Machine Learning Theory 2022
Lecture 10

Wouter M. Koolen

Download these slides now from elo.mastermath.nl!

Online Convex Optimisation

» Gradient Descent for Convex Losses
» Online to Batch Conversion
» Gradient Descent for Strongly Convex Losses @

homework roulette
in the break


https://elo.mastermath.nl

Recap
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Overview of Second Half of Course

Boosting
AdaBoost

Bandits
UCB, EXP3
Reinforcement Learning

(Strongly) Convex Losses
Online Gradient Descent (2x)
Exp-concave Losses
Online Newton Step

Online Convex Optimisation

Probabilistic Classes
Norm. Max. Likelihood

Material: course notes and selection of sources on MLT website.
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https://www.cwi.nl/~wmkoolen/MLT_2022/

Recap: Finite Classes

So far we have seen learning “finite sets":
Our learning algorithms behave like the best among K strategies.
> K-Experts setting
> Mix loss : Aggregating Algorithm
» Dot loss : Hedge algorithm
» K-armed bandit settings

» Adversarial bandit : EXP3
» Stochastic bandit : UCB
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Outlook: Beyond the Finite

What if we want to compete with sets?
» Can we?
> How?

In each case, lower bounds grow with K: In K, VTIhK, VTKInK,
K/AIn T. So hopeless in the K — oo case.

Today: compete with sets of actions, parameterised such
that the loss is a convex function of the action.
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Convexity Review
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Convex Functions | : definition

15 —— convex f

1.0 —— chord upper bound

-1.0 -0.5 0.5 1.0

Fix a convex set U C R¥.
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Convex Functions | : definition

15 —— convex f

1.0 —— chord upper bound

-1.0 -0.5 0.5 1.0

Fix a convex set U C R¥.

Definition
A function f : U — R is convex if for all x,y € U and weights 6 € [0, 1],

f(0x+ (1-0)y) < 0f(x)+ (1—06)f(y).
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Convex Functions | : definition

20
5 — convex f
1.0 >/ —— chord upper bound
i
-0.5 0.5 1.0

-1.0

Fix a convex set U C R¥.

Definition
A function f : U — R is convex if for all x,y € U and weights 6 € [0, 1],

f(0x+ (1-0)y) < 0f(x)+ (1—06)f(y).

Extends to arbitrary mixtures: f(E[X]) < E[f(X)] (Jensen).
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Convex Functions |l : tangent bound

—— convex f

tangent lower bound

Fact
A differentiable function f : U — R is convex iff for all x,y € U

fly)—f(x) > (y—z, Vi(x))
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Convex Functions |l : tangent bound

— convex f
1.0
tangent lower bound

-1.0 -0.5 [ 0.5 1.0

Fact
A differentiable function f : U — R is convex iff for all x,y € U

fly)—f(x) > (y—z, Vi(x))

Symmetrically, (y — x, Vf(y)) > f(y)— f(x).
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Convex Functions |1l : sub-gradient

—— convex f
tangent lower bound
—— another tangent lower bound

—— a third tangent lower bound

Fact (Sub-gradient)
For any convex f : U — R, possibly non-differentiable, and point x € U,
there always exists some vector g € RY such that for all y € U

fly)—f(xz) > (y —x,g)

Any such vector g is called a (of f at x).
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Convex Functions |1l : sub-gradient

—— convex f
tangent lower bound
another tangent lower bound

—— a third tangent lower bound

Fact (Sub-gradient)

For any convex f : U — R, possibly non-differentiable, and point x € U,
there always exists some vector g € RY such that for all y € U

f(y) - f(z) > (y —=,9)
Any such vector g is called a (of f at x).
The gradient of a differentiable function is a sub-gradient.

We will abuse notation and denote sub-gradient by Vf(x).
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Online Convex Optimisation
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Online Convex Optimisation

General yet simple sequential decision problem.
Fix a convex set U C RY.

Protocol

Fort=1,2,...

» Learner chooses a point w; € U.

» Adversary reveals convex loss function f; : U — R.
» Learner’s loss is fi(w;)
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Online Convex Optimisation

General yet simple sequential decision problem.
Fix a convex set U C RY.

Protocol

Fort=1,2,...

» Learner chooses a point w; € U.

» Adversary reveals convex loss function f; : U — R.
» Learner’s loss is fi(w;)

Objective:
Regret w.r.t. best point after T rounds:
T

Rr = max) (fi(we) - fi(u))
t=1
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Example loss functions

Setting

loss function fi(u)

Hedge setting
Point prediction
Regression

Logistic regression
Hinge loss
Investment

Offline optimisation

uTl,;

w — ¢ ]®

(uTae — y0)?

In (14 e vwTa)
max{0,1 — y,uTx,}
—In(uTz,)

f(u)
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Online Gradient Descent (OGD)

Let U be a closed convex set containing 0.

Definition
Online Gradient Descent with learning rate n > 0 plays

w; =0 and w1 = My (wy — nVi(w;))

where My (w) = argmin,, o, ||lu — w|| is the projection onto U.
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Online Gradient Descent (OGD)

Theorem
Let |Vfi(u)|| < G and ||u|| < D for all w € U. Then

T

1
fd —_ < —_
Rr = nggd (Rlw) — () < o

D?+ 2762
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Online Gradient Descent (OGD)

Let |Vfi(u)|| < G and ||u|| < D for all w € U. Then

T
1 n
R = = S —— 2 =7 2
T meax tgl (ft('wt) ft(u)) 5 D* + 5 G

Corollary

Tuning n = # results in

Ry < DGVT
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Pythagorean Inequality

Lemma (Pythagorean Inequality)

Fix a closed convex set U CRY. Let x € U,y € RY and
S _ ST
9 = Mu(y) = argminju —y|

