Machine Learning Theory 2022 Lecture 11

Wouter M. Koolen

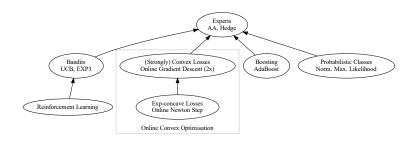
Download these slides now from elo.mastermath.nl!

- OCO with exp-concavity:
 - ▶ Regression and Portfolio optimisation problem motivation.
 - Exp-concavity.
 - Online Newton Step algorithm.
 - Analysis
 - Application: Concentration Inequality (Bonus)

homework roulette in the break

Recap

Overview of Second Half of Course



Material: course notes and selection of sources on MLT website.

Recap: Online Convex Optimisation

General yet simple sequential decision problem.

Fix a convex set $\mathcal{U} \subseteq \mathbb{R}^d$.

Protocol

For t = 1, 2, ...

- ightharpoonup Learner chooses a point $w_t \in \mathcal{U}$.
- ▶ Adversary reveals convex loss function $f_t : \mathcal{U} \to \mathbb{R}$.
- ightharpoonup Learner's loss is $f_t(w_t)$

Recap: Online Convex Optimisation

General yet simple sequential decision problem.

Fix a convex set $\mathcal{U} \subseteq \mathbb{R}^d$.

Protocol

For t = 1, 2, ...

- ▶ Learner chooses a point $w_t \in \mathcal{U}$.
- ▶ Adversary reveals convex loss function $f_t : \mathcal{U} \to \mathbb{R}$.
- ightharpoonup Learner's loss is $f_t(w_t)$

Objective:

Regret w.r.t. best point after T rounds:

$$R_T = \max_{\boldsymbol{u} \in \mathcal{U}} \sum_{t=1}^T (f_t(\boldsymbol{w}_t) - f_t(\boldsymbol{u}))$$

Recap: Results so far

We saw the Online Gradient Descent algorithm

$$w_{t+1} = \Pi_{\mathcal{U}}(w_t - \eta_t \nabla f_t(w_t))$$

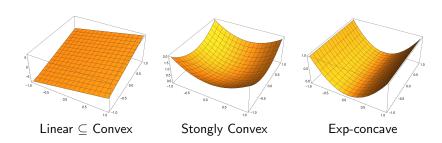
On Lipschitz convex functions OGD with $\eta \propto \frac{1}{\sqrt{T}}$ guarantees

$$R_T \leq GD\sqrt{T}$$
.

On strongly convex functions OGD with $\eta_t \propto \frac{1}{t}$ guarantees

$$R_T \leq O(\ln T)$$

Where we are going today



Exp-concavity

Exp-Concavity

Three popular losses

Square loss for regression $(y_t \in \mathbb{R})$

$$u \mapsto (\langle u, x_t \rangle - y_t)^2$$

▶ Logistic loss for classification $(y_t \in \{\pm 1\})$

$$u \mapsto \ln(1 + e^{-y_t \langle u, x_t \rangle})$$

► Logarithmic loss for portfolio optimisation

$$u \mapsto -\ln\langle u, x_t \rangle$$

Convex but **not** strongly convex. Q: Doomed to \sqrt{T} regret?

Exp-Concavity

Normal convexity:

$$f(w) - f(u) \le \langle w - u, \nabla f(w) \rangle$$

Strong convexity:

$$f(\boldsymbol{w}) - f(\boldsymbol{u}) \le \langle \boldsymbol{w} - \boldsymbol{u}, \nabla f(\boldsymbol{w}) \rangle - \frac{\alpha}{2} \| \boldsymbol{w} - \boldsymbol{u} \|^2$$

Definition

A function $f: \mathcal{U} \to \mathbb{R}$ is called *exp-concave* to degree $\alpha \geq 0$ if $u \mapsto e^{-\alpha f(u)}$ is concave.

Characterisations of Exp-Concavity I

In one dimension $\mathcal{U} \subseteq \mathbb{R}$, α -exp-concavity of f is equivalent to

$$f''(u) \ge \alpha(f'(u))^2$$

Characterisations of Exp-Concavity I

In one dimension $\mathcal{U} \subseteq \mathbb{R}$, α -exp-concavity of f is equivalent to

$$f''(u) \geq \alpha(f'(u))^2$$

Fact (Lemma 4.2)

A twice differentiable f is α -exp-concave at $u \in \mathcal{U} \subseteq \mathbb{R}^d$ iff

$$\nabla^2 f(\boldsymbol{u}) \succeq \alpha \nabla f(\boldsymbol{u}) \nabla f(\boldsymbol{u})^{\mathsf{T}}. \tag{1}$$

Characterisations of Exp-Concavity II

Corollary

If f is α -exp concave for $\alpha > 0$ then

$$f(w) - f(u) \le \frac{1}{\alpha} \ln (1 + \alpha \langle w - u, \nabla f(w) \rangle) \quad \forall w, u \in \mathcal{U}.$$
 (2)

Proof.

