Machine Learning Theory 2022
Lecture 1

Tim van Erven

» Intro

> Statistical Decision Theory

» Empirical Risk Minimization and Overfitting

» PAC-Learnability for finite classes, realizable case
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Multiclass Classification Example: Images
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Y = image class, X = vector with pixel values

Krizhevsky, Sutskever, Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NeurlPS 2012
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Binary Classification Example: Spam Detection
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Y = ham/spam
X = (Xi1,...,Xs0000): Xi is word count for i-th word from dictionary

Spam image by Qwertyxp2000 from https://commons.wikimedia.org/wiki/File:Spam_can.png
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https://commons.wikimedia.org/wiki/File:Spam_can.png

Regression Example: Covid Cases from Wastewater
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X = Xj; = Log-viral load in wastewater

Vallejo et al., Highly predictive regression model of active cases of COVID-19 in a population by screening wastewater viral load,
medRxiv preprint, 2020
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Regression Example: Prostate Cancer

Predict level of prostate specific antigen (PSA) for men with
prostate cancer

Y = log of PSA
X =(Xi,...,Xo7): 97 clinical measures, including

» log cancer volume
» log prostate weight
» Gleason score

> ...

Example from Hastie, Tibshirani, Freedman, Elements of Statistical Learning, 2nd edition, 2009
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Scope of the Course I: Supervised vs Unsupervised

In the Course:
Supervised Machine Learning: Learn to predict response Y for input X
based on examples of desired responses. E.g.

> Image classification: X = image, Y = class
> Spam classification: X = e-mail, Y = ham/spam
» Covid regression: X = viral load, Y is nr. of active cases

» Cancer regression: X = clinical measures, Y = antigen amount

Not in the Course:
Unsupervised Machine Learning: ldentify structure in inputs X. E.g.

» Group data into clusters

» Dimensionality reduction

7/19



Scope of the Course Il: Batch and Online

We cover two learning models:

Part I,
» Data is obtained as one big batch
» Then learn a predictor

» Deploy predictor once, to be used unchanged on new data

Part II,
» Data arrives sequentially over time
» Continuously make predictions for incoming data

» Use new data to keep improving predictor
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Scope of this Course lll: Foundations vs Practice

What is Missing:
» Not: programming, real data, getting rich and famous quickly. ..

» By itself this course is !

... But We Make Up for It:
» Deep understanding via
» When is learning possible and what are the fundamental limitations?

» Close connections to statistics, game theory, information theory,
optimization, ...
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Supervised Learning

Sample of training data: S = <Y1> R (
X3

Y;: class/response variable
X, € RY: feature vectors

Goal: Learn function hs : X — ) from
of functions

Ym
Xm

)

(teacher shows us
desired response
Y; for input X;)

H = some set
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Supervised Learning

Y, Y (teacher shows us
Sample of training data: S = (X > I (Xm> desired response
1 m Y; for input X;)
Y;: class/response variable
X, € RY: feature vectors

Goal: Learn function hs : X — Y from H = some set
of functions

Evaluate hs on test data:
» New X from same source
> Predict corresponding Y by Y = hs(X)

Assume (Y'> independent samples from same probability distribution D

X;

Avoid further assumptions on D!
(So D can be very complicated)
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Supervised Learning: Regression

< (8) (%)

YeRisa . E.g.

» Y = Covid-19 cases
X = (X1, Xp): Xy = viral load, X, = population size

Linear Regression (H = affine functions):

d
hwo(X) =b+ (w, X) =b+ > wX;

i=1
Can assume b = 0 w.l.o.g. to simplify notation, because:
w' = (bywy,...,wy) X' =(1,X,...,X4)

hw/(X/) = <w’7X') = hw’b(X)
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Supervised Learning: Classification

S Y1 Y
(Xl) T <X,,,>
Yisa

» E.g. Y € {Ham,Spam} or Y € {Mite, Leopard, Mushroom}

Binary Classification (with two classes):
» Can e.g. map "Ham" — —1, “Spam” — +1

» So assume Y € {—1,+1} or sometimes Y € {0,1}
without loss of generality (w.l.o.g.)

