Machine Learning Theory 2022
Lecture 11

Wouter M. Koolen

Download these slides now from elo.mastermath.nl!

» OCO with exp-concavity:
> Regression and Portfolio optimisation problem motivation.
Exp-concavity.

Online Newton Step algorithm.
Analysis
Application: Concentration Inequality (Bonus)
homework roulette
in the break
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https://elo.mastermath.nl

Recap
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Overview of Second Half of Course

Boosting
AdaBoost

Bandits
UCB, EXP3
Reinforcement Learning

(Strongly) Convex Losses
Online Gradient Descent (2x)
Exp-concave Losses
Online Newton Step

Online Convex Optimisation

Probabilistic Classes
Norm. Max. Likelihood

Material: course notes and selection of sources on MLT website.
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https://www.cwi.nl/~wmkoolen/MLT_2022/

Recap: Online Convex Optimisation

General yet simple sequential decision problem.
Fix a convex set U C RY.

Protocol

Fort=1,2,...

» Learner chooses a point w; € U.

» Adversary reveals convex loss function f; : U — R.
» Learner’s loss is fi(w;)
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Recap: Online Convex Optimisation

General yet simple sequential decision problem.
Fix a convex set U C RY.

Protocol

Fort=1,2,...

» Learner chooses a point w; € U.

» Adversary reveals convex loss function f; : U — R.
» Learner’s loss is fi(w;)

Objective:
Regret w.r.t. best point after T rounds:
T

Rr = max) (fi(we) - fi(u))
t=1
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Recap: Results so far

We saw the Online Gradient Descent algorithm

Wer1 = nu(wt _ntvft(wt))

On Lipschitz OGD with 1 « # guarantees
Rr < GDVT.
On OGD with 7; % guarantees

Rr < O(InT)
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Where we are going today

Linear C Convex Stongly Convex Exp-concave
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Exp-concavity
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Exp-Concavity

Three popular losses
> Square loss for regression (y; € R)

u = ((u,a) - )
> Logistic loss for classification (y; € {£1})
u = In(1 4 e Ve(we))
» Logarithmic loss for portfolio optimisation
u — —In{u,x;)

Convex but strongly convex. Q: Doomed to v/ T regret?
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Exp-Concavity

Normal convexity:
f(w) — f(u) < (w —u, Vi(w))
Strong convexity:

f(w) = F(u) < (w —u, Vi(w)) = 2w —ul®

Definition
A function f : U/ — R is called exp-concave to degree a > 0 if
u — e~ (") is concave.
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Characterisations of Exp-Concavity |

In one dimension U C R, a-exp-concavity of f is equivalent to

F'(u) > a(f'(u))?
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Characterisations of Exp-Concavity |

In one dimension U C R, a-exp-concavity of f is equivalent to

F'(u) > a(f'(u))?

Fact (Lemma 4.2)
A twice differentiable f is a-exp-concave at u € U C RY iff

V3f(u) = aVf(u)Vf(u)T. (1)
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Characterisations of Exp-Concavity Il

Corollary

If f is a-exp concave for o > 0 then

F(w) — F(u) < i'" (1+aw—uViw) Ywucld. ()

Proof.

«a-exp concavity implies
e of(W) _emof(W) < (y —w, —ae WV f(w)).

Multiply by e®f(*) add 1, take In and divide by o > 0. O
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Towards a quadratic upper bound

By Taylor expansion in x =0, In(1 + x) ~ x — %x2.

Approximation flips from upper to lower bound at x = 0.
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Towards a quadratic upper bound

By Taylor expansion in x =0, In(1 + x) = x — %x2.

Approximation flips from upper to lower bound at x = 0.

Proposition

For |x| <1 we have
In(1+x) < x—3x° (3)

Proof.

Let's look at the gap In(1 4 x) — x + x?/4. lts derivative, ;1= — 1+ % is
zero when x = 0 or x = 1. The second derivative is ﬁ + % revealing
that x = 0 is a maximum and x = 1 is a minimum. At x = 0 the gap is
zero. So the gap is < 0 for all x < 1. O
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Factor 2 alert!

