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Wouter M. Koolen

Recap:

• Mix loss (now with non-uniform regret bounds)

Non-stationary environments

• Switching (Fixed Share algorithm)

Online Convex Optimisation

Experts
AA, Hedge

Bandits
UCB, EXP3

Non-stationarity
Fixed Share

(Strongly) Convex Losses
Online Gradient Descent (2x)

Exp-concave Losses
Online Newton Step

Probabilistic Classes
Norm. Max. Likelihood

Boosting
AdaBoost
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Mix loss prediction (w. non-uniform regret objective)

For t = 1, 2, . . .

1. Play wt ∈ 4K .

2. See `t ∈ RK .

3. Incur mix loss ˆ̀
t := − ln

(∑K
k=1 w

k
t e
−`kt
)

.

Definition 1. The regret w.r.t. expert k ∈ [K] after T ≥ 0 rounds is

RkT :=

T∑
t=1

(
ˆ̀
t − `kt

)
.
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The Aggregating Algorithm with prior

Definition 2. The Aggregating Algorithm with prior π ∈ 4K plays

wkt =
πke−

∑t−1
s=1 `

k
s∑K

j=1 π
je−

∑t−1
s=1 `

j
s

(AA-π)

(so w1 = π and wkt+1 =
wkt e

−`kt∑K
j=1 w

j
te

−`jt
)

Theorem 3. The regret of AA−π w.r.t. expert k ∈ [K] satisfies

RkT ≤ − lnπk

Proof: part of Homework 10.
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Non-stationary data

1. Switching, Tracking, Shifting

best expert: 2 3 1 2

T

What if no single expert is good for all T rounds, but data can be split into
4 blocks with different best experts?
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Non-stationary data

So far we have been looking at regret compared to a fixed expert/action.

RT = max
k∈[K]

T∑
t=1

(
ˆ̀
t − `kt

)
.

But what if we do not expect a single expert to be good for all data?

Definition 4. Let ξ ∈ [K]T be a sequence of experts. The sequence regret
w.r.t. ξ is defined by

Rξ :=

T∑
t=1

(
ˆ̀
t − `ξtt

)
Question: Can we keep the sequence regret small w.r.t. every sequence?
Or, at least, w.r.t. many interesting sequences?
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Fixed Share (defined by reduction)

Starting with K experts, create an “explosion” [K]T of expert sequences.

Fix switching rate α ∈ [0, 1]. Run the AA with prior π ∈ 4[K]T and

losses `t ∈ (−∞,∞]
[K]T defined by

πξ :=
1

K

T∏
t=2

1− α if ξt−1 = ξt
α

K−1 if ξt−1 6= ξt

`ξt := `ξtt

Based on the AA predictions wξt ∈ 4[K]T , Fixed Share plays

wkt :=
∑

ξ∈[K]T :ξt=k

wξt (FS)
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Crucial equality:

− ln
∑
ξ

wξt e
−`ξt

︸ ︷︷ ︸
mix loss of AA

= − ln
∑
k

wkt e
−`kt

︸ ︷︷ ︸
mix loss of FS

So we can directly apply AA regret bound to obtain FS regret bound.
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Fixed Share: Regret Bound

Application of the AA regret bound, (Theorem 3) gives
Theorem 5. Fixed Share ensures that the regret on each sequence ξ with
B ≤ T contiguous blocks is at most

Rξ ≤ − lnπξ

= lnK + (B − 1) ln(K − 1)︸ ︷︷ ︸
expert labelling cost

−(B − 1) lnα− (T −B) ln(1− α)︸ ︷︷ ︸
switching location cost

.

Corollary 6. If we know the number of blocks B in advance, we can
optimise the bound by setting α = B−1

T−1 to find

Rξ ≤ lnK + (B − 1) ln(K − 1) + (T − 1)H

(
B − 1

T − 1

)
,

where H(α) = −α lnα− (1− α) ln(1− α) is the binary entropy.
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Fixed Share: Computation Collapses

Seems we need to maintain exponentially many weights. But prior πξ is
Markov

Theorem 7. The weights of Fixed Share with switching rate α can be
computed incrementally in O(K) time per round (same as AA) as

wkt+1 = (1− β) wkt e
−`kt∑

j w
j
t e
−`jt

+
β

K

where β = α K
K−1 .

Proof: part of Homework 10.

We see that the Fixed Share update is a weighted combination of the
incremental AA update and the uniform prior.
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Conclusion

Technique for adapting to changing environment

• Fixed Share for switching between experts

Conceptual message:

• Adapting to changing environment is not automatic

• Modelling with explicit sequences
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