Halfspaces (H = Linear Predictors):

hw,p(X) = sign(b+ (w, X)) € {-1,+1}

12/19



Overfitting
(why machine learning is non-trivial)

The #1 Beginner’'s Mistake:

» Try many machine learning methods and fine-tune their settings
until the number of mistakes on the training data S is small

» What can go wrong?

Poll:
1. Trying many methods and settings can take a very long time.
2. Few mistakes on S does not guarantee good learning.

3. You should only use methods taught in this course.
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Overfitting
(why machine learning is non-trivial)

The #1 Beginner’'s Mistake:

» Try many machine learning methods and fine-tune their settings
until the number of mistakes on the training data S is small

» What can go wrong?

» Suppose X is uniformly distributed in [—1, +1]
> Y =+1if X3 >0; Y =—1 otherwise.
Y; for smallest i € {1,..., m} such that X = X
hs(X) = : o { J
—1 if no such i exists

Perfect on training data S,
but probability of mistake = 1/2 on new (X, Y) from D!
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Statistical Decision Theory I: Loss

Measure error by c4(h, X,Y)

Classification (0/1-loss counts mistakes):

0 if h(X)

—y
fh, X, Y) = {1 if h(X)#£Y

Regression (Squared Error):

((h, X,Y)=(Y — h(X))?

Other choices possible!
(Depends on what is important in your application)
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Statistical Decision Theory Il: Risk

Lp(h ):E[e(h X,Y) for(X,Y)~D

Ls(h) = Ze (h, Xi,Y))

Bayes Optimal Predictor: fp € arg min; Lp(f)
» Unknown, because risk depends on D
> No learning alg can do better (by definition)

Examples for Classification:
> Lp(h) = Pr(h(X) #Y)
» Ls(h) = fraction of mistakes on the training data S
> fp(X) = argmax, Pr(Y =y | X) is most likely class
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Statistical Decision Theory Il: Risk

Lp(h ):]E[E(h X,Y) for(X,Y)~D

Ls(h) = Zz (h, X, Y))

Bayes Optimal Predictor: fp € arg min; Lp(f)
» Unknown, because risk depends on D
> No learning alg can do better (by definition)

Empirical Risk Minimization (ERM): f; € argmin, 4, Ls(h)
> Minimize (known) instead of risk (unknown)
» Restrict to ‘H to prevent overfitting

Choice of H is a modeling decision,
made before seeing the data!
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No Overfitting for (Multiclass) Classification
Definition ( )

Exists h* € H that perfectly predicts Y (with probability 1):
Pr(h*(X)=Y)=1.

Huge simplification:
> Y = h*(X) without any noise
» We were lucky enough to include h* in H
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No Overfitting for (Multiclass) Classification
Definition ( )

Exists h* € H that perfectly predicts Y (with probability 1):
Pr(h*(X)=Y)=1.

Huge simplification:

> Y = h*(X) without any noise

» We were lucky enough to include h* in H
Theorem (First Example of PAC-Learning)

Assume H is finite, realizability holds. Choose any § € (0,1), € > 0.
Then, for all m > m%@, ERM over H guarantees

LD(hs) <e

with probability at least 1 — 6.

NB Lower bound on m does not depend on D or on h*!

PAC learning: probably approximately correct
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Proof (handwritten)

Recall that Lp(h) = Pr(h(X) # Y)

‘Bad” hypotheses: Hg ={h € H:Pr(h(X)#Y) > ¢}
ERM only selects a bad hypothesis h if Ls(h) = 0.

So sufficient to show that

Pr(exists h € Hg : Ls(h) = 0) < 4.

Lemma (Union Bound)

For any two events A and B, Pr(A or B) < Pr(A) + Pr(B).

Hence
Pr(exists h € Hp : Ls(h < > Pr(Ls(h
heHg
<D (=TS H|(1 )" < [H]e
heHp

This is guaranteed to be at most § if m > M.
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Close Relation to Statistics, But...

Stats:
> Estimate , with uncertainty quantification

» Follow rigorous procedures or results are nonsense

Machine Learning;:
» Estimate parameters that
» Possible under weaker assumptions/more complicated models!

» Can always estimate risk on a test set, even for crazy learning
algorithm — cowboy mentality can work!

» (Fast!) algorithms
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ML vs Stats (Handwritten)
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