Some sources use a
|u| <D  Yuel,
while other sources use a diameter bound
|lu —wl| <D Yu,w elU.
By the triangle inequality, the diameter is at most twice the radius.

Following the previous lecture, these will use D to bound the
of U, while the reading material book chapter uses D for
diameter. Be warned.
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Quadratic upper bound
Lemma (Analogue of Lemma 4.3)

Let f : U — R be a-exp-concave with bounded gradient IVf(u)| < G

<
and radius ||u|| < D for allw € U. Then for all v < 1 min {a, 555},

f(w) = fu) < (w—u,Vi(w)) - 2w —u VF(w)?*. (4

tangent quadratic bonus

14/25



Quadratic upper bound
Lemma (Analogue of Lemma 4.3)

Let f : U — R be a-exp-concave with bounded gradient IVf(u)| < G

<
and radius ||u|| < D for allw € U. Then for all v < 1 min {a, 555},

fw) — f(u) < (w—u, Vi(w)) — %('w —u, Viw))?. (4

tangent quadratic bonus

Proof.
(1) implies exp-concavity for degrees < a.. Applying (2) to 2y < « and
then applying (3) using [27(w — u, Vf(w))| < W <1 give

f(w) — f(u) iIn (1+2v{w — u, Vi(w)))

IN

2y
< @y, V)~ 33—, T )
= (w—u,Vf(w)) — %(w —u, Vf(w)>2 |
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Online Newton Step
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ONS algorithm

Let 4 C RY be a closed convex set containing 0.

The Online Newton Step (ONS) algorithm maintains an xr el
and a positive definite d x d matrix A;_; > 0.
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ONS algorithm

Let 4 C RY be a closed convex set containing 0.

The Online Newton Step (ONS) algorithm maintains an xr el
and a positive definite d x d matrix A;_; > 0.

Definition (Online Newton Step)

ONS with inverse learning rate ¢ > 0 starts from
xry = 0l and Ag = el.

After receiving the gradient V; := Vf;(x;), it updates as
— A; 1 -1 — T
Tepr = [ |z — ,_YAt Vi and A = A1+ V]

where
N7 (u) = argmin (@ — u)TA(z — u)
zeU

is the projection onto U in the norm ||| 4 .

Note the mixed timing: A; and x;,; are both based on t gradients.
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ONS result

For losses satisfying (4), ONS guarantees

Y2, 9 TG?
Rr < -eD°+ —In{1+— ).
TS 5€ +2’yn<+d>

Corollary

Tuning € = ﬁ (which is optimal for T — oo) gives

2N2 -2
Rr < 9 (14m 1+T7DG —o(%mT).
2y d? Y

17/25



ONS result

Theorem

. 1
I-;or a—exp—ccincave losses, using v = % min {a, 535}, s0
2 = max {1,2GD}, ONS guarantees

1 T
R+ < max{a,2GD}d <1+|n (1+ @))
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ONS analysis |

We look at the distance of the iterates to optimality, in Hsc||34t =xTAx

2
Zer1 — ﬂl’3*||At

2
Pyth. Th

1
T — fAt_IVt —x
v

A

expand square 2 1 J—
e P S (@ =" Vi + 5VIA, v,

* * 2 * 1 —
= @ — 2|y, + (® — 2", Ve)* - > (ke —x*, V) + ?VlAt v,
where the last line uses A; = A, 1 + V.V].

