

• Online or on paper (not sure yet)

• No grade, but you must pass them

• “Immediate” grading

Monday, January 9, 2012

1st test: technique
• Bertrand Meyer, Applying "Design by Contract", 1992,

Meyer92.
• Karl J. Lieberherr, Ian M. Holland, Assuring Good Style for

Object-Oriented Programs, 1989,LieberherrHolland89.
• Robert C. Martin, The Open-Closed Principle, 1996,

Martin96.
• Ralph Johnson, Brian Foote, Designing reusable classes,

1988, JohnsonFoote88.
• Marjan Mernik et al. When and How to Develop Domain

Specific Languages, 2005,MernikEtAl05.

Monday, January 9, 2012

http://homepages.cwi.nl/~storm/teaching/reader/Meyer92.pdf
http://homepages.cwi.nl/~storm/teaching/reader/Meyer92.pdf
http://homepages.cwi.nl/~storm/teaching/reader/LieberherrHolland89.pdf
http://homepages.cwi.nl/~storm/teaching/reader/LieberherrHolland89.pdf
http://www.objectmentor.com/resources/articles/ocp.pdf
http://www.objectmentor.com/resources/articles/ocp.pdf
http://www.laputan.org/drc.html
http://www.laputan.org/drc.html
http://homepages.cwi.nl/~storm/teaching/reader/MernikEtAl05.pdf
http://homepages.cwi.nl/~storm/teaching/reader/MernikEtAl05.pdf

2 test: philosophy
• D. L. Parnas, On the criteria to be used in decomposing

systems into modules , 1972, Parnas72
• William R. Cook, On understanding data abstraction,

revisited, 2009, Cook09.
• Herbert Simon, The Architecture of Complexity, Simon62
• Carliss Y. Baldwin, Kim B. Clark, Modularity in the Design

of Complex Engineering Systems,BaldwinClark06
• Horst Rittel, Melvin Webber, Dilemmas in a General Theory

of Planning, RittelWebber84.

Monday, January 9, 2012

http://dx.doi.org/10.1145/361598.361623
http://dx.doi.org/10.1145/361598.361623
http://homepages.cwi.nl/~storm/teaching/reader/Cook09.pdf
http://homepages.cwi.nl/~storm/teaching/reader/Cook09.pdf
http://ecoplexity.org/files/uploads/Simon.pdf
http://ecoplexity.org/files/uploads/Simon.pdf
http://www.springerlink.com/content/0tg07k728282v543
http://www.springerlink.com/content/0tg07k728282v543
http://www.uctc.net/mwebber/Rittel+Webber+Dilemmas+General_Theory_of_Planning.pdf
http://www.uctc.net/mwebber/Rittel+Webber+Dilemmas+General_Theory_of_Planning.pdf

Research paper

Monday, January 9, 2012

Exercise in argumentation

• Paper: 3-5 pages

• Topics from predefined list

• Choose a position

• Argue for/against it

• Required: find 2 more papers in support of
your position

• Must be clear you’ve read all 4 papers

Monday, January 9, 2012

Structured programming with or without gotos?
• E.W. Dijkstra Goto considered harmful, 1968, Dijkstra68;
• D. Knuth, Structured Programming with go to statements, 1974,

Knuth74.
State Transactional Memory
• Simon Peyton Jones, Beautiful Concurrency, 2007, PeytonJones07.
• Calin Cascaval et al. Software Transactional Memory: Why is it Only

a Research Toy?, 2008,CascavalEtAl08.
• Bryan Cantrill and Jeff Bonwick, Real-world Concurrency, 2008,

CantrillBonwick08.
Internal vs external DSLs
• Marjan Mernik et al. When and How to Develop Domain Specific

Languages, 2005,MernikEtAl05.
• Martin Fowler, Implementing an Internal DSL, 2007 Fowler07.

