
Machine Learning Theory 2022
Lecture 13

Wouter M. Koolen

Download these slides now from elo.mastermath.nl!

▶ Prediction with log-loss:
▶ NML/Shtarkov
▶ Bayes Uniform Prior/Jeffreys Prior
▶ Finite Θ/Parametric Θ

Application:
▶ Markov and CTW prediction

homework roulette

in the break

https://elo.mastermath.nl


Recap
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Overview of Second Half of Course

Online Convex Optimisation

Experts
AA, Hedge

Bandits
UCB, EXP3

Reinforcement Learning

(Strongly) Convex Losses
Online Gradient Descent (2x)

Exp-concave Losses
Online Newton Step

Boosting
AdaBoost

Probabilistic Classes
Norm. Max. Likelihood

Material: course notes and selection of sources on MLT website.

3 / 36

https://www.cwi.nl/~wmkoolen/MLT_2022/


Outlook

Today: adversarial online learning with statistical models as our
hypotheses

Main points:

▶ Minimax analyis tractable, elegant, insightful

▶ Bayesian methods can get very close.

▶ Foundation for practical methods
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Log-loss prediction
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Log Loss Prediction Setup

Start with a class Θ of simulatable predictors for outcomes y1, y2, . . ..

After seeing past yn−1, each θ ∈ Θ assigns a probability pθ to the next
outcome yn denoted by

pθ(yn|yn−1)

Interesting examples:

▶ Finite class

▶ Bernoulli

▶ Mixtures (categorical distributions)

▶ Markov chains

▶ Logistic regression
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Conditional vs Joint Equivalence
A sequential one-step-ahead forecaster (aka conditional distribution)

p(yt |y t−1)

induces a distribution on length-n sequences (aka joint distribution)

p(yn) :=
n∏

t=1

p(yt |y t−1)

Conversely, any distribution over full n-length outcome sequences

p(yn)

induces a one-step forecaster

p(yt |y t−1) :=

∑
yn
t+1

p(y t−1, yt , y
n
t+1)∑

yn
t
p(y t−1, yn

t )

So: two equivalent representations of the same object
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Log Loss Prediction Notation

A predictor θ assigns to sequence yn probability

pθ(y
n) =

n∏
t=1

pθ(yt |y t−1)

Definition

The maximum likelihood estimator (MLE) for data yn is

θ̂(yn) = argmax
θ∈Θ

pθ(y
n),

and the maximum likelihood is

pθ̂(yn)(y
n) = max

θ∈Θ
pθ(y

n).

NB:
∑

yn pθ̂(yn)(y
n) ≫ 1.
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Log-loss Prediction Game
Fix a class Θ of simulatable predictors

Protocol

▶ For t = 1, 2, . . . ,T

1. The learner assigns probability p̃t ∈ △Y to the next outcome.
2. The next outcome yt ∈ Y is revealed
3. Learner incurs log loss − ln p̃t(yt).

NB: p̃t typically improper (not a prediction in Θ)

Definition (Regret)

After T rounds, the regret is

T∑
t=1

− ln p̃t(yt)︸ ︷︷ ︸
Learner’s log loss

− min
θ∈Θ

T∑
t=1

− ln pθ(yt |y t−1)︸ ︷︷ ︸
log loss of MLE: − ln p

θ̂(yT )
(yT )
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Data compression connection

Intuition
#bits ≈ log-loss

Key words:

▶ Shannon-Fano code : code lengths are − log(p) rounded-up

▶ Kraft Inequality : 2−bit length sums to ≤ 1 for any code

▶ arithmetic coding: bits ≈ − log(pn) sequentially

10 / 36



What we already know: Experts
Theorem

For finite |Θ| < ∞, there is an algorithm for the log loss game with
regret at most ln|Θ|.

Proof.
By reduction to the mix loss game. Consider running the Agregating
Algorithm from Lecture 8 on experts Θ with losses

ℓθt = − ln pθ(yt |y t−1)

and using wt to form the predictions

p̃t(y) =
∑
θ∈Θ

wθ
t pθ(y |y t−1).