 α -exp concavity implies

$$e^{-\alpha f(u)} - e^{-\alpha f(w)} \leq \langle u - w, -\alpha e^{-\alpha f(w)} \nabla f(w) \rangle.$$

Multiply by $e^{\alpha f(w)}$, add 1, take In and divide by $\alpha > 0$.

Towards a quadratic upper bound

By Taylor expansion in x = 0, $\ln(1+x) \approx x - \frac{1}{2}x^2$. Approximation flips from upper to lower bound at x = 0.

Towards a quadratic upper bound

By Taylor expansion in x=0, $\ln(1+x)\approx x-\frac{1}{2}x^2$. Approximation flips from upper to lower bound at x=0.

Proposition

For
$$|x| \le 1$$
 we have $\ln(1+x) \le x - \frac{1}{4}x^2$. (3)

Proof.

Let's look at the gap $\ln(1+x)-x+x^2/4$. Its derivative, $\frac{1}{1+x}-1+\frac{x}{2}$ is zero when x=0 or x=1. The second derivative is $\frac{-1}{(1+x)^2}+\frac{1}{2}$, revealing that x=0 is a maximum and x=1 is a minimum. At x=0 the gap is zero. So the gap is ≤ 0 for all $x\leq 1$.

Factor 2 alert!

Some sources use a radius bound

$$\|u\| \leq D \quad \forall u \in \mathcal{U},$$

while other sources use a diameter bound

$$\|\boldsymbol{u} - \boldsymbol{w}\| \le D \quad \forall \boldsymbol{u}, \boldsymbol{w} \in \mathcal{U}.$$

By the triangle inequality, the diameter is at most twice the radius.

Following the previous lecture, these slides will use D to bound the radius of \mathcal{U} , while the reading material book chapter uses D for diameter. Be warned.

Quadratic upper bound

Lemma (Analogue of Lemma 4.3)

Let $f: \mathcal{U} \to \mathbb{R}$ be α -exp-concave with bounded gradient $\|\nabla f(u)\| \leq G$ and radius $\|u\| \leq D$ for all $u \in \mathcal{U}$. Then for all $\gamma \leq \frac{1}{2} \min \left\{\alpha, \frac{1}{2GD}\right\}$,

$$f(w) - f(u) \le \underbrace{\langle w - u, \nabla f(w) \rangle}_{tangent} - \underbrace{\frac{\gamma}{2} \langle w - u, \nabla f(w) \rangle^{2}}_{quadratic \ bonus}.$$
 (4)

Quadratic upper bound

Lemma (Analogue of Lemma 4.3)

Let $f: \mathcal{U} \to \mathbb{R}$ be α -exp-concave with bounded gradient $\|\nabla f(u)\| \leq G$ and radius $\|u\| \leq D$ for all $u \in \mathcal{U}$. Then for all $\gamma \leq \frac{1}{2} \min \left\{\alpha, \frac{1}{2GD}\right\}$,

$$f(w) - f(u) \le \underbrace{\langle w - u, \nabla f(w) \rangle}_{tangent} - \underbrace{\frac{\gamma}{2} \langle w - u, \nabla f(w) \rangle^2}_{quadratic \ bonus}.$$
 (4)

Proof.

(1) implies exp-concavity for degrees $\leq \alpha$. Applying (2) to $2\gamma \leq \alpha$ and then applying (3) using $|2\gamma \langle \boldsymbol{w} - \boldsymbol{u}, \nabla f(\boldsymbol{w}) \rangle| \leq \frac{\|\boldsymbol{w} - \boldsymbol{u}\| \|\nabla f(\boldsymbol{w})\|}{2GD} \leq 1$ give

$$egin{aligned} f(oldsymbol{w}) - f(oldsymbol{u}) & \leq rac{1}{2\gamma} \ln \left(1 + 2\gamma \langle oldsymbol{w} - oldsymbol{u},
abla f(oldsymbol{w})
ight) \ & \leq rac{1}{2\gamma} \left(2\gamma \langle oldsymbol{w} - oldsymbol{u},
abla f(oldsymbol{w})
ight) - rac{1}{4} (2\gamma \langle oldsymbol{w} - oldsymbol{u},
abla f(oldsymbol{w})
ight)^2 \ & = \langle oldsymbol{w} - oldsymbol{u},
abla f(oldsymbol{w})
angle - rac{\gamma}{2} \langle oldsymbol{w} - oldsymbol{u},
abla f(oldsymbol{w})
angle^2 \end{aligned}$$

Online Newton Step

ONS algorithm

Let $\mathcal{U} \subseteq \mathbb{R}^d$ be a closed convex set containing $\mathbf{0}$.