Then
A2 A 2 2
le =gl + g —-yl° < llz—yl

NB: not to be confused with triangle inequality
lz -yl <llz—9gl+ g -yl
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Proof of GD regret bound |

Fix any uw € U. We have

f(we) — fi(u) < (wi —u, Vi(w))

Moreover,
[wes — ull® = My (we — nVA(we)) — ul
Pyth.Ineq. 2
< lwe = Vi (we) — ull
= [lwe — ul)? = 2n(w, — u, VA (w)) + n?|| Vh(w,)|?
Hence

2 2
[we — ul|” — |lwes — ull

<wl’ - u, vfl’(wt)> S 2’[7

+ 2 VE(wr)
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Proof of GD regret bound Il

Summing over T rounds, we find

;
Z (fe(we) — fe(u)) < Z(wtfu,Vft(wt)}

t=1 t=1

T
||wt - U||2 — ||wt+1 - U||2 +g Z”vf(w )”2
2 22 (Wt

M~

telescopes
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Online to Batch Conversion
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Online to Batch Conversion
Goal: obtain an estimator w1 with small expected excess risk.

CE_[E[f(wr) - f(u)]| < small

where the training set fi, ..., fr and the test sample f are drawn i.i.d.
and u* optimises the risk u — E¢[f(u)].
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Online to Batch Conversion
Goal: obtain an estimator w1 with small expected excess risk.

E

ot IEi:[’r(wT)—"—(U*)] < small

f
where the training set fi, ..., fr and the test sample f are drawn i.i.d.
and u* optimises the risk u — E¢[f(u)].

Idea: use online learning algorithm. Given training sample f, ..., fr, the
algorithm picks wy, ..., wt. Let us define the average iterate estimator

T
E Wy.
t=1

N 1
wr =

=l
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Online to Batch Conversion
Goal: obtain an estimator w1 with small expected excess risk.

E

ot IE::[’r(wT)—"—(U«*)] < small

,f;

where the training set fi, ..., fr and the test sample f are drawn i.i.d.
and u* optimises the risk u — E¢[f(u)].

Idea: use online learning algorithm. Given training sample f, ..., fr, the
algorithm picks wy, ..., wt. Let us define the average iterate estimator

T

. 1

wr = E Wy.
t=1

=l

Theorem

An online regret bound Rt < B(T) implies

A -
iidﬂ,.E.,fnf[f(wT)_f(u )] < T
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Online to Batch Proof

E
id fi, ..., fr, f

id f1,..., fr,f
=1

Ly . B(T)

s fof 7Z(ﬁ(wt) fi(u*))| < —
ok =1

The first step is convexity of f. The last step uses that f and f; have the
same distribution (and w; is not a function of f;).
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Online Strongly Convex Optimisation
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Structure

What if | know more about my setting than convexity of the loss
function? Can | learn faster?
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Strongly Convex Case

15

10 —— strongly convex f

tangent lower bound

—— improved quadratic lower bound

Definition

L
o
|
I
o
o
o
o

A function f : U — R is strongly convex to degree o > 0 if

flu) = f(w) > (u—w,Vi(w))+ 7 u—wl|
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Strongly Convex Case

—— strongly convex f
tangent lower bound

—— improved quadratic lower bound

A function f : U — R is strongly convex to degree o > 0 if

flu) = f(w) > (u—w,Vi(w))+ 7 u—wl|

Example: f(w) = [|w — x|
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Strongly Convex Case

—— strongly convex f
tangent lower bound

—— improved quadratic lower bound

A function f : U — R is strongly convex to degree o > 0 if

flu) = f(w) > (u—w,Vi(w))+ 7 u—wl|

Example: f(w) = [|w — x|

Idea: could this extra knowledge help in the regret rate?

23/28



Online Gradient Descent
with time-varying learning rate

Definition (OGD with time-varying learning rate)

w; = 0 and wipy = My (we —0:Vhi(w:))
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Online Gradient Descent
with time-varying learning rate

Definition (OGD with time-varying learning rate)

w; = 0 and wipy = My (we —0:Vhi(w:))

Theorem

|

For a-strongly convex loss functions, OGD with learning rate n; =
ensures

at
2
R < —

a(l—l—InT).
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Proof |

We start with

2 2
|lwerr —ul|® = ||Ny (we — eV (we)) — ul|
Pyth.Ineq.

< lwe — 9V (w,) — 'u,H2
= flw:— U||2 = 2ne(wr — u, Vhi(we)) + anVﬂ(wt)||2

So that

fr(we) — fi(u)

(07
< (we - w, Vh(we) — 5w — ul?

2 2 2
we — ul|” — |Jwers — ul|” + 72|V (w)|

2w — ulf?
2 t

- 2n;
B S 5% el H A O
21 2 20, )
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Proof I

Summing over rounds gives

T
Z wt_ft

IN

T 2
5 <|wt P (1 - a) lweys —uf
t=1

2771» 2 2771‘

’
— (1 - ‘“) 3 e — ul? (1
2m 2 — 2n

2 T 2
_ s —ul” 3 1ell Vr(we) |
27]7‘ 2

Key idea for telescoping is to cancel coefficient on ||w,

Vf, i
Ll Vw)] )

2

—ul in the sum:
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Proof Il

So
1

N+1 = 1T
Lta
Mt

A good starting point (cancelling the first term) is 7y = L. This leads
to n; = .. We then find

2ot

)
Vi (w G2

S flwe) — i) < Z” k< &)

t=1
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Conclusion

Tools for learning in convex settings.
» Guaranteed robustness against adversarial losses
> Efficient

» Building block for

» Learning in non-convex settings (AdaGrad for DNN)
> Learning in games

» Non-convex games (GANs)

>
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