Machine Learning Theory 2022
Lecture 7

Tim van Erven

Download these slides now from elo.mastermath.nl!

» Complexity of classification vs regression @
» Neural networks

» Bias-variance trade-off and double descent homework roulette

» Towards an explanation in the break


https://elo.mastermath.nl

Binary Classification

» Sample complexity of agnostic PAC-learnability

VCdim(#) + In(1/6)
62

my(e,0) =

> For some (not all!) hypothesis classes, VCdim(#) = nr. of
parameters:
> Linear predictors: H = {hw(X) = sign({w, X)) : w € R?}
> Axis-aligned rectangles
>
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Regression
HE = {hy(X) = (w, X) 1w € RY, |wl|; < B}

Theorem (Lasso Estimator)

Consider linear regression with £(h, X,Y) = 3(Y — (w, X))? for

X €[-1,+1]9, Y € [-1,+1].

Then HE is agnostically PAC-learnable by ERM with sample complexity
+In(2/9)

m(6,5) <cB 2
€

for some constant cg > 0 that depends only on B.

General pattern for regression tasks:

> of hypothesis class on norm
||w]|| of parameters

» (and sometimes weakly on number of parameters d)
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Difference between
Linear Regression and Linear Classification

Linear Classification:
» Not Lipschitz in w: tiny change in w can flip prediction hy,(X)
» Measure of complexity: number of parameters d

Linear Regression:
» Lipschitz in w: tiny change in w implies tiny change in hy,(X)
» Main measure of complexity: norm constraint B
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Deep Learning / Neural Networks
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(Deep) Neural Networks
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(Deep) Neural Networks

Hidden

Input
e
N0
A% >§Z
v VA P
\Q Speech recognition Selng cars

Class of functions parametrized by matrices
w=(A1,...,An):

Fully connected network: H={hp(X)=AncAm_1--cAX :weW},

with activation function o(z) applied component-wise to vectors. E.g.
> Rectified linear unit (ReLU): o(z) = max{0, z}
» Sigmoid: o(z) =1/(1+ e~ ?)
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(Deep) Neural Networks

Hidden

Input
Q ’ RelLU: é(d) [Bartlett et al., 2017]
B /// >§< Sigmoid: e(dz) [Anthony and Bartlett, 1999]
>

KO

VC-dimension dependence
on nr. of parameters d:

Conclusion: need sample size

/o

Q to learn
Class of functions parametrized by matrices
w=(A,...,An) € R
Fully connected network: H={hw(X)=AnoAn_1- A1 X :we Rd},

with activation function o(z) applied component-wise to vectors. E.g.
> Rectified linear unit (ReLU): o(z) = max{0, z}
» Sigmoid: o(z) =1/(1+ e~ ?)
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(Deep) Neural Networks

Hidden

VC-dimension dependence
on nr. of parameters d:

ReLU . @(d) [Bartlett et al., 2017]
Sigmoid: @(dz) [Anthony and Bartlett, 1999]

Conclusion: need sample size

to learn
Class of functions parametrized by matrices
w = (A17~-~7Am) GRdZ
. d
Fully A First Glimpse of a Mystery: rw € RY,
with a| » In theory: need sample size m > nr. parameters d E.g.

» R| P In practise: sample size m < nr. parameters d

> Si ITToTaT U\L}—J./\J.TC }
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Bias-Variance Trade-off and
the Double Descent Phenomenon

7/18



Classical Bias-Variance Trade-off

risk
LD(L‘S)

Sv2e o )‘/
—>  Sumeller Kffvox.'mq_o"\'pm e ror

— Larjfr estvwmalion Rrror

. . . by = avgmin Lp(h)
> Approximation error (bias): i 3"-:,).%

infhe’}-[ LD(h) — infh L'D(h)
» Estimation error (variance):
Lp(hs) —infpey Lp(h)
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Double Descent Phenomenon

60

40

20+

Zero-one loss (%)

Squared loss

T T T T
10 40 100 300 800

Number of parameters/weights (x103)

[Belkin, Hsu, Ma, Mandal, 2019]

w—

» Varying the number of hidden units in a two-layer neural network
» Classification: MNIST hand-written digits data with 10 classes
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Double Descent Phenomenon

Zero-one loss (%)

I

The Mystery in Full View:

How can the risk as
we increase the number of parameters?