Then log loss equals mix loss

− ln p̃t(yt) = − ln
∑
θ∈Θ

wθ
t e

−ℓθt

and the ln|Θ| regret bound follows. 11 / 36



What we already know: Experts

AA-based strategy takes a particularly simple form

p̃t(y) =
∑
θ∈Θ

wθ
t pθ(y |y t−1)

=

∑
θ∈Θ e−

∑t−1
s=1 ℓθs pθ(y |y t−1)∑

θ∈Θ e−
∑t−1

s=1 ℓθs

=

∑
θ∈Θ e−

∑t−1
s=1 − ln pθ(ys |y s−1)pθ(y |y t−1)∑

θ∈Θ e−
∑t−1

s=1 − ln pθ(ys |y s−1)

=

∑
θ∈Θ

∏t−1
s=1 pθ(ys |y s−1)pθ(y |y t−1)∑

θ∈Θ

∏t−1
s=1 pθ(ys |y s−1)

=

∑
θ∈Θ pθ(y

t−1)pθ(y |y t−1)∑
θ∈Θ pθ(y t−1)

Average of predictions pθ(y |y t−1) with weights ∝ pθ(y
t−1).

Bayes rule (uniform prior on Θ).
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What we already know: Exp-concavity

Log loss is a 1-exp concave function of the prediction p̃t ∈ △Y .

With ft(p̃t) = − ln p̃t(yt), we have gradient

∇ft(p̃t) = ∇− ln p̃t(yt) = − eyt
p̃t(yt)

.

Potentially unbounded gradient (as we saw in Homework 11.2). Online
Newton Step may need additional assumptions.
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Questions for Today

▶ Is regret ≤ ln|Θ| good for this problem?

▶ And what if |Θ| = ∞?
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Minimax Regret for Log Loss
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Log Loss Prediction Minimax Regret

Fix a model Θ.

Definition

The minimax regret of the T -round log-loss game on Θ is

VT (Θ) := min
p̃1

max
y1

min
p̃2

max
y2

. . .min
p̃T

max
yT

Regret

Note: can be linear if Θ is too large.
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Normalised Maximum Likelihood

Easier to solve the problem in whole-sequence-at-once form:

VT (Θ) = min
p̃1

max
y1

min
p̃2

max
y2

. . .min
p̃T

max
yT

Regret

= min
p̃(yT )

max
yT

− ln p̃(yT ) + ln pθ̂(yT )(y
T )
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Normalised Maximum Likelihood

Theorem (Shtarkov)

The minimax predictor is Normalised Maximum Likelihood

pNML(y
T ) =

maxθ∈Θ pθ(y
T )∑

yT maxθ∈Θ pθ(yT )

and the minimax regret is

VT (Θ) = ln

∑
yT

max
θ∈Θ

pθ(y
T )


Game-theoretic measure of capacity of Θ called Stochastic Complexity

Counts number of parameters θ ∈ Θ that are “essentially different” at
horizon T .

Rate at which you need to grow cardinality when using finite
discretisation.
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Proof

See Theorem 9.1 in the material.
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Minimax regret

Consider again the finite Θ case. Then

VT (Θ) = ln

∑
yT

max
θ∈Θ

pθ(y
T )


≤ ln

∑
yT

∑
θ∈Θ

pθ(y
T )


= ln |Θ|

Can be much smaller in practise.
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Asymptotic Expansion for Minimax Regret I

Now consider the i.i.d. Bernoulli model Θ = [0, 1] where pθ(1|y t−1) = θ.

Theorem

VT (Θ) =
1

2
ln

Tπ

2
+ o(1)

Proof.
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Asymptotic Expansion for Minimax Regret II

VT (Θ) = ln

∑
yT

max
θ∈Θ

pθ(y
T )


= ln

(
T∑
i=0

(
T

i

)(
i

T

)i (
T − i

T

)T−i
)

Stirling
≈ ln

(
T∑
i=0

√
T

2πi(T − i)

)
Integral
≈ ln

(√
Tπ

2

)

Where the approximation is Stirling’s n! ≈
√
2πn

(
n
e

)n
. So that(

n

i

)
≈

√
2πn

(
n
e

)n
√
2πi

(
i
e

)i √
2π(n − i)

(
n−i
e

)n−i
=

√
n

2πi(n − i)

(n
i

)i ( n

n − i

)n−i
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Asymptotic Expansion for Categorical

