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Multiclass Classification Example: Images

Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

In the left panel of Figure 4 we qualitatively assess what the network has learned by computing its
top-5 predictions on eight test images. Notice that even off-center objects, such as the mite in the
top-left, can be recognized by the net. Most of the top-5 labels appear reasonable. For example,
only other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
there is genuine ambiguity about the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to consider the feature activations induced
by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
the training set that are most similar to each of them according to this measure. Notice that at the
pixel level, the retrieved training images are generally not close in L2 to the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Euclidean distance between two 4096-dimensional, real-valued vec-
tors is inefficient, but it could be made efficient by training an auto-encoder to compress these vectors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect
that it will help, especially if we obtain enough computational power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video
sequences where the temporal structure provides very helpful information that is missing or far less
obvious in static images.

8

Y = image class, X = vector with pixel values

Krizhevsky, Sutskever, Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NeurIPS 2012
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Binary Classification Example: Spam Detection

?
Y = ham/spam
X = (X1, . . . ,X50 000): Xi is word count for i-th word from dictionary

Spam image by Qwertyxp2000 from https://commons.wikimedia.org/wiki/File:Spam_can.png
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Regression Example: Covid Cases from Wastewater
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Figure 9. Scatterplot of the logarithm of the viral load measured in WWTP Bens and the 

estimated number of COVID-19 active cases before (A) and after (B) removing the 

three outliers detected. The linear fit (red line) and the confidence band (blue shaded 

area) are also included. 
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Y = Active

number of

Covid-19 cases

X = X1 = Log-viral load in wastewater

Vallejo et al., Highly predictive regression model of active cases of COVID-19 in a population by screening wastewater viral load,
medRxiv preprint, 2020
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Regression Example: Prostate Cancer

Goal: Predict level of prostate specific antigen (PSA) for men with
prostate cancer

Y = log of PSA
X = (X1, . . . ,X97): 97 clinical measures, including

▶ log cancer volume

▶ log prostate weight

▶ Gleason score

▶ . . .

Example from Hastie, Tibshirani, Freedman, Elements of Statistical Learning, 2nd edition, 2009

6 / 19



Scope of the Course I: Supervised vs Unsupervised

In the Course:
Supervised Machine Learning: Learn to predict response Y for input X
based on examples of desired responses. E.g.

▶ Image classification: X = image, Y = class

▶ Spam classification: X = e-mail, Y = ham/spam

▶ Covid regression: X = viral load, Y is nr. of active cases

▶ Cancer regression: X = clinical measures, Y = antigen amount

Not in the Course:
Unsupervised Machine Learning: Identify structure in inputs X. E.g.

▶ Group data into clusters

▶ Dimensionality reduction
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Scope of the Course II: Batch and Online

We cover two learning models:

Part I, Batch Learning:

▶ Data is obtained as one big batch

▶ Then learn a predictor

▶ Deploy predictor once, to be used unchanged on new data

Part II, Online Learning:

▶ Data arrives sequentially over time

▶ Continuously make predictions for incoming data

▶ Use new data to keep improving predictor
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Scope of this Course III: Foundations vs Practice

What is Missing:

▶ Not: programming, real data, getting rich and famous quickly. . .

▶ By itself this course is too theoretical!

. . . But We Make Up for It:

▶ Deep understanding via beautiful concepts and proofs

▶ When is learning possible and what are the fundamental limitations?

▶ Close connections to statistics, game theory, information theory,
optimization, . . .
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Supervised Learning

Sample of training data: S =

(
Y1

X1

)
, · · · ,

(
Ym

Xm

)
(teacher shows us
desired response
Yi for input Xi )

Yi : class/response variable
Xi ∈ Rd : feature vectors

Goal: Learn function hS : X → Y from hypothesis class H = some set
of functions

Evaluate hS on test data:

▶ New X from same source

▶ Predict corresponding Y by Ŷ = hS(X)

Assume

(
Yi

Xi

)
independent samples from same probability distribution D

Avoid further assumptions on D!
(So D can be very complicated)
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Supervised Learning: Regression

S =

(
Y1

X1

)
, · · · ,

(
Ym

Xm

)
Y ∈ R is a continuous variable. E.g.

▶ Y = Covid-19 cases
X = (X1,X2): X1 = viral load, X2 = population size

Linear Regression (H = affine functions):

hw,b(X) = b + ⟨w,X⟩ = b +
d∑

i=1

wiXi

Can assume b = 0 w.l.o.g. to simplify notation, because:

w′ = (b,w1, . . . ,wd) X ′ = (1,X1, . . . ,Xd)

hw′(X ′) = ⟨w′,X ′⟩ = hw,b(X)
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Supervised Learning: Classification

S =

(
Y1

X1

)
, · · · ,

(
Ym

Xm

)
Y is a categorical variable

▶ E.g. Y ∈ {Ham,Spam} or Y ∈ {Mite, Leopard,Mushroom}

Binary Classification (with two classes):

▶ Can e.g. map “Ham” 7→ −1, “Spam” 7→ +1

▶ So assume Y ∈ {−1,+1} or sometimes Y ∈ {0, 1}
without loss of generality (w.l.o.g.)