Shouldn’t the estimation error go through the roof?

T T T T T T
3 10 40 100 300 800
Number of parameters/weights (x103)

[Belkin, Hsu, Ma, Mandal, 2019]

» Varying the number of hidden units in a two-layer neural network
» Classification: MNIST hand-written digits data with 10 classes
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Towards an Explanation

1. Large margins turn classification into regression

2. Explaining double descent
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Classifiers as Real-valued Functions

o/iI-loss
:1[9L&)¢?3

’ yh(X)

NB Real-valued classifiers. E.g. hy(X) = (w, X).
Prediction is sign(h(X))

> Margin = Yh(X), where Y € {-1,+1}

> Larger margin > 0: more confident correct classification
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Classifiers as Real-valued Functions

o/iI-loss
:1[9L&>¢?3

o
yh(X)
NB Real-valued classifiers. E.g. hy(X) = (w, X).
Prediction is sign(h(X))

> Margin = Yh(X), where Y € {-1,+1}

» Larger margin > 0: more confident correct classification

» Common loss functions encourage finding large margin solutions:
logistic loss: In(1 4 e~ YA(X))

squared loss for classification: (Y — h(X))? = (1 — Yh(X))?

11/18



o/i-loss
= 1[3'«&)(0}

Large Margins 1 [Anthony and Bartlett, 1999]

95,0577 1 [y hbdey ]

]
/l _Lipsehita [oSs
|

o

B

Y yh (X)

0/1-loss < ~-Lipschitz loss < 7-large margin loss
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Large Margins ]_ [Anthony and Bartlett, 1999]

95,057 1 [y Ly <y ]

o/i-loss :
|
|

= 1[9L&)Coj

° yh (X)

0/1-loss < ~-Lipschitz loss < 7-large margin loss

LOp/l(hs) < LgpschitZ(hs)

ki Cechi o
< L?pschltZ(hs) —|—2E[R(€Llp5cmtz,%,5)] + ln(24n{’ ) wp. >1— 5

< Llsarge margin(hs) + 2IEE[,7—\,/(£Lipschitz7 H7 5)] + In(24n/76)
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Large Margins 2 [Anthony and Bartlett, 1999]

Theorem

Let hs € H be the output of a learning algorithm. Then, with probability
at least 1 — 6,

. A In(4/0
L%/I(hs) < L'Sy—large margm(hs) + QE[R([Y-LIPschItz7H’ 5)] + n(2n/7 )
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Theorem
Let hs € H be the output of a learning algorithm. Then, with probability
at least 1 — 6,

. A In(4/0
L%/I(hs) < L'Sy—large margm(hs) + QE[R([Y-LIPschItz7H’ 5)] + n(2n/7 )

1. If hs has margin ~ - on (most of) S, then L2 ™" (ko) is small
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Large Margins 2 [Anthony and Bartlett, 1999]

Theorem

Let hs € H be the output of a learning algorithm. Then, with probability
at least 1 — 6,

. A In(4/0
L%/I(hs) < L'Sy—large margm(hs) + QE[R([Y-LIPschItz’ H, 5)] + n(2n/7 )

1. If hs has on (most of) S, then L8 ™8 (4} is small

2. Lipschitz loss is %—Lipschitz, so can apply

R(ZLipschitz’fH’ 5) < %R({(h(Xl), ey h(Xm)) the 7‘[})

» So small changes in h imply small changes in loss
> We have turned the classification problem into a regression task!
» Complexity of H can be controlled by some norm on h.
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Towards an Explanation

1. Large margins turn classification into regression

2. Explaining double descent
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A Potential Explanation

>

[Belkin, Hsu, Ma, Mandal, 2019]
under-fitting . over-fitting under-parameterized over-parameterized
. Test risk Test risk
- ‘
R .
fast