The Online Newton Step (ONS) algorithm maintains an **iterate** $x_t \in \mathcal{U}$ and a positive definite $d \times d$ matrix $A_{t-1} \succ 0$.

ONS algorithm

Let $\mathcal{U} \subseteq \mathbb{R}^d$ be a closed convex set containing $\mathbf{0}$.

The Online Newton Step (ONS) algorithm maintains an iterate $x_t \in \mathcal{U}$ and a positive definite $d \times d$ matrix $A_{t-1} \succ 0$.

Definition (Online Newton Step)

ONS with inverse learning rate $\epsilon > 0$ starts from

$$x_1 = \mathbf{0} \in \mathcal{U}$$

and $A_0 = \epsilon I$.

After receiving the gradient $\nabla_t \coloneqq \nabla f_t(x_t)$, it updates as

$$oldsymbol{x}_{t+1} \ = \ \Pi_{\mathcal{U}}^{oldsymbol{A}_t} \left(oldsymbol{x}_t - rac{1}{\gamma} oldsymbol{A}_t^{-1}
abla_t
ight) \quad ext{ and } \quad oldsymbol{A}_t \ = \ oldsymbol{A}_{t-1} +
abla_t
abla_t^\intercal$$

where

$$egin{aligned} \mathsf{\Pi}_{\mathcal{U}}^{oldsymbol{A}_t}(oldsymbol{u}) = rg \min_{oldsymbol{x} \in \mathcal{U}} \ (oldsymbol{x} - oldsymbol{u})^\intercal oldsymbol{A}_t(oldsymbol{x} - oldsymbol{u}) \end{aligned}$$

is the projection onto \mathcal{U} in the norm $\|\cdot\|_{A_t}$.

Note the mixed timing: A_t and x_{t+1} are both based on t gradients.

ONS result

Theorem

For losses satisfying (4), ONS guarantees

$$R_T \leq \frac{\gamma}{2} \epsilon D^2 + \frac{d}{2\gamma} \ln \left(1 + \frac{TG^2}{\epsilon d} \right).$$

Corollary

Tuning $\epsilon = \frac{d}{\gamma^2 D^2}$ (which is optimal for $T o \infty$) gives

$$R_T \leq rac{d}{2\gamma} \left(1 + \ln \left(1 + T rac{\gamma^2 D^2 G^2}{d^2}
ight)
ight) \ = \ \mathcal{O} \left(rac{d}{\gamma} \ln T
ight).$$

ONS result

Theorem

For α -exp-concave losses, using $\gamma = \frac{1}{2} \min \left\{ \alpha, \frac{1}{2GD} \right\}$, so $\frac{1}{2\gamma} = \max \left\{ \frac{1}{\alpha}, 2GD \right\}$, ONS guarantees

$$R_T \ \leq \ \max\left\{\frac{1}{\alpha}, 2\textit{GD}\right\} d\left(1 + \ln\left(1 + \frac{T}{16d^2}\right)\right)$$

ONS analysis I

We look at the distance of the iterates to optimality, in $\|x\|_{A_t}^2 = x^\intercal A_t x$

$$\begin{split} & \left\| \boldsymbol{x}_{t+1} - \boldsymbol{x}^* \right\|_{\boldsymbol{A}_t}^2 \\ & \stackrel{\mathsf{Pyth. Th}}{\leq} \left\| \boldsymbol{x}_t - \frac{1}{\gamma} \boldsymbol{A}_t^{-1} \nabla_t - \boldsymbol{x}^* \right\|_{\boldsymbol{A}_t}^2 \\ & \stackrel{\mathsf{expand square}}{=} \left\| \boldsymbol{x}_t - \boldsymbol{x}^* \right\|_{\boldsymbol{A}_t}^2 - \frac{2}{\gamma} \left\langle \boldsymbol{x}_t - \boldsymbol{x}^*, \nabla_t \right\rangle + \frac{1}{\gamma^2} \nabla_t^\intercal \boldsymbol{A}_t^{-1} \nabla_t \\ & = \ \left\| \boldsymbol{x}_t - \boldsymbol{x}^* \right\|_{\boldsymbol{A}_{t-1}}^2 + \left\langle \boldsymbol{x}_t - \boldsymbol{x}^*, \nabla_t \right\rangle^2 - \frac{2}{\gamma} \left\langle \boldsymbol{x}_t - \boldsymbol{x}^*, \nabla_t \right\rangle + \frac{1}{\gamma^2} \nabla_t^\intercal \boldsymbol{A}_t^{-1} \nabla_t \end{split}$$

where the last line uses $oldsymbol{A}_t = oldsymbol{A}_{t-1} +
abla_t
abla_t^\intercal$

