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Download these slides from elo.mastermath.nl!

Review
(Agnostic) PAC learning

Agnostic PAC-learnability for finite classes
homework roulette

Uniform convergence .
g in the break

No-Free-Lunch Theorem (without proof)


https://elo.mastermath.nl

Formal Setup Review

. Yl Ym
= (x) () -

Lp(h) = E[((h, X, Y)] for (X, Y) ~D

Ls(h) = = 3" (R X0, Y)  for (X, Y)) in S
i=1

Classification (0/1-loss counts mistakes):

0 if h(X)

0(h,X,Y)=1{h(X) # Y} = {1 . h(X);

Regression (Squared Error):

U, X,Y) = (Y — h(X))?
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No Overfitting for (Multiclass) Classification

Realizability assumption: Exists perfect predictor h* € H, i.e.
Pr(h*(X)=Y)=1.

Theorem (First Example of PAC-Learning)

Assume H is finite, realizability holds. Choose any 6 € (0,1), € > 0.
Then, for all m > w, ERM over H guarantees

Lp(hs) <e with probability > 1 — 6.

NB Lower bound on m does not depend on D or on h*!

PAC learning: probably approximately correct
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» PAC learning (always for binary classification)
» Agnostic PAC learning for binary classification
» Agnostic PAC learning in general

» Improper Agnostic PAC learning in general
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Definition: PAC Learning (Binary Classification)

A hypothesis class H is if there exist

» a function my, : (0,1)2 = N
» and learning algorithm that outputs hs € H

such that for all

» distributions D for which realizability holds w.r.t. H
> and all €, € (0,1)

Lp(hs) < e with probability > 1 — 6,

whenever m > my (e, §).
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Definition: PAC Learning (Binary Classification)

A hypothesis class H is if there exist

» a function my, : (0,1)2 = N
» and learning algorithm that outputs hs € H

such that for all

» distributions D for which realizability holds w.r.t. H
» and all ¢, € (0,1)

Lp(hs) < e with probability > 1 — 6,

whenever m > my (e, §).

The function my; such that my(e, §) is smallest possible for all €, §

5/18



No Overfitting for (Multiclass) Classification

Theorem (First Example of PAC-Learning)

Assume H. is , holds. Choose any § € (0,1), € > 0.
Then, for all m > w, ERM over H guarantees
LD(hs) <e

with probability at least 1 — 4.

For binary classification this is equivalent to:

Theorem
Every hypothesis class H is PAC-learnable with sample complexity

my(e,6) < {Ww

€

and learning algorithm ERM.
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Definition: PAC Learning
(Binary Classification)

A hypothesis class H is if there exist

» a function my, : (0,1)> = N
» and learning algorithm that outputs hs € H

such that for all

» distributions D for which realizability holds w.r.t. H
> and all ¢, € (0,1)

Lp(hs) <e with probability > 1 — ¢,

whenever m > my, (¢, 0).
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Definition: Agnostic PAC Learning
(Binary Classification)

A hypothesis class H is Agnostic if there exist

» a function my : (0,1)> = N
» and learning algorithm that outputs hs € H

such that for all

> distributions D ferwhich—+ealizability-holds—w—rt—H-
> and all ¢, € (0,1)

Lp(hs) < hlnL Lp(h) + € with probability > 1 — ¢,
€

whenever m > my (e, §).
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Definition: Agnostic PAC Learning

{Binary—Classifieatien} (In General)

A hypothesis class H is Agnostic if there exist

» a function my : (0,1)> = N
» and learning algorithm that outputs hs € H

such that for all

> distributions D ferwhich—+ealizability-holds—w—rt—H-
> and all ¢, € (0,1)

Lp(hs) < hln):_[ Lp(h) + € with probability > 1 — ¢,
€

whenever m > my (e, §).
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Definition: Agnostic PAC Learning
(In General)

A hypothesis class H is if there exist

» a function my : (0,1)> = N
» and learning algorithm that outputs hs € H

such that for all

» distributions D
> and all ¢, € (0,1)

Lp(hs) < hln; Lp(h)+ € with probability > 1 — ¢,
€

whenever m > my (e, §).
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Definition: Improper Agnostic PAC Learning
(In General)

A hypothesis class H is Improperly if there
exist

» a function my, : (0,1)2 = N
» and learning algorithm that outputs hs e

such that for all

» distributions D
> and all ¢, € (0,1)

Lp(hs) < inf Lp(h)+¢  with probability > 1 -4,
€

whenever m > my, (¢, 0).
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Agnostic PAC-Learnability for Finite Classes
via Uniform Convergence
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Agnostic PAC-Learnability for Finite Classes

Theorem (Bounded Loss, Finite Class)

Suppose £ : H x X x Y — [0,1]. Then every finite hypothesis class H is
agnostically PAC-learnable with sample complexity

[2|n(2lzll/5)w

my(€,6) <

and learning algorithm ERM.
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Agnostic PAC-Learnability for Finite Classes

Theorem (Bounded Loss, Finite Class)

Suppose £ : H x X x Y — [0,1]. Then every finite hypothesis class H is
agnostically PAC-learnable with sample complexity

2In(2
g, ) < [Mw
€
and learning algorithm ERM.

> Worse dependence on e compared to my(e,d) < [w—‘ for
PAC-learnability
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Agnostic PAC-Learnability for Finite Classes

Theorem (Bounded Loss, Finite Class)

Suppose £ : H x X x Y — [0,1]. Then every hypothesis class H is
PAC-learnable with sample complexity

) <[22

and learning algorithm ERM.

