Machine Learning Theory 2022
Lecture 4

Tim van Erven

Download these slides now from elo.mastermath.nl!

Focus on binary classification: @
» Review

» Fundamental theorem: quantitative version homework roulette

» VC-dimension controls growth function in the break


https://elo.mastermath.nl

The Fundamental Theorem of PAC-Learning

For binary classification, the following are equivalent:
1. H has the uniform convergence property.
2. Any ERM rule is a successful agnostic PAC-learner for H.
3. H is agnostic PAC-learnable.
4. H is PAC-learnable.
5. Any ERM rule is a successful PAC-learner for H.
6

VC-dimension (agnostic) PAC-learnability
and uniform convergence!

> Still to prove: 6 — 1
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Uniform Convergence

‘H has the property:

For finite my©(e, 9),

sup [Ls(h) — Lp(h)| <€  with probability > 1 — 4,
heH

whenever m > mY©(e, §),

for all D, ¢, 9.
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Shattering and VC-Dimension

Definition (Restriction of # to C)
For finite C = {@1,...,x«} C X, let He = {(h(x1), ..., h(zk)) | h € H}.
» Obtain H¢ by evaluating hypotheses in H only on inputs in C.
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4/17



Shattering and VC-Dimension

Definition (Restriction of # to C)
For finite C = {@1,...,x«} C X, let He = {(h(x1), ..., h(zk)) | h € H}.
» Obtain H¢ by evaluating hypotheses in H only on inputs in C.

Definition (Shattering)

‘H shatters a finite set C C X if H can classify the elements of C in
all possible ways, i.e. |Hc| = 2°!.

Definition (Vapnik-Chervonenkis (VC) Dimension)

» VCdim(#H) = maximum size of finite set C C X shattered by H

» VCdim(#H) = oo if there is no maximum
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Fundamental Theorem: Quantitative Version
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Fundamental Theorem: Quantitative Version

Does the VC-dimension also characterize the sample complexity of
PAC-learning? Yes!
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Fundamental Theorem: Quantitative Version

Does the VC-dimension also characterize the of
PAC-learning? Yes!

Theorem

Consider binary classification. Suppose VCdim(H) = v < oo. Then there
exist absolute constants Cy, C; > 0 such that

1. Uniform convergence:

v+ In(1/6)

v+ In(1/9)

G 5

< mYCe 8 < C
p —m’H(eﬂ)—2 c

2. Agnostic PAC-learning:

v + In(1/6)

v +In(1/6)
G €2 €2

< m?-[(ead) < C2

3. PAC-learning:
v +1In(1/9) < my(e.8) < C2vln(1/6) + In(l/é)'
€ €

G
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Uniform Convergence Upper Bound

Upper bound from previous slide that we want to prove:

Theorem

Consider binary classification. Suppose VCdim(H) < v < co. Then there
exists an absolute constant C > 0 such that

sup [Ls(h) — Lp(h)| < e  with probability > 1 — 4,
heH

whenever n(1/5
s cvIn(1/8)

= 2
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Uniform Convergence Upper Bound

Upper bound from previous slide that we want to prove:

Theorem

Consider binary classification. Suppose VCdim(H) < v < co. Then there
exists an absolute constant C > 0 such that

sup [Ls(h) — Lp(h)| < e  with probability > 1 — 4,
heH

whenever
vin(1/e)+In(1/6)+1
€2 '

m>C

» Extra factor In(1/¢) is only logarithmic

> |t could be avoided with a more involved argument
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Uniform Convergence Upper Bound

Upper bound from previous slide that we want to prove:

Theorem

Consider binary classification. Suppose VCdim(H) < v < co. Then there
exists an absolute constant C > 0 such that

sup [Ls(h) — Lp(h)| < e  with probability > 1 — 4,
heH

whenever
vin(1/e)+In(1/6)+1
€2 '

m>C

» Extra factor In(1/¢) is only logarithmic
> |t could be avoided with a more involved argument
» v =0= |H|=1is trivial, so can assume v > 0 w.l.o.g.
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Proof Approach
Will define growth function 74,(m). Then

Part I: Growth function controls uniform convergence:

I In(2/6
sup |Ls(h)—Lp(h)| < C\/ ”T”(m)+C\/ N(2/0) ith probability > 10,
heH m m
Part Il: VC-dimension controls growth function:

em
In7(m) <vlin (—) for m > v.
v

» Finish: combine Parts | and |l, and find lower bound on m s.t.
suppey [Ls(h) — Lp(h)| < e
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Proof Part Il:
VC-dimension Controls Growth Function
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Growth Function

» Finite H have the uniform convergence property.
» How do we measure the ?