Aspect-Oriented Programming
• Gregor Kiczales et al. Aspect-Oriented Programming, 1997,

KiczalesEtAl97.
• Robert E. Filman, Daniel P. Friedman, Aspect-Oriented Programming

is Quantification and Obliviousness, 2000, FilmanFriedman00.
Monday, January 9, 2012

http://homepages.cwi.nl/~storm/teaching/reader/Dijkstra68.pdf
http://homepages.cwi.nl/~storm/teaching/reader/Dijkstra68.pdf
http://homepages.cwi.nl/~storm/teaching/reader/Knuth74.pdf
http://homepages.cwi.nl/~storm/teaching/reader/Knuth74.pdf
http://homepages.cwi.nl/~storm/teaching/reader/PeytonJones07.pdf
http://homepages.cwi.nl/~storm/teaching/reader/PeytonJones07.pdf
http://homepages.cwi.nl/~storm/teaching/reader/CascavalEtAl08.pdf
http://homepages.cwi.nl/~storm/teaching/reader/CascavalEtAl08.pdf
http://homepages.cwi.nl/~storm/teaching/reader/CantrillBonwick08.pdf
http://homepages.cwi.nl/~storm/teaching/reader/CantrillBonwick08.pdf
http://homepages.cwi.nl/~storm/teaching/reader/MernikEtAl05.pdf
http://homepages.cwi.nl/~storm/teaching/reader/MernikEtAl05.pdf
http://homepages.cwi.nl/~storm/teaching/reader/Fowler07.pdf
http://homepages.cwi.nl/~storm/teaching/reader/Fowler07.pdf
http://homepages.cwi.nl/~storm/teaching/reader/KiczalesEtAl97.pdf
http://homepages.cwi.nl/~storm/teaching/reader/KiczalesEtAl97.pdf
http://homepages.cwi.nl/~storm/teaching/reader/FilmanFriedman00.pdf
http://homepages.cwi.nl/~storm/teaching/reader/FilmanFriedman00.pdf

Literate Programming in the 21st Century
• Bentley, Knuth and McIllroy, A Literate Program, 1986,

BentleyEtAl86.
• Knuth, Literate Programming, 1984, Knuth84.

Prototype-based vs class-based object-orientation
• James Noble, Brian Foote, Attack of the Clones, 2002,

NobleFoote02.
• Henry Lieberman, Using Prototypical Objects to Implement Shared

Behavior in Object Oriented Systems, 1986, Lieberman86.

Design by Contract
• Bertrand Meyer, Applying "Design by Contract", 1992, Meyer92.
• Jean-Marc Jézéquel, Bertrand Meyer, Design by Constract: The

Lessons of Ariane, 1997,JezequelMeyer97.

Fluent or Law-of-Demeter?
• Martin Fowler, FluentInterface, 2005, Fowler05.
• Karl J. Lieberherr, Ian M. Holland, Assuring Good Style for Object-

Oriented Programs, 1989,LieberherrHolland89.
Monday, January 9, 2012

http://homepages.cwi.nl/~storm/teaching/reader/BentleyEtAl86.pdf
http://homepages.cwi.nl/~storm/teaching/reader/BentleyEtAl86.pdf
http://homepages.cwi.nl/~storm/teaching/reader/Knuth84.pdf
http://homepages.cwi.nl/~storm/teaching/reader/Knuth84.pdf
http://homepages.cwi.nl/~storm/teaching/reader/NobleFoote02.pdf
http://homepages.cwi.nl/~storm/teaching/reader/NobleFoote02.pdf
http://homepages.cwi.nl/~storm/teaching/reader/Lieberman86.pdf
http://homepages.cwi.nl/~storm/teaching/reader/Lieberman86.pdf
http://homepages.cwi.nl/~storm/teaching/reader/Meyer92.pdf
http://homepages.cwi.nl/~storm/teaching/reader/Meyer92.pdf
http://homepages.cwi.nl/~storm/teaching/reader/JezequelMeyer97.pdf
http://homepages.cwi.nl/~storm/teaching/reader/JezequelMeyer97.pdf
http://homepages.cwi.nl/~storm/teaching/reader/Fowler05.pdf
http://homepages.cwi.nl/~storm/teaching/reader/Fowler05.pdf
http://homepages.cwi.nl/~storm/teaching/reader/LieberherrHolland89.pdf
http://homepages.cwi.nl/~storm/teaching/reader/LieberherrHolland89.pdf

Lab assignment

Monday, January 9, 2012

Lab assignment

Monday, January 9, 2012

Super Awesome
Fighters (SAF)

• A DSL for specifying fighter bots

• You will implement this language
chicken
{
 kickReach = 9
 punchReach = 1
 kickPower = 2
 punchPower = 2
 far [run_towards kick_low]
 near [run_away kick_low]
 near [crouch punch_low]
}

Monday, January 9, 2012

Part 1: front end

• Parser: text to abstract syntax tree (AST)

• AST hierarchy

• Type checker

• Two variants:

• Java

• Rascal (but: you have to do a little more)

Monday, January 9, 2012

Java

• Select suitable parse generator: Rats!,
JavaCup, JavaCC, Jacc, ANTLR etc.