Reorganising gives an upper bound on the right-hand-side of (4)

$$egin{aligned} \left\langle oldsymbol{x}_{t} - oldsymbol{x}^{*},
abla_{t}
ight
angle - rac{\gamma}{2} \left\langle oldsymbol{x}_{t} - oldsymbol{x}^{*},
abla_{t}
ight
angle^{2} \ & \leq \ rac{\gamma}{2} \left(\left\| oldsymbol{x}_{t} - oldsymbol{x}^{*}
ight\|_{oldsymbol{A}_{t-1}}^{2} - \left\| oldsymbol{x}_{t+1} - oldsymbol{x}^{*}
ight\|_{oldsymbol{A}_{t}}^{2}
ight) + rac{1}{2\gamma}
abla_{t}^{\intercal} oldsymbol{A}_{t}^{-1}
abla_{t}. \end{aligned}$$

ONS analysis II

As In det is concave and its derivative is the matrix inverse,

$$\nabla_t^{\mathsf{T}} \boldsymbol{A}_t^{-1} \nabla_t \ = \ \operatorname{tr} \left((\boldsymbol{A}_t - \boldsymbol{A}_{t-1}) \boldsymbol{A}_t^{-1} \right)^{\frac{\mathsf{Tangent}}{\leq}} \ln \det \boldsymbol{A}_t - \ln \det \boldsymbol{A}_{t-1}$$

Combination with (4) and telescoping over rounds gives

$$\sum_{t=1}^{\mathcal{T}} \left(f_t(oldsymbol{x}_t) - f_t(oldsymbol{x}^*)
ight) \; \leq \; rac{\gamma}{2} \left\| oldsymbol{x}^*
ight\|_{oldsymbol{A}_0}^2 + rac{1}{2\gamma} \left(\operatorname{In} \det oldsymbol{A}_{\mathcal{T}} - \operatorname{In} \det oldsymbol{A}_0
ight).$$

ONS analysis III

Recall that the **trace** is the sum of the eigenvalues, while the **log-determinant** is the sum of the logarithms of the eigenvalues.

As $\operatorname{tr}(\nabla_t \nabla_t^{\mathsf{T}}) = \|\nabla_t\|^2 \leq G^2$, we have $\operatorname{tr}(A_T) \leq d\epsilon + TG^2$. By concavity of the logarithm

$$\ln \det A_T \leq d \ln \left(\epsilon + \frac{TG^2}{d}\right).$$

Finally using $\|x^*\|^2 \leq D^2$ and $\ln \det A_0 = d \ln \epsilon$, we conclude

$$R_T \leq \frac{\gamma}{2} \epsilon D^2 + \frac{d}{2\gamma} \ln \left(1 + \frac{TG^2}{\epsilon d} \right).$$

Application (not for exam)

For i.i.d. zero-mean $Z_t \in [-1, +1]$ and λ_t predictable (function of $Z_1 \cdots Z_{t-1}$),

$$1 \ = \ \mathbb{E}\left[\prod_{t=1}^T (1+\lambda_t Z_t)\right] \ = \ \mathbb{E}\left[e^{-\sum_{t=1}^T -\ln(1+\lambda_t Z_t)}\right]$$

For i.i.d. zero-mean $Z_t \in [-1, +1]$ and λ_t predictable (function of $Z_1 \cdots Z_{t-1}$),

$$1 = \mathbb{E}\left[\prod_{t=1}^{T}(1+\lambda_t Z_t)\right] = \mathbb{E}\left[e^{-\sum_{t=1}^{T}-\ln(1+\lambda_t Z_t)}\right]$$

So by Markov, for each $\delta \in (0,1)$,

$$\delta \geq \mathbb{P}\left(e^{-\sum_{t=1}^T - \ln(1 + \lambda_t Z_t)} \geq \frac{1}{\delta}\right) \;\; = \;\; \mathbb{P}\left(\sum_{t=1}^T - \ln(1 + \lambda_t Z_t) \leq \ln \delta\right)$$