Halfspaces (H = Linear Predictors):

hw,b(X) = sign(b + ⟨w,X⟩) ∈ {−1,+1}
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Overfitting
(why machine learning is non-trivial)

The #1 Beginner’s Mistake:

▶ Try many machine learning methods and fine-tune their settings
until the number of mistakes on the training data S is small

▶ What can go wrong?

Poll:

1. Trying many methods and settings can take a very long time.

2. Few mistakes on S does not guarantee good learning.

3. You should only use methods taught in this course.
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Overfitting
(why machine learning is non-trivial)

The #1 Beginner’s Mistake:

▶ Try many machine learning methods and fine-tune their settings
until the number of mistakes on the training data S is small

▶ What can go wrong?

▶ Suppose X is uniformly distributed in [−1,+1]2

▶ Y = +1 if X1 ≥ 0; Y = −1 otherwise.

hS(X) =

{
Yi for smallest i ∈ {1, . . . ,m} such that X = Xi

−1 if no such i exists

Perfect on training data S ,
but probability of mistake = 1/2 on new (X,Y ) from D!

No better than random guessing!
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Statistical Decision Theory I: Loss

Measure error by loss function: ℓ(h,X,Y )

Classification (0/1-loss counts mistakes):

ℓ(h,X,Y ) =

{
0 if h(X) = Y

1 if h(X) ̸= Y

Regression (Squared Error):

ℓ(h,X,Y ) = (Y − h(X))2

Other choices possible!
(Depends on what is important in your application)
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Statistical Decision Theory II: Risk

Risk: LD(h) = E[ℓ(h,X,Y )] for (X,Y ) ∼ D

Empirical Risk: LS(h) =
1

m

m∑
i=1

ℓ(h,Xi ,Yi )

Bayes Optimal Predictor: fD ∈ argminf LD(f )

▶ Unknown, because risk depends on D
▶ No learning alg can do better (by definition)

Examples for Classification:

▶ LD(h) = Pr(h(X) ̸= Y )

▶ LS(h) = fraction of mistakes on the training data S

▶ fD(X) = argmaxy Pr(Y = y | X) is most likely class
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Statistical Decision Theory II: Risk

Risk: LD(h) = E[ℓ(h,X,Y )] for (X,Y ) ∼ D

Empirical Risk: LS(h) =
1

m

m∑
i=1

ℓ(h,Xi ,Yi )

Bayes Optimal Predictor: fD ∈ argminf LD(f )

▶ Unknown, because risk depends on D
▶ No learning alg can do better (by definition)

Empirical Risk Minimization (ERM): fs ∈ argminh∈H LS(h)

▶ Minimize empirical risk (known) instead of risk (unknown)

▶ Restrict to hypothesis class H to prevent overfitting

Choice of H is a modeling decision,
made before seeing the data!
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No Overfitting for (Multiclass) Classification

Definition (Realizability assumption)

Exists h∗ ∈ H that perfectly predicts Y (with probability 1):
Pr(h∗(X) = Y ) = 1.

Huge simplification:
▶ Y = h∗(X) without any noise
▶ We were lucky enough to include h∗ in H

Theorem (First Example of PAC-Learning)

Assume H is finite, realizability holds. Choose any δ ∈ (0, 1), ϵ > 0.

Then, for all m ≥ ln(|H|/δ)
ϵ , ERM over H guarantees

LD(hS) ≤ ϵ

with probability at least 1− δ.

NB Lower bound on m does not depend on D or on h∗!

PAC learning: probably approximately correct
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Proof (handwritten)
Recall that LD(h) = Pr(h(X) ̸= Y )
‘Bad” hypotheses: HB = {h ∈ H : Pr(h(X) ̸= Y ) > ϵ}
ERM only selects a bad hypothesis h if LS(h) = 0.
So sufficient to show that

Pr(exists h ∈ HB : LS(h) = 0) ≤ δ.

Lemma (Union Bound)

For any two events A and B, Pr(A or B) ≤ Pr(A) + Pr(B).

Hence

Pr(exists h ∈ HB : LS(h) = 0) ≤
∑
h∈HB

Pr(LS(h) = 0)

≤
∑
h∈HB

(1− ϵ)m ≤ |H|(1− ϵ)m ≤ |H|e−ϵm

This is guaranteed to be at most δ if m ≥ ln(|H|/δ)
ϵ .
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Close Relation to Statistics, But...

Stats:

▶ Estimate true parameters, with uncertainty quantification

▶ Follow rigorous procedures or results are nonsense

Machine Learning:
▶ Estimate parameters that predict well

▶ Possible under weaker assumptions/more complicated models!

▶ Can always estimate risk on a test set, even for crazy learning
algorithm → cowboy mentality can work!

▶ (Fast!) algorithms

18 / 19



ML vs Stats (Handwritten)

A

Risk

↳ Ch)

e

÷÷÷:÷÷÷÷÷÷: i.
ML also

t ML happy ,
happy stats not

happy
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