Reorganising gives an upper bound on the right-hand-side of (4)

<33t - w*,vt> - % <33t - w*7vt>2

g |2 |2 1 _
< 5 (el ~lwen -2y, ) + 5 VIATY
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ONS analysis Il

As Indet is concave and its derivative is the matrix inverse,

Tangent

VIA['WV, = tr((Ar— Ar1)A;Y) < Indet A, — Indet A,
Combination with (4) and telescoping over rounds gives

T
1

Z (fi(x:) — fi(z)) < g ||g;*Hi‘0 + > (Indet A7 — Indet Ayg) .

t=1
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ONS analysis Il

Recall that the is the sum of the eigenvalues, while the
log-determinant is the sum of the logarithms of the eigenvalues.

As tr (V,V]) = |Ve]? < G2, we have tr (A7) < de + TG2. By
concavity of the logarithm

T 2
Indet A7 < dln (e—l—j).

Finally using ||z*||*> < D? and Indet Ag = d In¢, we conclude

Y oo d TG?
Rr < LeD? 4+ Tin(14+ ).
T =5 +27n<+ed
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Application (not for exam)

22/25



Concentration from Online Learning
For i.i.d. zero-mean Z; € [—1,+1] and A; predictable (function of Z; -+ Z;_1),

1= ]E[]I[(lJrAtZt)

t=1

— E |:e— Sl - |”(1+>\tzt)]
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Concentration from Online Learning
For i.i.d. zero-mean Z; € [—1,+1] and A; predictable (function of Z; -+ Z;_1),

T

H(l + \eZy)

t=1

So by Markov, for each 6 € (0,1),

5>P <e’ S - n(+AZ) })
- )

1 = E — E[efzglfln(lJr)\tZt)jI

P <ZT: —In(1+ A:Z:) <In 5)

t=1
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Concentration from Online Learning
For i.i.d. zero-mean Z; € [—1,+1] and A; predictable (function of Z; -+ Z;_1),

T

H(l + \eZy)

t=1

So by Markov, for each 6 € (0,1),

5>P <e’ S - n(+AZ) })
- -6

- E [e’ Sl - In(1+>\tZt)]

1 =E

P <ZT: —In(1+ A:Z:) <In 5)

t=1
Letting A+ be ONS iterates on 1d loss functions A — — In(1 + AZ;) gives

i —In(1+XeZ:) < m)in zT: —In(1+XZ)+O0(InT)

t=1 t=1
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Concentration from Online Learning
For i.i.d. zero-mean Z; € [—1,+1] and A; predictable (function of Z; -+ Z;_1),

T

H(l + \eZy)

t=1

So by Markov, for each 6 € (0,1),

-
§>P <e* S = In(14+Ae Ze) > %) =P <Z — In(l + )\tZt) <In 5)

t=1

1 =E =

— E |:e* Sl - |”(1+>\tzr)]

Letting A+ be ONS iterates on 1d loss functions A — — In(1 + AZ;) gives

i —In(1+XeZ:) < m)in zT: —In(1+XZ)+O0(InT)

t=1 t=1

Further,

mlnz In(1+XZ) < mmZ( AZ: + ()\Zt)z) = _(%:1?2)2
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Concentration from Online Learning
For i.i.d. zero-mean Z; € [—1,+1] and A; predictable (function of Z; -+ Z;_1),

T

H(l + \eZy)

t=1

1 =E =

— E |:e* Sl - |”(1+>\tzr)]

So by Markov, for each 6 € (0,1),

-
§>P <e* S = In(14+Ae Ze) > %) =P <Z — In(l + )\tZt) <In 5)

t=1
Letting A+ be ONS iterates on 1d loss functions A — — In(1 + AZ;) gives

i —In(1+XeZ:) < m)in zT: —In(1+XZ)+O0(InT)

t=1 t=1

Further,
T T 2
Z
mlnz In(14+AZ) < mmZ( MZo+10z)) = _%
Do Zi
All in all,

(Zt12:)>|} OInT) <6
(ztl oD ) =
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Conclusion
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Conclusion

Many practical losses are exp-concave. Assumption convexity
and strong convexity.

Learning algorithm ONS accumulates gradient directions into matrix.
O(dIn T) regret bound.

Unprojected update takes O(d?) time, projection often O(d?).
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