Consider the k-outcome categorical model Θ = △k with pθ = θ.
Bernoulli is the case k = 2

Theorem

Vn(Θ) =
k − 1

2
ln

n

2π
+ ln

Γ(1/2)k

Γ(k/2)
+ o(1)

Proof.
See reading material
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Asymptotic Expansion for i.i.d. Classes

NB: This is just for context

Theorem

Consider any “suitably regular” model Θ ⊆ Rk of i.i.d. predictors. Then

Vn(Θ) =
k

2
ln

n

2π
+ log

∫ √
det I (θ) dθ + o(1)

where I (θ) is the Fisher information matrix (Hessian of negative entropy)

I (θ) = − E
Y∼pθ

[
∇2

θ ln pθ(Y )
]
.
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Bayesian Predictors
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Idea

For finite classes Θ, we saw that AA reduces to a Bayesian mixture.

Do Bayesian mixtures also control the regret for infinite Θ?

For example, what about Bernoulli? How good is e.g. the uniform average

p(yT ) =

∫ 1

0

pθ(y
T ) dθ
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Uniform Average aka Laplace Mixture

Theorem

The uniform average predictor has predictions

pt(1|y t−1) =
n1(y

t−1) + 1

t + 1

and worst-case regret equal to

max
yT

Regret = ln(T + 1)

About twice VT (Θ) . . .
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Jeffreys’ Average

Jeffreys proposed prior (based on invariance considerations)

p(θ) =
1

π
√
θ(1− θ)

Theorem

The Jeffreys predictor is equivalent to the Krichevsky-Trofimoff predictor

pt(1|y t−1) =
n1(y

t−1) + 1/2

t

and has worst-case regret equal to

max
yT

Regret ≤ 1

2
ln(T ) + ln 2

Matches VT (Θ) up to lower-order constant.
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General Bayesian Mixures

NB: this is just for context
For a general model, Jeffreys’ prior is

p(θ) =

√
det I (θ)∫ √
det I (θ) dθ

Where I (θ) is the Fisher Information matrix.

Theorem

Consider a suitably regular i.i.d. Θ ⊆ Rk . The worst-case regret of
Bayesian model averaging with Jeffreys’ prior is

max
yn

Regret =
k

2
ln

n

2π
+ log

∫ √
det I (θ) dθ + o(1)

Equal to minimax regret V(Θ) up to o(1).

Practice: Bayesian methods easier to interpret/compute.
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Applications
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Markov Models

kth order Markov model can be summarised by a table

context prediction
00 θ00
01 θ01
10 θ10
11 θ11

In context x , assign probability θx to seeing outcome 1 next.

0 1 0 1 0 0 1 0 1 0 1 0 1 0 1︸︷︷︸
context

?

2k parameters.

Bayesian average can be maintained efficiently. Regret is about 2k−1 lnT .
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Application: CTW

1
3 ,

2
3

0

1
4 ,

3
4

0
1
5 ,

4
5

1

0
5
6 ,

1
6

1

1

Predict next symbol: look up context right-to-left from root, use leaf dist.

context︷ ︸︸ ︷
0 1 1 0 1 0 0 1︸ ︷︷ ︸

used

? ⇒ 1
4 ,

3
4︸︷︷︸

prediction

▶ 2k+1 parameters for maximum context length k .

▶ O(k) per round implementation of Bayesian model average over all
context tree predictors

▶ Excellent data compression performance.
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Conclusions
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Conclusion of the Lecture

▶ Prediction with log loss has elegant exact minimax solution:
normalized maximum likelihood

▶ Bayesian mixtures (version of AA) with carefully selected priors can
often match the minimax regret

▶ Can tackle complex models with (hierarchical) Bayesian mixtures
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Conclusion of the Course

We saw

▶ Stochastic and game-theoretic frameworks for learning

▶ Ways to characterise the complexity of learning problems

▶ Algorithms and their analysis

Advanced topics that may interest you

▶ Reinforcement Learning

▶ Learning in (strategic) multi-agent problems

▶ Fairness, Accountability, Transparency

▶ Beyond convexity (NNs, tensor dec.)
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Conclusion

This concludes the lectures.

▶ It has been a pleasure

▶ Good luck for the exam

▶ If you have an idea that you want to work on . . .
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