Machine Learning Theory 2022 Lecture 10

Wouter M. Koolen

Download these slides now from elo.mastermath.nl!

Online Convex Optimisation

- Gradient Descent for Convex Losses
- Online to Batch Conversion
- Gradient Descent for Strongly Convex Losses

Recap

Overview of Second Half of Course

Material: course notes and selection of sources on MLT website.

Recap: Finite Classes

So far we have seen learning "finite sets": Our learning algorithms behave like the **best** among *K* strategies.

- ► K-Experts setting
 - ► Mix loss : Aggregating Algorithm
 - Dot loss: Hedge algorithm
- K-armed bandit settings
 - ► Adversarial bandit : EXP3
 - ► Stochastic bandit : UCB

Outlook: Beyond the Finite

What if we want to compete with infinite sets?

- Can we?
- ► How?

In each case, lower bounds grow with K: $\ln K$, $\sqrt{T \ln K}$, $\sqrt{TK \ln K}$, $K/\Delta \ln T$. So hopeless in the unstructured $K \to \infty$ case.

Today: compete with **continuous** sets of actions, parameterised such that the loss is a **convex** function of the action.

Convexity Review

Convex Functions I: definition

Fix a convex set $\mathcal{U} \subseteq \mathbb{R}^d$.

Convex Functions I: definition

Fix a convex set $\mathcal{U} \subseteq \mathbb{R}^d$.

Definition

A function $f:\mathcal{U}\to\mathbb{R}$ is convex if for all $x,y\in\mathcal{U}$ and weights $\theta\in[0,1]$,

$$f(\theta x + (1-\theta)y) \leq \theta f(x) + (1-\theta)f(y).$$

Convex Functions I: definition

Fix a convex set $\mathcal{U} \subseteq \mathbb{R}^d$.

Definition

A function $f:\mathcal{U}\to\mathbb{R}$ is convex if for all $x,y\in\mathcal{U}$ and weights $\theta\in[0,1]$,

$$f(\theta x + (1-\theta)y) \leq \theta f(x) + (1-\theta)f(y).$$

Extends to arbitrary mixtures: $f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)]$ (Jensen).

Convex Functions II: tangent bound

Fact

A differentiable function $f:\mathcal{U} \to \mathbb{R}$ is convex iff for all $x,y \in \mathcal{U}$

$$f(y) - f(x) \geq \langle y - x, \nabla f(x) \rangle$$

Convex Functions II: tangent bound

Fact

A differentiable function $f:\mathcal{U} o \mathbb{R}$ is convex iff for all $oldsymbol{x}, oldsymbol{y} \in \mathcal{U}$

$$f(y) - f(x) \ge \langle y - x, \nabla f(x) \rangle$$

Symmetrically, $\langle y-x, \nabla f(y) \rangle \geq f(y) - f(x)$.

Convex Functions III: sub-gradient

Fact (Sub-gradient)

For any convex $f: \mathcal{U} \to \mathbb{R}$, possibly non-differentiable, and point $x \in \mathcal{U}$, there always exists some vector $g \in \mathbb{R}^d$ such that for all $y \in \mathcal{U}$

$$f(y) - f(x) \ge \langle y - x, g \rangle$$

Any such vector g is called a sub-gradient (of f at x).

Convex Functions III: sub-gradient

Fact (Sub-gradient)

For any convex $f: \mathcal{U} \to \mathbb{R}$, possibly non-differentiable, and point $x \in \mathcal{U}$, there always exists some vector $g \in \mathbb{R}^d$ such that for all $y \in \mathcal{U}$

$$f(y) - f(x) \ge \langle y - x, g \rangle$$

Any such vector g is called a sub-gradient (of f at x).

The gradient of a differentiable function is a sub-gradient.

Convex Functions III: sub-gradient

Fact (Sub-gradient)

For any convex $f: \mathcal{U} \to \mathbb{R}$, possibly non-differentiable, and point $x \in \mathcal{U}$, there always exists some vector $g \in \mathbb{R}^d$ such that for all $y \in \mathcal{U}$

$$f(y) - f(x) \ge \langle y - x, g \rangle$$

Any such vector g is called a sub-gradient (of f at x).

The gradient of a differentiable function is a sub-gradient.

We will abuse notation and denote any sub-gradient by $\nabla f(x)$.