For i.i.d. zero-mean $Z_t \in [-1, +1]$ and λ_t predictable (function of $Z_1 \cdots Z_{t-1}$),

$$1 = \mathbb{E}\left[\prod_{t=1}^{T}(1+\lambda_t Z_t)\right] = \mathbb{E}\left[e^{-\sum_{t=1}^{T}-\ln(1+\lambda_t Z_t)}\right]$$

So by Markov, for each $\delta \in (0,1)$,

$$\delta \geq \mathbb{P}\left(e^{-\sum_{t=1}^T - \ln(1 + \lambda_t Z_t)} \geq \frac{1}{\delta}\right) \;\; = \;\; \mathbb{P}\left(\sum_{t=1}^T - \ln(1 + \lambda_t Z_t) \leq \ln \delta\right)$$

Letting λ_t be ONS iterates on 1d loss functions $\lambda \mapsto -\ln(1+\lambda Z_t)$ gives

$$\sum_{t=1}^T - \ln(1 + \lambda_t Z_t) \le \min_{\lambda} \sum_{t=1}^T - \ln(1 + \lambda Z_t) + O(\ln T)$$

For i.i.d. zero-mean $Z_t \in [-1, +1]$ and λ_t predictable (function of $Z_1 \cdots Z_{t-1}$),

$$1 = \mathbb{E}\left[\prod_{t=1}^{T}(1+\lambda_t Z_t)\right] = \mathbb{E}\left[e^{-\sum_{t=1}^{T}-\ln(1+\lambda_t Z_t)}\right]$$

So by Markov, for each $\delta \in (0,1)$,

$$\delta \geq \mathbb{P}\left(e^{-\sum_{t=1}^T - \ln(1 + \lambda_t Z_t)} \geq \frac{1}{\delta}\right) \;\; = \;\; \mathbb{P}\left(\sum_{t=1}^T - \ln(1 + \lambda_t Z_t) \leq \ln \delta\right)$$

Letting λ_t be ONS iterates on 1d loss functions $\lambda \mapsto -\ln(1+\lambda Z_t)$ gives

$$\sum_{t=1}^{T} -\ln(1+\lambda_t Z_t) \leq \min_{\lambda} \sum_{t=1}^{T} -\ln(1+\lambda Z_t) + O(\ln T)$$

Further,

$$\min_{\lambda} \sum_{t=1}^{T} - \ln(1 + \lambda Z_t) \leq \min_{\lambda} \sum_{t=1}^{T} \left(-\lambda Z_t + \frac{1}{4} (\lambda Z_t)^2 \right) = -\frac{\left(\sum_{t=1}^{T} Z_t \right)^2}{\sum_{t=1}^{T} Z_t^2}$$

For i.i.d. zero-mean $Z_t \in [-1, +1]$ and λ_t predictable (function of $Z_1 \cdots Z_{t-1}$),

$$1 = \mathbb{E}\left[\prod_{t=1}^{T}(1+\lambda_t Z_t)\right] = \mathbb{E}\left[e^{-\sum_{t=1}^{T}-\ln(1+\lambda_t Z_t)}\right]$$

So by Markov, for each $\delta \in (0,1)$,

$$\delta \geq \mathbb{P}\left(e^{-\sum_{t=1}^T - \ln(1+\lambda_t Z_t)} \geq \frac{1}{\delta}\right) \;\; = \;\; \mathbb{P}\left(\sum_{t=1}^T - \ln(1+\lambda_t Z_t) \leq \ln \delta\right)$$

Letting λ_t be ONS iterates on 1d loss functions $\lambda \mapsto -\ln(1+\lambda Z_t)$ gives

$$\sum_{t=1}^{T} -\ln(1+\lambda_t Z_t) \leq \min_{\lambda} \sum_{t=1}^{T} -\ln(1+\lambda Z_t) + O(\ln T)$$

Further,

$$\min_{\lambda} \sum_{t=1}^T -\ln(1+\lambda Z_t) \leq \min_{\lambda} \sum_{t=1}^T \left(-\lambda Z_t + \frac{1}{4}(\lambda Z_t)^2\right) = -\frac{\left(\sum_{t=1}^T Z_t\right)^2}{\sum_{t=1}^T Z_t^2}$$

All in all,

$$\mathbb{P}\left(\frac{\left(\sum_{t=1}^{T} Z_{t}\right)^{2}}{\sum_{t=1}^{T} Z_{t}^{2}} \geq \ln \frac{1}{\delta} + O(\ln T)\right) \leq \delta$$

Conclusion

Conclusion

Many practical losses are exp-concave. Assumption between convexity and strong convexity.

Learning algorithm ONS accumulates gradient directions into matrix.

 $O(d \ln T)$ regret bound.

Unprojected update takes $O(d^2)$ time, projection often $O(d^3)$.