“classical”

Risk

“modern”
interpolating regime

~

- ‘Training risk - Training risk
sweetspot\r\\‘__ ~ - .
Capacity of H

— __ _einterpolation threshold
Capacity of H
[Belkin et al., 2019] Double Descent
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A Potential Explanation

[Belkin, Hsu, Ma, Mandal, 2019]
A T _ B ) A )
under-fitting | over-fitting under-parameterized over-parameterized
. Test risk Test risk
I . I “classical” : “modern”
E: Q?: regime . interpolating regime
N D .
~ < Training risk Training risk:
sweet spot\: - _ S~ . _interpolation threshold
Capacity of H

[Belkin et al., 2019] Double Descent

Proposed explanation: suppose learning alg roughly behaves as

among hs € argmin Ls(h)
heH
choose solution with

[ hs2

Below int. threshold: ERM unique — classical bias-variance trade-off
Above int. threshold: larger H — more ERM solutions — smaller || hs||+7
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A Potential Explanation

>

under-fitting . over-fitting

[Belkin, Hsu, Ma, Mandal, 2019]
B }
Test risk

under-parameterized

over-parameterized
Test risk

“classical”

Risk
Risk

“modern”
regime

interpolating regime

~

~ ‘Training risk Training risk:

sweet spot T — _ S~ . _interpolation threshold
N =

Capacity of H

[Belkin et al., 2019] Double Descent

Proposed explanation: suppose learning alg roughly behaves as

among hs € argmin Ls(h)
heH
choose solution with

[ hs2

Below int. threshold: ERM unique — classical bias-variance trade-off
Above int. threshold: larger H — more ERM solutions — smaller || hs||+7

> s for e.g. logistic or squared loss (encouraging large margin)

» Different norm depending on manifestation of double descent
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Double Descent for Neural Networks Again

—$— Test
;\3 ~— Train
w40+
2
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Number of parameters/weights (x10%)

[Belkin, Hsu, Ma, Mandal, 2019]

> Classification: CIFAR-10 32x32 images from 10 classes, e.g.
airplanes, cats, dogs
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Double Descent for Neural Networks Again

60
—— Test
;o\ ~— Train
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[Belkin, Hsu, Ma, Mandal, 2019]
> Classification: CIFAR-10 32x32 images from 10 classes, e.g.
airplanes, cats, dogs
Which norm || hs||22?
Implicitly

» Exist proposals in the literature to characterize norm.
E.g. using neural tangent kernel [Jacot, Gabriel, Hongler, 2018]

16/18



Double Descent: Not Just for Neural Networks
[Belkin et al., 2019] reproduce double descent phenomenon on e.g. MNIST:

Test (%)

Norm

Train (%)

Random Fourier features: linear model over N randomly generated
basis functions that approximate a certain (reproducing kernel) Hilbert

Zero-one loss

Squared loss

88

- RFE
Min. norm solution hy, ..
(original kemel)

- e
Wi, norm solution .
(original kernel)
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= =
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g
0 - 0.0

Number of Random Fourier Features (x10%) (N)

Number of Random Fourier Features (x10%) (N)

space as N — oo
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Double Descent: Not Just for Neural Networks

[Belkin et al., 2019] reproduce double descent phenomenon on e.g. MNIST:

» 004 - — Test
3 ~—— Train
B
5 002 o
E
o
(7]
0.00 -
T T T T
T 80
8
o 20 -
()
5
g 107
N
0 - R
T T T T

10/1 1000/1  2000/1 2000/10  2000/20

Model parameters: NU% / Niree

Random forests: ensembles of decision trees

» Complexity controlled by number of leaves per tree and by number
of trees
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Conclusion

Exciting new attempts to understand the
observed in deep learning, random Fourier features,
random forests, etc.

Using tools like Rademacher complexity that you have learned in
this course.

Whether proposed explanation holds up and can be fully formalized
remains to be seen...

In any case, it has already of the
classical bias-variance trade-off.
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