Online Convex Optimisation

Online Convex Optimisation

General yet simple sequential decision problem.

Fix a convex set $\mathcal{U} \subseteq \mathbb{R}^d$.

Protocol

For t = 1, 2, ...

- ightharpoonup Learner chooses a point $w_t \in \mathcal{U}$.
- ▶ Adversary reveals convex loss function $f_t : \mathcal{U} \to \mathbb{R}$.
- ightharpoonup Learner's loss is $f_t(w_t)$

Online Convex Optimisation

General yet simple sequential decision problem.

Fix a convex set $\mathcal{U} \subseteq \mathbb{R}^d$.

Protocol

For t = 1, 2, ...

- ▶ Learner chooses a point $w_t \in \mathcal{U}$.
- ▶ Adversary reveals convex loss function $f_t : \mathcal{U} \to \mathbb{R}$.
- ▶ Learner's loss is $f_t(w_t)$

Objective:

Regret w.r.t. best point after T rounds:

$$R_T = \max_{\boldsymbol{u} \in \mathcal{U}} \sum_{t=1}^T (f_t(\boldsymbol{w}_t) - f_t(\boldsymbol{u}))$$

Example loss functions

Setting	loss function $f_t(u)$
Hedge setting	$u^{\intercal}\ell_t$
Point prediction	$\left\ oldsymbol{u}-oldsymbol{x}_{t} ight\ ^{2}$
Regression	$(u^\intercal x_t - y_t)^2$
Logistic regression	$\ln\left(1+e^{-y_toldsymbol{u}^{\intercal}oldsymbol{x}_t} ight)$
Hinge loss	$\max\{0,1-y_t oldsymbol{u}^\intercal oldsymbol{x}_t\}$
Investment	$-\ln(oldsymbol{u}^\intercal oldsymbol{x}_t)$
Offline optimisation	f(u)

Online Gradient Descent (OGD)

Let \mathcal{U} be a closed convex set containing $\mathbf{0}$.

Definition

Online Gradient Descent with learning rate $\eta > 0$ plays

$$oldsymbol{w}_1 = oldsymbol{0}$$
 and $oldsymbol{w}_{t+1} \ = \ \Pi_{\mathcal{U}} \left(oldsymbol{w}_t - \eta
abla f_t(oldsymbol{w}_t)
ight)$

where $\Pi_{\mathcal{U}}(w) = \arg\min_{u \in \mathcal{U}} \lVert u - w \rVert$ is the projection onto \mathcal{U} .

Online Gradient Descent (OGD)

Theorem

Let
$$\|\nabla f_t(u)\| \leq G$$
 and $\|u\| \leq D$ for all $u \in \mathcal{U}$. Then

$$R_T = \max_{\boldsymbol{u} \in \mathcal{U}} \sum_{t=1}^{I} (f_t(\boldsymbol{w}_t) - f_t(\boldsymbol{u})) \leq \frac{1}{2\eta} D^2 + \frac{\eta}{2} TG^2$$

Online Gradient Descent (OGD)

Theorem

Let $\|\nabla f_t(u)\| \leq G$ and $\|u\| \leq D$ for all $u \in \mathcal{U}$. Then

$$R_T = \max_{u \in \mathcal{U}} \sum_{t=1}^{T} (f_t(w_t) - f_t(u)) \le \frac{1}{2\eta} D^2 + \frac{\eta}{2} TG^2$$

Corollary

Tuning $\eta = \frac{D}{G\sqrt{T}}$ results in

$$R_T \leq DG\sqrt{T}$$

Pythagorean Inequality

Lemma (Pythagorean Inequality)

Fix a closed convex set $\mathcal{U} \subseteq \mathbb{R}^d$. Let $x \in \mathcal{U}, y \in \mathbb{R}^d$ and

$$\hat{\boldsymbol{y}} = \Pi_{\mathcal{U}}(\boldsymbol{y}) = \arg\min_{\boldsymbol{u} \in \mathcal{U}} \|\boldsymbol{u} - \boldsymbol{y}\|^2.$$

Then

$$\|x - \hat{y}\|^2 + \|\hat{y} - y\|^2 \le \|x - y\|^2$$

NB: not to be confused with **triangle inequality** $\|x-y\| \le \|x-\hat{y}\| + \|\hat{y}-y\|$.