• Design AST class hierarchy (required!)

• Visitor/interpreter for checking well-
formedness

Monday, January 9, 2012

Rascal

• Rascal is designed for making DSLs:

• syntax definition

• AST data types

• type checking

• desugaring

• IDE features

• You have to do all of this.

Monday, January 9, 2012

Part 2: Back end

• Implement a game semantics

• Graphical simulation of fighting games

• This part is realized in Java

• (interface from Rascal through XML)

• See course info for more detail

• Bonus: make a compiler

Monday, January 9, 2012

Honors track

• For excellent students

• Implement the Language Workbench
Competition 2012 assignment

• ... in Rascal

• Close collaboration with CWI (= me)

• See course info for details

Monday, January 9, 2012

DSL for piping and
instrumentation

Monday, January 9, 2012

Two DSLs

• Describing piping and instrumentation
models

• A controller language to specify how to
control the behavior

Monday, January 9, 2012

Modeling language

Monday, January 9, 2012

Controller language
(mock up)

Monday, January 9, 2012

Required deliverables

• Syntax, checker, IDE features etc. of both
DSLs

• Visualization of the Piping models

• Simulation of Piping and/or controller
specifications

• Possibly: code generator

• See http://www.languageworkbenches.net/

Monday, January 9, 2012

http://www.languageworkbenches.net/
http://www.languageworkbenches.net/

Subversion

• Assignment to be completed individually

• (except honors track)

• http://code.google.com/p/sea-of-saf/

• Use of this repository is required!

• Email me (storm@cwi.nl) for access

Monday, January 9, 2012

http://code.google.com/p/sea-of-saf/
http://code.google.com/p/sea-of-saf/
mailto:storm@cwi.nl
mailto:storm@cwi.nl

Grading of lab
assignments

• Functionality

• Tests

• Simplicity

• Modularity

• Layout and style

• Separation of concerns

Monday, January 9, 2012

Grading of lab
assignments

• Functionality

• Tests

• Simplicity

• Modularity

• Layout and style

• Separation of concerns

Sim
pli

city
Monday, January 9, 2012

Some advice up-front

• Naming, layout, indentation

• Encapsulation, modularity, separation of
concerns, reuse

• Don’t repeat yourself (DRY)

• Library and tool selection and use

• Unit testing

Monday, January 9, 2012

More advice

• Use asserts sensibly

• No global, static, non-final variables

• You ain’t going to need it (YAGNI)

• Avoid premature optimization

• Use comments for rationale

• Working and compiling code

Monday, January 9, 2012

Grading (ctd.)

• First part: your grade is indicative

• hint to improve your code

• Second part: we review all code

• this will be your final grade for the lab

• Grading is on-site: you show your code

• Grade form will be made available

Monday, January 9, 2012

Passing this course

• Be present at all lectures

• Pass the 2 “theory” tests

• Successfully complete lab assignments

• = beautiful, working code

• Write a good research paper

• Final grade: (Paper + FinalLab) / 2

Monday, January 9, 2012

Schedule
Date Lecture Tests/Grading

9-1 Introduction

16-1 Grammars and parsing

23-1 Domain-specific languages Part I

30-1 Code quality Test I

6-2 Debugging

13-2 DSL Digital Forensics Test II

20-2 Linguistic abstraction for the Web Part II

27-2 Extra paper writing time* due: 4-3-12

*I’ll be in London during this week
Monday, January 9, 2012

Concluding

• All information is in Blackboard under
Course Information

• Primary contact = me (storm@cwi.nl)

Monday, January 9, 2012

mailto:storm@cwi.nl
mailto:storm@cwi.nl

What’s next

• study SAF

• get access to svn

• select parser generator + study it

• setup you project using Eclipse

• start reading papers

• start programming!

Monday, January 9, 2012