> Worse dependence on e compared to my(e,d) < [w—‘ for
PAC-learnability

> Losses with different range [a, b] can be reduced to [0, 1] range by
subtracting a and dividing by (b — a).
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Technical Tool: Uniform Convergence

A hypothesis class H has the property if there
exists

> a function my,€:(0,1)> - N
such that for all

» distributions D
> and all ¢, € (0,1)

sup |Ls(h) — Lp(h)| < e with probability > 1 — ¢,
heH

whenever m > mY€(e, §).
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Uniform Convergence — Agnostic PAC-Learnability

Uniform convergence implies agnostic PAC-learnability:

Lemma

If H has the uniform convergence property, then it is agnostic
PAC-learnable with

m’H(ev 5) S m’,'[-][O (ga 5)

and learning algorithm ERM.
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Uniform Convergence — Agnostic PAC-Learnability

Uniform convergence implies agnostic PAC-learnability:

Lemma

If H has the uniform convergence property, then it is agnostic
PAC-learnable with

my(€,6) < mi (%,0)

and learning algorithm ERM.

> We will prove uniform convergence for finite H and loss range [0, 1]
» Then the desired agnostic PAC-learnability follows
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Proof (Handwritten)

To show, for hs ERM hypothesis:
Lp(hs) < hInL Lp(h)+ € with probability > 1 — ¢,
€
whenever m > my© (§,9).
Assuming uniform convergence, applied for €/2:

sup [Ls(h) — Lp(h)| < § with probability > 1 — 6,
heH

UC (€
whenever m > my, (5,6).

Proof: On the event that [Ls(h) — Lp(h)| < 5 for all h € H, we have for
all W e H

Lo(hs) < Ls(hs) + 5 < Ls(H) + 5 < Lo(K) +e.

Then take the infimum over A'.
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Uniform Convergence for Finite Classes

Lemma (Bounded Loss, Finite Class)

Suppose £ : H x X x Y — [0,1]. Then every finite hypothesis class H
has the uniform convergence property with

28]

m?(-]lc (675) S ’V 262

To show:
Pr ( sup |Ls(h) — Lp(h)| < e) >1-6
heH

whenever m > %
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Proof (Handwritten)

?
Pr ( sup |Ls(h) — Lp(h)] < e) >1-9
heH

?
Pr(sup |Ls(h) — Lp(h)| >€) <6
heH
?
Pr (exists h € H : |Ls(h) — Lp(h)| > €) <6
Part | (union bound):
Pr (exists h € H : |Ls(h) — Lp(h)| > €) < Y Pr(|Ls(h) — Lp(h)| > ¢)
heH
Part Il (Hoeffding's inequality): Let Z; = £(h, X;, Y;) € [0, 1].

Pr (|Ls(h) — Lp(h)| > ¢) = Pr ( ;Zm:z,- _E[Z]

Hoeffding 5
> e> < DeT2me
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Proof Continued (Handwritten)

Part I-+II:

Pr (exists h € H : |Ls(h) — Lp(h)| > €) < Y Pr(|Ls(h) — Lp(h)| > ¢)
heH

?
< [H[2e2mC < §

ZIH\

262

Yes, for m >
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Putting Everything Together

Theorem (Bounded Loss, Finite Class)

Suppose £ : H x X x Y — [0,1]. Then every hypothesis class ‘H
has the uniform convergence property with

(et < [

2¢2

and is therefore PAC-learnable with sample complexity

may(e,8) < mUC (£,6) < [2'"(2IHI/6)W

€2

and learning algorithm ERM.
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No-Free-Lunch Theorem
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No-Free-Lunch Theorem
(Binary Classification)

Is there a learner that works on all learning tasks? No!

Theorem (No-Free-Lunch)

Let A be any learning algorithm for binary classification. If m < |X|/2,
then there exists a distribution D such that

1. There exists a perfect predictor f with Lp(f) = 0.
2. Pr (LD(A(S)) > 1/8) >1/7 for S ~ D™
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No-Free-Lunch Theorem
(Binary Classification)

Is there a learner that works on all learning tasks? No!

Theorem (No-Free-Lunch)
Let A be any learning algorithm for binary classification. If m < |X|/2,
then there exists a distribution D such that

1. There exists a perfect predictor f with Lp(f) = 0.
2. Pr (LD(A(S)) > 1/8) >1/7 for S ~ D™

Interpretation:
> H, = all functions from X to {—1,+1}
> my,,(€,0) > |X]/2 for any e < 1/8, 6 < 1/7
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No-Free-Lunch Theorem
(Binary Classification)

Is there a learner that works on all learning tasks? No!

Theorem (No-Free-Lunch)

Let A be any learning algorithm for binary classification. If m < |X|/2,
then there exists a distribution D such that

1. There exists a perfect predictor f with Lp(f) = 0.
2. Pr (LD(A(S)) > 1/8) >1/7 for S ~ D™

Interpretation:
> H, = all functions from X to {—1,+1}
> my,,(€,0) > |X]/2 for any e < 1/8, 6 < 1/7

Corollary

Suppose |X| = co. Then H,y is not PAC-learnable.
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No-Free-Lunch Theorem
(Binary Classification)

Is there a learner that works on all learning tasks? No!

Theorem (No-Free-Lunch)
Let A be for binary classification. If m < |X|/2,
then there exists a distribution D such that

1. There exists a perfect predictor f with Lp(f) = 0.
2. Pr (LD(A(S)) > 1/8) >1/7 for S ~ D™,

Proof Intuition:

» Suppose D is uniform on 2m points in X,
and Y = f(X) for some unknown function f.

» From S we only know f(X) for m observed points.

» Without any assumptions about f, learner cannot do better than
random guessing on m unobserved points.
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