Proof of GD regret bound I

Fix any $u \in \mathcal{U}$. We have

$$f_t(\boldsymbol{w}_t) - f_t(\boldsymbol{u}) \leq \langle \boldsymbol{w}_t - \boldsymbol{u}, \nabla f_t(\boldsymbol{w}_t) \rangle$$

Moreover.

$$egin{aligned} \left\| oldsymbol{w}_{t+1} - oldsymbol{u}
ight\|^2 &= \left\| \Pi_{\mathcal{U}} \left(oldsymbol{w}_t - \eta
abla f_t(oldsymbol{w}_t) - oldsymbol{u}
ight\|^2 \ &\leq \left\| oldsymbol{w}_t - \eta
abla f_t(oldsymbol{w}_t) - oldsymbol{u}
ight\|^2 \ &= \left\| oldsymbol{w}_t - oldsymbol{u}
ight\|^2 - 2\eta \langle oldsymbol{w}_t - oldsymbol{u},
abla f_t(oldsymbol{w}_t)
angle + \eta^2 \|
abla f_t(oldsymbol{w}_t) \|^2 \end{aligned}$$

Hence

$$\langle oldsymbol{w}_t - oldsymbol{u},
abla f_t(oldsymbol{w}_t)
angle \ \leq \ rac{\left\| oldsymbol{w}_t - oldsymbol{u}
ight\|^2 - \left\| oldsymbol{w}_{t+1} - oldsymbol{u}
ight\|^2}{2\eta} + rac{\eta}{2} \left\|
abla f_t(oldsymbol{w}_t)
ight\|^2$$

Proof of GD regret bound II

Summing over T rounds, we find

$$\begin{split} \sum_{t=1}^{T} \left(f_t(\boldsymbol{w}_t) - f_t(\boldsymbol{u}) \right) & \leq \sum_{t=1}^{T} \langle \boldsymbol{w}_t - \boldsymbol{u}, \nabla f_t(\boldsymbol{w}_t) \rangle \\ & \leq \sum_{t=1}^{T} \frac{\|\boldsymbol{w}_t - \boldsymbol{u}\|^2 - \|\boldsymbol{w}_{t+1} - \boldsymbol{u}\|^2}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \|\nabla f_t(\boldsymbol{w}_t)\|^2 \\ & \leq \frac{\|\boldsymbol{u}\|^2 - \|\boldsymbol{w}_{\mathcal{T}+1} - \boldsymbol{u}\|^2}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \|\nabla f_t(\boldsymbol{w}_t)\|^2 \\ & \leq \frac{D^2}{2\eta} + \frac{\eta}{2} TG^2 \end{split}$$

Goal: obtain an estimator \hat{w}_T with small expected excess risk.

$$\mathbb{E}_{f_1,...,f_{\mathcal{T}}}\left[\mathbb{E}_f\left[f(\hat{m{w}}_{\mathcal{T}})-f(m{u}^*)
ight]
ight] \leq \text{small}$$

where the training set f_1, \ldots, f_T and the test sample f are drawn i.i.d. and u^* optimises the risk $u \mapsto \mathbb{E}_f[f(u)]$.

Goal: obtain an estimator \hat{w}_T with small expected excess risk.

$$\mathbb{E}_{f_1,...,f_T}\left[\mathbb{E}_f\left[f(\hat{m{w}}_T)-f(m{u}^*)
ight]
ight] \leq \text{small}$$

where the training set f_1, \ldots, f_T and the test sample f are drawn i.i.d. and u^* optimises the risk $u \mapsto \mathbb{E}_f[f(u)]$.

Idea: use online learning algorithm. Given training sample f_1, \ldots, f_T , the algorithm picks w_1, \ldots, w_T . Let us define the average iterate estimator

$$\hat{\boldsymbol{w}}_T = \frac{1}{T} \sum_{t=1}^T \boldsymbol{w}_t.$$

Goal: obtain an estimator \hat{w}_T with small expected excess risk.

$$\mathbb{E}_{f_1,...,f_{\mathcal{T}}}\left[\mathbb{E}_f\left[f(\hat{m{w}}_{\mathcal{T}})-f(m{u}^*)
ight]
ight] \ \le \ \mathsf{small}$$

where the training set f_1, \ldots, f_T and the test sample f are drawn i.i.d. and u^* optimises the risk $u \mapsto \mathbb{E}_f[f(u)]$.

