Machine Learning Theory 2022
Lecture 3

Tim van Erven

Download these slides now from elo.mastermath.nl!

Focus on binary classification:
> Review

» Shattering and VC-dimension

» The Fundamental Theorem of PAC-Learning homework roulette

. . . . in the break
» VC-dimension of Linear Predictors


https://elo.mastermath.nl

(Agnostic) PAC Learning
His
Exist learner (selecting hs € H) that achieves, for finite my (e, d),
Lp(hs) < hlnL Lp(h)+e€¢  with probability > 1 — 0,
€
whenever m > my (e, §),

for all D, ¢, 9.
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(Agnostic) PAC Learning
His
Exist learner (selecting hs € H) that achieves, for finite my (e, d),
Lp(hs) < th Lp(h) + € with probability > 1 — ¢,
€
whenever m > my (e, §),

for all D, ¢, 9.
His (only for binary classification):
Same, except only for D for which realizability holds w.r.t. .

» Realizability: exists perfect classifier h* € H
» Implies that infpey Lp(h) =0
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What We Know So Far About Learnability
Theorem (Finite Hypothesis Classes)

Suppose loss range is [0,1]. Finite hypothesis classes H are agnostically
PAC-learnable with ERM.
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Theorem (Finite Hypothesis Classes)
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» Does not cover e.g. linear predictors
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What We Know So Far About Learnability
Theorem (Finite Hypothesis Classes)

Suppose loss range is [0,1]. Finite hypothesis classes H are agnostically
PAC-learnable with ERM.

» Does not cover e.g. linear predictors
H = {hws(X) = sign(b + (w, X)) | w € RY, b € R}

Let H, = all (measurable) functions from X to {—1,+1}

Theorem (No-Free-Lunch)

Consider binary classification. For any e <1/8, 6 < 1/7,
sample size m < |X|/2 is not enough to PAC-learn Hy:

X
mHau(Evd) > u

Rest of today's lecture: focus on binary classification!
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Shattering and VC-Dimension

» VC-dimension of H characterizes if H is (agnostic) PAC-learnable!
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Consequences of No-Free-Lunch

No-Free-Lunch Theorem has consequences even if H +#+ Hy:

Definition (Restriction of # to C)
For finite C = {c1,..., &} C X, let He = {(h(cr), ..., h(ck)) | h € H}.

» Obtain H¢ by evaluating hypotheses in H only on inputs in C.
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Consequences of No-Free-Lunch

No-Free-Lunch Theorem has consequences even if H +#+ Hy:

Definition (Restriction of # to C)
For finite C = {c1,..., &} C X, let He = {(h(cr), ..., h(ck)) | h € H}.

» Obtain H¢ by evaluating hypotheses in H only on inputs in C.

Corollary (Difficult Subsets of H)

If exists finite C C X s.t. H¢ contains all functions from C to {—1,+1},
then sample size m < |C|/2 is not enough to PAC-learn H.

Proof: Restrict attention to D supported on C and apply no-free-lunch.
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Shattering

Hce: evaluate hypotheses in H only on inputs in C

Definition (Shattering)

H shatters a finite set C C X if H¢ = all functions from C to {—1,+1},
e |Hc| = 2lCl
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Shattering

Hce: evaluate hypotheses in H only on inputs in C

Definition (Shattering)

H shatters a finite set C C X if H¢ = all functions from C to {—1,+1},
e |Hc| = 2lCl

Example (Axis-aligned Rectangles)
Hoe = {P(ar,by,m,b,) | @1 < b1, a2 < by}, where

41 ifay<xy<bjand a < x < b

h(817b1732>b2)(X1’X2) - {—1 otherwise

Exists a C of size 4 that is shattered by H2_, but not of size 5.

rec’
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Proof (Handwritten)

Need to show:
1. Exists C of size 4 that is shattered

2. No C of size 5 is shattered
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Proof not size 5: if left-most, right-most, top-most and bottom-most

point +1, then remaining point also +1
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VC-Dimension

Definition (Shattering)

H shatters a finite set C C X if He = all functions.

Definition (Vapnik-Chervonenkis (VC) Dimension)

» VCdim(H) = maximum size of finite set C C X shattered by H

» VCdim(#) = oo if there is no maximum
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VC-Dimension

Definition (Shattering)

H shatters a finite set C C X if He = all functions.

Definition (Vapnik-Chervonenkis (VC) Dimension)

» VCdim(#H) = maximum size of finite set C C X shattered by H

» VCdim(#) = oo if there is no maximum

Corollary (Difficult Subsets of H)

If exists finite C C X such that H shatters C, then sample size m < |C|/2
is not enough to PAC-learn H.
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VC-Dimension

Definition (Shattering)

H shatters a finite set C C X if He = all functions.

Definition (Vapnik-Chervonenkis (VC) Dimension)

» VCdim(#H) = maximum size of finite set C C X shattered by H

» VCdim(#) = oo if there is no maximum

Corollary (Difficult Subsets of H)

If exists finite C C X such that H shatters C, then sample size m < |C|/2
is not enough to PAC-learn H.

> Sample size m < VCdim(?)/2 is not enough to PAC-learn H.
» If VCdim(H) = oo, then H is not PAC-learnable.
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VC-Dimension: Examples

Definition (Vapnik-Chervonenkis (VC) Dimension)

» VCdim(#H) = maximum size of finite set C C X shattered by H

» VCdim(#) = oo if there is no maximum

Example (Axis-Aligned Rectangles)
VCdim(HZ,) = 4
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VC-Dimension: Examples

Definition (Vapnik-Chervonenkis (VC) Dimension)

» VCdim(#H) = maximum size of finite set C C X shattered by H

» VCdim(#) = oo if there is no maximum

Example (Axis-Aligned Rectangles)
VCdim(HZ,) = 4

Example (Finite Hypothesis Classes)
VCdim(H) < log,(|H])
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The Fundamental Theorem of PAC-Learning

For binary classification, the following are equivalent:
1. H has the uniform convergence property.
. Any ERM rule is a successful agnostic PAC-learner for H.
. H is agnostic PAC-learnable.
. H is PAC-learnable.
. Any ERM rule is a successful PAC-learner for H.
. H has finite VC-dimension.

S 0B W N
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The Fundamental Theorem of PAC-Learning

Theorem

For binary classification, the following are equivalent:

1.

o kR wD

‘H has the uniform convergence property.

Any ERM rule is a successful agnostic PAC-learner for H.
‘H is agnostic PAC-learnable.

‘H is PAC-learnable.

Any ERM rule is a successful PAC-learner for H.

Main Points:

» PAC-learnability and agnostic PAC-learnability are equivalent

» V/C-dimension characterizes both!
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The Fundamental Theorem of PAC-Learning

For binary classification, the following are equivalent:

1.

o kR wD

‘H has the uniform convergence property.

Any ERM rule is a successful agnostic PAC-learner for H.
‘H is agnostic PAC-learnable.

‘H is PAC-learnable.

Any ERM rule is a successful PAC-learner for H.

Main Points:

» PAC-learnability and agnostic PAC-learnability are equivalent

» VC-dimension characterizes both!
Other Observations:
» Finite VC-dimension is equivalent to uniform convergence

» ERM always works for (agnostic) PAC-learning

10/15



VC-Dimension of Linear Predictors (Halfspaces)

HE = {hwp | w e RY, bR},
where

+1 ifb+(w,X)>0
—1 otherwise

hy (X)) = {

for X ¢ RY

VCdim(H{)=d+1

lin

» For many (but not all!) hypothesis classes VC-dimension equals
number of parameters
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