Growth function: effective size of H at sample size m:

ty(m)= max |Hc|
ccX:[Cl=m

> Interpretation: How many truly different hypotheses are there when
we only observe m inputs C = {x1,...,&m}7?

> If H is finite, then 7¢,(m) < |H|
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Sauer’s Lemma

Growth function: 73 (m) = lgw‘ax [Hel
=m

Lemma (Sauer-Shelah-Perles)

Suppose VVCdim(H) < v < co. Then the growth function is bounded by
~/m 2m ifm<v
< < , =
m(m)_;<i>_{(%) ifm>v.

» VC-dimension v determines switch from exponential to polynomial
growth in m.

» Case m > v is what we need to show for Part Il.

11/17



Sauer's letma For affl H aud 2l mw

v
=D
wheve 1y, () :T.a'x |)‘(<l
Proof ] ad T
O/l shou ¢ 0 For éky‘/i ot Stee IC( =
IHo | < \%ESC tH slebles (5%)
(2) v
<L )
)
(2) - H stabfers R = IBlav
ne oo seds BEC N B[z s (M;A)
5%..\'\3 owher |7 o‘..-,\/ |'t.-f{-.7-'> 2).




() TH! €12 Bec = H shelbes B | ,d;-\-;“:y
33 tndackon :t—\ hn - ean X a\,‘j )\.f

N Bt

’ ) -4 ’=> C l-s HOF‘ 5‘—"N<r.e.l /7’
}/C so only B=@F s sl..;‘finn/ ),7)-/

=D vhs s a4
(He) =2 =D < is stablesd cad B=g i
Sl b dcred
= r.L.s. =2 .
> 2! 9—|FF°$Q () bel(ds for 2lt w~ < l<_
To shews(\) beldt for v = L

[e[. C - S‘l"l e, Xl N b a/b.‘h‘.’y_



Vart Yo ar,alj ndec by e o—q%mfmb, so

-L(Fu'l..cl
c - Oﬁx,_‘ cee, xk%
Lk o= Hpo = % (ya, ) | 3y, 506
Coyv i) ez,

Thew (G, [ 2 [ Hel wudev connts [H || bgoanasa
Y ==t ond y 24l may kelly ;.—Ps&j
So leb's counl how aften Hlos qu/‘?ms .

i 35(yq, -r-.‘jk\\ Vg 5. G gy 7 ) NS
Th «s

(H(’ = ,79/‘" )(jg_,



Well sleow -
D) 1Yol e [982C: x, B, H stotbes B3|
W) 19l 2 [982c: xR, H sbatles B |
So JoquL.er .
IHel = 1Yl t9,] e 188 c et A shadtes RY]
obiel ¥ o be glowu
) Reeall dlak
< = By, .,-,xk777 7@:)-&1
Cradaedio)
[l = | Her] =382 2 X stadbes RY)
2B X, €, Y stetécn B |



) 19,1 £ 13R EC @ %8 ¥ shatbews BY)

Detice HA' =% hey )Ane)X s.&
L'(x) = Ll fov i=22 .k

but L' #LGy)

Elserve:
kH shablees D D H shatlot Buixg?

R Hé' Ciodacdeon)

19,0 ~ VHL | £\12682¢" : ' shatbere 83
= (3R & N statfes Bu $x3%]
2§ e et v en  H shatbes RY

ﬁl%f}f Cr x.e B, H shakers 153)
O



The Final Inequality (Handwritten)

" (m 2m ifm<v
D)<Y ey "
P ()" ifm>v
Proof: Will use binomial theorem: (x +y)™ =>"", (7) x'y

m<v: (T)=0fori>m so>/ (7)) =>", (7). Then apply binomial
theorem with x =y = 1.

m—i

m > v: [Simpler proof from Anthony and Bartlett, Neural Network Learning: Theoretical
Foundations, 1999]

() ()= () - ()

(First equality follows from binomial theorem with x =1,y = X.)
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