Idea: use online learning algorithm. Given training sample f_1, \ldots, f_T , the algorithm picks w_1, \ldots, w_T . Let us define the average iterate estimator

$$\hat{\boldsymbol{w}}_{\mathcal{T}} = \frac{1}{\mathcal{T}} \sum_{t=1}^{\mathcal{T}} \boldsymbol{w}_{t}.$$

Theorem

An online regret bound $R_T \leq B(T)$ implies

$$\mathbb{E}_{iid f_1, \ldots, f_T, f} [f(\hat{\boldsymbol{w}}_T) - f(\boldsymbol{u}^*)] \leq \frac{B(T)}{T}$$

Online to Batch Proof

$$\begin{split} & \mathbb{E}_{\text{iid } f_1, \dots, f_T, f} \left[f\left(\hat{\boldsymbol{w}}_T\right) - f(\boldsymbol{u}^*) \right] \\ & \leq \mathbb{E}_{\text{iid } f_1, \dots, f_T, f} \left[\frac{1}{T} \sum_{t=1}^T \left(f(\boldsymbol{w}_t) - f(\boldsymbol{u}^*) \right) \right] \\ & = \mathbb{E}_{\text{iid } f_1, \dots, f_T, f} \left[\frac{1}{T} \sum_{t=1}^T \left(f_t(\boldsymbol{w}_t) - f_t(\boldsymbol{u}^*) \right) \right] \leq \frac{B(T)}{T} \end{split}$$

The first step is convexity of f. The last step uses that f and f_t have the same distribution (and w_t is not a function of f_t).

Online Strongly Convex Optimisation

Structure

What if I know more about my setting than convexity of the loss function? Can I learn faster?

Strongly Convex Case

Definition

A function $f: \mathcal{U} \to \mathbb{R}$ is *strongly convex* to degree $\alpha \geq 0$ if

$$f(\boldsymbol{u}) - f(\boldsymbol{w}) \geq \langle \boldsymbol{u} - \boldsymbol{w}, \nabla f(\boldsymbol{w}) \rangle + \frac{\alpha}{2} \|\boldsymbol{u} - \boldsymbol{w}\|^2$$

Strongly Convex Case

Definition

A function $f: \mathcal{U} \to \mathbb{R}$ is *strongly convex* to degree $\alpha \geq 0$ if

$$f(u) - f(w) \geq \langle u - w, \nabla f(w) \rangle + \frac{\alpha}{2} ||u - w||^2$$

Example: $f(w) = ||w - x_t||^2$.

Strongly Convex Case

Definition

A function $f: \mathcal{U} \to \mathbb{R}$ is *strongly convex* to degree $\alpha \geq 0$ if

$$f(u) - f(w) \geq \langle u - w, \nabla f(w) \rangle + \frac{\alpha}{2} ||u - w||^2$$

Example: $f(w) = ||w - x_t||^2$.

Idea: could this extra knowledge help in the regret rate?

Online Gradient Descent with time-varying learning rate

Definition (OGD with time-varying learning rate)

$$w_1 = 0$$
 and $w_{t+1} = \Pi_{\mathcal{U}}(w_t - \eta_t \nabla f_t(w_t))$

Online Gradient Descent with time-varying learning rate

Definition (OGD with time-varying learning rate)

$$w_1 = 0$$
 and $w_{t+1} = \Pi_{\mathcal{U}}(w_t - \eta_t \nabla f_t(w_t))$

Theorem

For α -strongly convex loss functions, OGD with learning rate $\eta_t = \frac{1}{\alpha t}$ ensures

$$R_T \leq \frac{G^2}{2\alpha} (1 + \ln T).$$

Proof I

We start with

$$\begin{aligned} \left\| \boldsymbol{w}_{t+1} - \boldsymbol{u} \right\|^2 &= \left\| \Pi_{\mathcal{U}} \left(\boldsymbol{w}_t - \eta_t \nabla f_t(\boldsymbol{w}_t) \right) - \boldsymbol{u} \right\|^2 \\ &\leq \left\| \boldsymbol{w}_t - \eta_t \nabla f_t(\boldsymbol{w}_t) - \boldsymbol{u} \right\|^2 \\ &= \left\| \boldsymbol{w}_t - \boldsymbol{u} \right\|^2 - 2\eta_t \langle \boldsymbol{w}_t - \boldsymbol{u}, \nabla f_t(\boldsymbol{w}_t) \rangle + \eta_t^2 \left\| \nabla f_t(\boldsymbol{w}_t) \right\|^2 \end{aligned}$$

