Machine Learning Theory 2022
Lecture 13

Wouter M. Koolen

Download these slides now from elo.mastermath.nl!

» Prediction with log-loss:

> NML/Shtarkov
» Bayes Uniform Prior/Jeffreys Prior
> Finite ©/Parametric ©

Application:
» Markov and CTW prediction

homework roulette
in the break


https://elo.mastermath.nl

Recap
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Overview of Second Half of Course

Boosting
AdaBoost

Bandits
UCB, EXP3
Reinforcement Learning

(Strongly) Convex Losses
Online Gradient Descent (2x)
Exp-concave Losses
Online Newton Step

Online Convex Optimisation

Probabilistic Classes
Norm. Max. Likelihood

Material: course notes and selection of sources on MLT website.
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https://www.cwi.nl/~wmkoolen/MLT_2022/

Outlook

Today: with statistical models as our
hypotheses

Main points:
» Minimax analyis tractable, elegant, insightful
» Bayesian methods can get very close.

» Foundation for practical methods
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Log-loss prediction

5/36



Log Loss Prediction Setup

Start with a class © of simulatable predictors for outcomes y1, ys, . . ..

After seeing past y" 1, each f € © assigns a probability py to the next

outcome y,, denoted by
po(yaly™™1)

Interesting examples:
> Finite class

> Bernoulli

> Mixtures (categorical distributions)

> Markov chains

>

Logistic regression
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Conditional vs Joint Equivalence

A sequential one-step-ahead forecaster (aka conditional distribution)

pyely™™)

induces a distribution on length-n sequences (aka joint distribution)

p(y") = [[p(rly*™)

Conversely, any distribution over full n-length outcome sequences

p(y")
induces a one-step forecaster

Zytnﬂ p(y™ . ye, yii1)
>y Pythyl)

So: two equivalent representations of the same object

plyelyt™) =
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Log Loss Prediction Notation

A predictor 6 assigns to sequence y" probability

po(y") =[] po(yely*™)

Definition

The maximum likelihood estimator (MLE) for data y” is
é\ ny _ n
(v") = argmaxpo(y”),

and the maximum likelihood is

A ny _— n
P (") = maxpo(y").

NB: Zyn Pé(yn)(yn) > 1
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Log-loss Prediction Game

Fix a class © of simulatable predictors

Protocol

» Fort=1,2,..., T
1. The learner assigns probability p: € Ay to the next outcome.
2. The next outcome y; € ) is revealed
3. Learner incurs —In Be(y).

NB: p; typically improper (not a prediction in ©)
Definition (Regret)

After T rounds, the regret is

T T
= . t—1
E —Inpe(y:) — min E —Inpy(yely™™)
0co
t=1 t=1
Learner’s log loss log loss of MLE: — In pé(yr)(yT)
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Data compression connection

Intuition
#bits =~ log-loss

Key words:
» Shannon-Fano code : code lengths are —log(p) rounded-up
» Kraft Inequality : 2Pt !ength syms to < 1 for any code
> arithmetic coding: bits ~ — log(p") sequentially
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What we already know: Experts

Theorem

For finite |©| < oo, there is an algorithm for the log loss game with
regret at most In|©)|.

Proof.

By reduction to the mix loss game. Consider running the Agregating
Algorithm from Lecture 8 on experts © with losses

0] = —Inpo(yely™)

and using w; to form the predictions

> wlpo(yly*).

0co

Then log loss equals mix loss

—Inpe(yr) = InZwt o

0co

and the In|©| regret bound follows. O 11/



What we already know: Experts

AA-based strategy takes a particularly simple form
pely) = > wips(yly'™)
0cO
_xt—1 6 _
_ Yoeo = polylyth)
Yoo € S

t—1_

D peo € st In Pe(ysly‘“)pg(y|yt—1)

a S peq € Sat —npally )

_ YseoIlsms Polysly* Hpo(yly* ™)
Yoo [amy Polysly*)

Yo Py Npalylytt)

a Zoee po(yt=1)

Average of predictions pg(y|yt~!) with weights oc pg(yt~1).

Bayes rule (uniform prior on ©).
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What we already know: Exp-concavity

Log loss is a function of the prediction p; € Ay.

With £:(B:) = — In B:(y:), we have gradient

e
V&(p:) = V—Inp = -2
+(Pr) Pe(ye) FXOA)

Potentially gradient (as we saw in Homework 11.2). Online

Newton Step may need additional assumptions.
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Questions for Today

> |s regret < In|©| good for this problem?
> And what if 0] = 00?
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Minimax Regret for Log Loss
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Log Loss Prediction Minimax Regret

Fix a model ©.

