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▶ Review

▶ Fundamental theorem: quantitative version

▶ VC-dimension controls growth function
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The Fundamental Theorem of PAC-Learning

Theorem

For binary classification, the following are equivalent:

1. H has the uniform convergence property.

2. Any ERM rule is a successful agnostic PAC-learner for H.

3. H is agnostic PAC-learnable.

4. H is PAC-learnable.

5. Any ERM rule is a successful PAC-learner for H.

6. H has finite VC-dimension.

VC-dimension characterizes (agnostic) PAC-learnability
and uniform convergence!

▶ Still to prove: 6 → 1
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Uniform Convergence

H has the uniform convergence property:

For finite mUC
H (ϵ, δ),

sup
h∈H

|LS(h)− LD(h)| ≤ ϵ with probability ≥ 1− δ,

whenever m ≥ mUC
H (ϵ, δ),

for all D, ϵ, δ.
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Shattering and VC-Dimension

Definition (Restriction of H to C)
For finite C = {x1, . . . ,xk} ⊂ X , let HC = {

(
h(x1), . . . , h(xk)

)
| h ∈ H}.

▶ Obtain HC by evaluating hypotheses in H only on inputs in C.

Definition (Shattering)

H shatters a finite set C ⊂ X if H can classify the elements of C in
all possible ways, i.e. |HC | = 2|C|.

Definition (Vapnik-Chervonenkis (VC) Dimension)

▶ VCdim(H) = maximum size of finite set C ⊂ X shattered by H
▶ VCdim(H) = ∞ if there is no maximum
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Fundamental Theorem: Quantitative Version
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Fundamental Theorem: Quantitative Version
Does the VC-dimension also characterize the sample complexity of

PAC-learning? Yes!

Theorem

Consider binary classification. Suppose VCdim(H) = v < ∞. Then there
exist absolute constants C1,C2 > 0 such that

1. Uniform convergence:

C1
v + ln(1/δ)

ϵ2
≤ mUC

H (ϵ, δ) ≤ C2
v + ln(1/δ)

ϵ2

2. Agnostic PAC-learning:

C1
v + ln(1/δ)

ϵ2
≤ mH(ϵ, δ) ≤ C2

v + ln(1/δ)

ϵ2

3. PAC-learning:

C1
v + ln(1/δ)

ϵ
≤ mH(ϵ, δ) ≤ C2

v ln(1/ϵ) + ln(1/δ)

ϵ
.
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Uniform Convergence Upper Bound

Upper bound from previous slide that we want to prove:

Theorem

Consider binary classification. Suppose VCdim(H) ≤ v < ∞. Then there
exists an absolute constant C > 0 such that

sup
h∈H

|LS(h)− LD(h)| ≤ ϵ with probability ≥ 1− δ,

whenever

m ≥ C
v + ln(1/δ)

ϵ2
.

▶ Extra factor ln(1/ϵ) is only logarithmic

▶ It could be avoided with a more involved argument

▶ v = 0 ⇒ |H| = 1 is trivial, so can assume v > 0 w.l.o.g.
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Proof Approach

Will define growth function τH(m). Then

Part I: Growth function controls uniform convergence:

sup
h∈H

|LS(h)−LD(h)| ≤ c

√
ln τH(m)

m
+c

√
ln(2/δ)

m
with probability ≥ 1−δ,

Part II: VC-dimension controls growth function:

ln τH(m) ≤ v ln
(em

v

)
for m > v .

▶ Finish: combine Parts I and II, and find lower bound on m s.t.
suph∈H |LS(h)− LD(h)| ≤ ϵ.

8 / 17



Proof Part II:
VC-dimension Controls Growth Function
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Growth Function

▶ Finite H have the uniform convergence property.

▶ How do we measure the size of infinite H?

Growth function: effective size of H at sample size m:

τH(m) = max
C⊂X :|C|=m

|HC |

▶ Interpretation: How many truly different hypotheses are there when
we only observe m inputs C = {x1, . . . ,xm}?

▶ If H is finite, then τH(m) ≤ |H|
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Sauer’s Lemma

Growth function: τH(m) = max
|C|=m

|HC |

Lemma (Sauer-Shelah-Perles)

Suppose VCdim(H) ≤ v < ∞. Then the growth function is bounded by

τH(m) ≤
v∑

i=0

(
m

i

)
≤

{
2m if m ≤ v(
em
v

)v
if m > v.

▶ VC-dimension v determines switch from exponential to polynomial
growth in m.

▶ Case m > v is what we need to show for Part II.
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Sauer's Lemma For all H and all m
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will show :
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The Final Inequality (Handwritten)

Lemma

v∑
i=0

(
m

i

)
≤

{
2m if m ≤ v(
em
v

)v
if m > v

Proof: Will use binomial theorem: (x + y)m =
∑m

i=0

(
m
i

)
x iym−i .

m ≤ v :
(
m
i

)
= 0 for i > m, so

∑v
i=0

(
m
i

)
=

∑m
i=0

(
m
i

)
. Then apply binomial

theorem with x = y = 1.

m > v : [Simpler proof from Anthony and Bartlett, Neural Network Learning: Theoretical

Foundations, 1999]

v∑
i=0

(
m

i

)
≤

(m
v

)v v∑
i=0

(
m

i

)( v

m

)i

≤
(m
v

)v m∑
i=0

(
m

i

)( v

m

)i

=
(m
v

)v (
1 +

v

m

)m

≤
(m
v

)v

(ev/m)m =
(em

v

)v

(First equality follows from binomial theorem with x = 1, y = v
m .)
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