So that

$$\begin{aligned} &f_t(\boldsymbol{w}_t) - f_t(\boldsymbol{u}) \\ &\leq \langle \boldsymbol{w}_t - \boldsymbol{u}, \nabla f_t(\boldsymbol{w}_t) \rangle - \frac{\alpha}{2} \|\boldsymbol{w}_t - \boldsymbol{u}\|^2 \\ &\leq \frac{\|\boldsymbol{w}_t - \boldsymbol{u}\|^2 - \|\boldsymbol{w}_{t+1} - \boldsymbol{u}\|^2 + \eta_t^2 \|\nabla f_t(\boldsymbol{w}_t)\|^2}{2\eta_t} - \frac{\alpha}{2} \|\boldsymbol{w}_t - \boldsymbol{u}\|^2 \\ &= \|\boldsymbol{w}_t - \boldsymbol{u}\|^2 \left(\frac{1}{2\eta_t} - \frac{\alpha}{2}\right) - \frac{\|\boldsymbol{w}_{t+1} - \boldsymbol{u}\|^2}{2\eta_t} + \frac{\eta_t \|\nabla f_t(\boldsymbol{w}_t)\|^2}{2} \end{aligned}$$

Proof II

Summing over rounds gives

$$\begin{split} &\sum_{t=1}^{T} f_{t}(\boldsymbol{w}_{t}) - f_{t}(\boldsymbol{u}) \\ &\leq \sum_{t=1}^{T} \left(\|\boldsymbol{w}_{t} - \boldsymbol{u}\|^{2} \left(\frac{1}{2\eta_{t}} - \frac{\alpha}{2} \right) - \frac{\|\boldsymbol{w}_{t+1} - \boldsymbol{u}\|^{2}}{2\eta_{t}} + \frac{\eta_{t} \|\nabla f_{t}(\boldsymbol{w}_{t})\|^{2}}{2} \right) \\ &= \|\boldsymbol{w}_{1} - \boldsymbol{u}\|^{2} \left(\frac{1}{2\eta_{1}} - \frac{\alpha}{2} \right) + \sum_{t=2}^{T} \|\boldsymbol{w}_{t} - \boldsymbol{u}\|^{2} \left(\frac{1}{2\eta_{t}} - \frac{\alpha}{2} - \frac{1}{2\eta_{t-1}} \right) \\ &- \frac{\|\boldsymbol{w}_{T+1} - \boldsymbol{u}\|^{2}}{2\eta_{T}} + \sum_{t=1}^{T} \frac{\eta_{t} \|\nabla f_{t}(\boldsymbol{w}_{t})\|^{2}}{2} \end{split}$$

Key idea for telescoping is to cancel coefficient on $\|oldsymbol{w}_t - oldsymbol{u}\|^2$ in the sum:

$$\frac{1}{\eta_{t+1}} - \alpha = \frac{1}{\eta_t}$$

Proof III

So

$$\eta_{t+1} = \frac{1}{\frac{1}{n_t} + \alpha}$$

A good starting point (cancelling the first term) is $\eta_1 = \frac{1}{\alpha}$. This leads to $\eta_t = \frac{1}{\alpha t}$. We then find

$$\sum_{t=1}^{T} f_t(\boldsymbol{w}_t) - f_t(\boldsymbol{u}) \; \leq \; \sum_{t=1}^{T} \frac{\left\| \nabla f_t(\boldsymbol{w}_t) \right\|^2}{2\alpha t} \; \leq \; \frac{G^2}{2\alpha} \left(1 + \ln \, T \right)$$

Conclusion

Tools for learning in convex settings.

- Guaranteed robustness against adversarial losses
- Efficient
- Building block for
 - Learning in non-convex settings (AdaGrad for DNN)
 - Learning in games
 - ► Non-convex games (GANs)