Definition

The minimax regret of the T-round log-loss game on © is

V7(©) = minmaxminmax...min max Regret
P p2 ) pT YT

Note: can be linear if © is too large.
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Normalised Maximum Likelihood

.min max Regret

= mmmaxmmmax N
¥2 PT YT
")

VT(@) B P yi P2
min max — Inp(y " )—i—lnpe

ByT) vy

Easier to solve the problem in whole-sequence-at-once form
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Normalised Maximum Likelihood
Theorem (Shtarkov)

The minimax predictor is

maxgee po(y")
yT MaXgeo po(yT)

PNML(y ) = E

and the minimax regret is

Game-theoretic measure of capacity of © called Stochastic Complexity

Counts number of parameters 6 € © that are “essentially different” at
horizon T.

Rate at which you need to grow cardinality when using finite
discretisation.
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Proof

See Theorem 9.1 in the material.
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Minimax regret

Consider again the finite © case. Then

V7r(©) = In Z?eaé(pg(y )
yT
< In (YD pely7)
YT 0€0
= In|©|

Can be much smaller in practise.
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Asymptotic Expansion for Minimax Regret |

Now consider the i.i.d. Bernoulli model © = [0, 1] where pp(1|y*~!) = 6.

Vr(©) = 2T +o(1)

Proof.
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Asymptotic Expansion for Minimax Regret |l

Vr(©) = In (Zgggm(ﬂ))
ez )

T
Stirling T Integral Tn
~ | == | —

"(ZO: 27ri(T—i)> "( 2 )

Where the approximation is Stirling's n! =~ +/27n (g)n So that

(7) ~ m(;)"%(n—iyi Yy 27ri(:7i) (7>i(nni)n_i

e

OJ
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Asymptotic Expansion for Categorical

Consider the k-outcome categorical model © = Ay with pg = 6.
Bernoulli is the case k = 2

Proof.

See reading material O
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Asymptotic Expansion for i.i.d. Classes

NB: This is just for context

Theorem
Consider any “suitably regular” model © C Rk of i.i.d. predictors. Then

Va(©) = gln%+Iog/\/detl(6)d9+o(1)

where /(6) is the Fisher information matrix (Hessian of negative entropy)

1(0) = — E [Vilnps(Y)].

Y ~po
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Bayesian Predictors
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Idea

For finite classes ©, we saw that AA reduces to a Bayesian mixture.
Do Bayesian mixtures also control the regret for infinite ©7

For example, what about Bernoulli? How good is e.g. the uniform average

1
py7) = /0 poly ) d6

26/36



Uniform Average aka Laplace Mixture

Theorem

The uniform average predictor has predictions

m(y*t) +1

p(lly™) = t+1

and worst-case regret equal to

max Regret = In(T +1)
y

About twice V7(0) ...
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Jeffreys’ Average

Jeffreys proposed prior (based on invariance considerations)

1

PO =

Theorem
The Jeffreys predictor is equivalent to the Krichevsky-Trofimoff predictor

m(y™t) +1/2

pel1ly' ) = 2

and has worst-case regret equal to

1
max Regret < —In(T)+In2
yT 2

Matches V7(©) up to lower-order constant.
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General Bayesian Mixures

NB:
For a general model, Jeffreys' prior is

0) = \/det [(6)
PO = Jdet 1(6) do

Where /(0) is the Fisher Information matrix.

Theorem

Consider a suitably regular i.i.d. @ C R¥. The worst-case regret of
Bayesian model averaging with Jeffreys’ prior is

k
max Regret = Elnzi+Iog/\/detl(9)d0+o(1)
y" us

Equal to minimax regret V(©) up to o(1).

Practice: Bayesian methods easier to interpret/compute.
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Applications
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Markov Models

kth order Markov model can be summarised by a table

context prediction

00 Boo
01 fo1
10 910
11 011

In context x, assign probability 8, to seeing outcome 1 next.

0101001010101 017
~—
context

2k parameters.

Bayesian average can be maintained efficiently. Regret is about 2~1In T
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Application: CTW

Predict next symbol: look up context right-to-left from root, use leaf dist.

context

—N—
011010017 = 12
used prediction

» 2k+1 parameters for maximum context length k.

» O(k) per round implementation of Bayesian model average over all
context tree predictors

» Excellent data compression performance.
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Conclusions
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Conclusion of the Lecture

» Prediction with log loss has elegant exact minimax solution:
normalized maximum likelihood

> Bayesian mixtures (version of AA) with carefully selected priors can
often match the minimax regret

> Can tackle complex models with (hierarchical) Bayesian mixtures
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Conclusion of the Course

We saw
» Stochastic and game-theoretic frameworks for learning
» Ways to characterise the complexity of learning problems

> Algorithms and their analysis

Advanced topics that may interest you
» Reinforcement Learning
> Learning in (strategic) multi-agent problems
» Fairness, Accountability, Transparency

> Beyond convexity (NNs, tensor dec.)
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Conclusion

This concludes the lectures.
» It has been a pleasure

» Good luck for the exam

» If you have an idea that you want to work on . ..
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