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Chapter 2

Ex. 2.3, hint: Rx cannot be taken to have exactly probability epsilon if
there are point-masses.

Chapter 6

Lemmas A.5 and 6.10 only show the polynomial bound on the growth
function for m > d + 1, but Theorem 6.11 uses that bound for m > d.
This can be fixed by replacing the long proof of Lemma A.5 with the much
simpler proof from the book of Anthony and Bartlett that was shown in
the lecture, which holds for m > d.

Theorems 6.7, 6.8 and Chapter 28 require VC-dimension d > 1, and ad-
ditional care is also required for existence of a truly universal constant
C because ¢ and J may be arbitrarily close to 1, so then we cannot
hide any additive constants. E.g. there may not exist any C’ such that
In(4/6) <= C’In(1/6). This is no problem if we replace In(1/4) in all
theorem statements by In(e/d).

Theorem 6.11 is missing a “for all h € H” statement.

The proof of Theorem 6.11 uses Hoeffding’s inequality for independent
random variables, but it is only proved for i.i.d. random variables in the
appendix. This is not a real problem, because the proof for Hoeffding’s
inequality also goes through in the same way for independent random
variables.

Ex. 6.11: log should probably be log,

Chapter 7

Definition 7.1 and below: The definition of agnostic PAC-learning is miss-
ing the requirement that the learner is proper (i.e. hg € H). It is unclear



from the definition of non-uniform learnability whether there is such a
requirement, but we can assume that there is.

e Theorem 7.2: Second half of proof (“For the other direction...”) is incor-
rect: it is argued that H, is PAC-learnable and hence must have finite
VC-dimension by the fundamental theorem of PAC-learning. But the ar-
gument that H,, is PAC-learnable is incomplete for two reasons:

1. PAC-learnability is a requirement for all €, and §, but here there is
only an argument for § = 1/7 and € = 1/8.

2. PAC-learnability requires a proper learner, which is not guaranteed
for the learning algorithm A.

The fix for both these issues is that, instead of referring to the fundamen-
tal theorem, the proof should refer to Corollary 6.4, which solves both
problems. In addition, to get the desired implication from Corollary 6.4,
it is necessary to take smaller values 6 < 1/7 and € < 1/8 (with strict
inequality). Any choice will do; for instance, 6 = 1/14 and e = 1/16.

Chapter 26

e Lemma 26.6: the inequality actually holds with equality.
e Lemma 26.9: ¢, (Y, ) should be ¢, (am).

Chapter 28

e Section 28.1: the bound in (28.1) can easily be strengthened to
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i.e. without the d inside the logarithm. This can be done by replacing the
last step in the analysis, where the book appeals to Lemma A.2, by the
argument from homework 5, which upper bounds the concave logarithm

In(m) by its tangent at a well-chosen point mo: In(m) < In(mo) + *20.



