Machine Learning Theory 2022 Lecture 7

Tim van Erven

Download these slides now from elo mastermath.nl!

- Complexity of classification vs regression
- Neural networks
- Bias-variance trade-off and double descent
- Towards an explanation

in the break

Binary Classification

Sample complexity of agnostic PAC-learnability determined by VC-dimension:

$$m_{\mathcal{H}}(\epsilon, \delta) pprox rac{\mathsf{VCdim}(\mathcal{H}) + \mathsf{ln}(1/\delta)}{\epsilon^2}$$

- For some (not all!) hypothesis classes, VCdim(H) = nr. of parameters:
 - ▶ Linear predictors: $\mathcal{H} = \{h_w(X) = \text{sign}(\langle w, X \rangle) : w \in \mathbb{R}^d\}$
 - Axis-aligned rectangles

Regression

$$\mathcal{H}_1^B = \{h_{\boldsymbol{w}}(\boldsymbol{X}) = \langle \boldsymbol{w}, \boldsymbol{X} \rangle : \boldsymbol{w} \in \mathbb{R}^d, \|\boldsymbol{w}\|_1 \leq B\}.$$

Theorem (Lasso Estimator)

Consider linear regression with $\ell(h, X, Y) = \frac{1}{2}(Y - \langle w, X \rangle)^2$ for $X \in [-1, +1]^d$, $Y \in [-1, +1]$.

Then $\mathcal{H}_1^{\mathcal{B}}$ is agnostically PAC-learnable by ERM with sample complexity

$$m(\epsilon, \delta) \le c_B \frac{\ln(2d) + \ln(2/\delta)}{\epsilon^2}$$

for some constant $c_B > 0$ that depends only on B.

General pattern for regression tasks:

- Complexity of hypothesis class depends on bound B on norm $\|w\|$ of parameters
- (and sometimes weakly on number of parameters d)

Difference between Linear Regression and Linear Classification

Linear Classification:

- **Not Lipschitz in** w: tiny change in w can flip prediction $h_w(X)$
- ► Measure of complexity: number of parameters d

Linear Regression:

- **Lipschitz in** w: tiny change in w implies tiny change in $h_w(X)$
- ► Main measure of complexity: **norm constraint** *B*

Deep Learning / Neural Networks

Class of non-convex functions parametrized by matrices $w = (A_1, \dots, A_m)$:

Fully connected network:
$$\mathcal{H} = \{h_w(X) = A_m \sigma A_{m-1} \cdots \sigma A_1 X : w \in \mathcal{W}\},$$

with activation function $\sigma(z)$ applied component-wise to vectors. E.g.

- ▶ Rectified linear unit (ReLU): $\sigma(z) = \max\{0, z\}$
- ► Sigmoid: $\sigma(z) = 1/(1 + e^{-z})$

Class of non-convex functions parametrized by matrices $w = (A_1, \ldots, A_m) \in \mathbb{R}^d$:

Fully connected network:
$$\mathcal{H} = \{h_w(X) = A_m \sigma A_{m-1} \cdots \sigma A_1 X : w \in \mathbb{R}^d\},$$

with activation function $\sigma(z)$ applied component-wise to vectors. E.g.

- ▶ Rectified linear unit (ReLU): $\sigma(z) = \max\{0, z\}$
- ► Sigmoid: $\sigma(z) = 1/(1 + e^{-z})$

VC-dimension dependence on nr. of parameters *d*:

ReLU: $\tilde{\Theta}(d)$ [Bartlett et al., 2017] Sigmoid: $\Theta(d^2)$ [Anthony and Bartlett, 1999]

Conclusion: need sample size $m \gg nr$. of parameters to learn

Class of non-convex functions parametrized by matrices $w = (A_1, \ldots, A_m) \in \mathbb{R}^d$:

Fully connected network:
$$\mathcal{H} = \{h_w(X) = A_m \sigma A_{m-1} \cdots \sigma A_1 X : w \in \mathbb{R}^d\},$$

with activation function $\sigma(z)$ applied component-wise to vectors. E.g.

- ▶ Rectified linear unit (ReLU): $\sigma(z) = \max\{0, z\}$
- ► Sigmoid: $\sigma(z) = 1/(1 + e^{-z})$

VC-dimension dependence on nr. of parameters d:

ReLU: $\tilde{\Theta}(d)$ [Bartlett et al., 2017] Sigmoid: $\Theta(d^2)$ [Anthony and Bartlett, 1999]

Conclusion: need sample size $m \gg nr$. of parameters to learn

Class of non-convex functions parametrized by matrices $\boldsymbol{w} = (A_1, \dots, A_m) \in \mathbb{R}^d$:

Fully q

A First Glimpse of a Mystery:

In theory: need sample size $m \gg nr$. parameters d with a

▶ In practise: sample size $m \ll$ nr. parameters d

 $: \boldsymbol{w} \in \mathbb{R}^d$ },

Bias-Variance Trade-off and the Double Descent Phenomenon

Classical Bias-Variance Trade-off

- Approximation error (bias): $\inf_{h \in \mathcal{H}} L_{\mathcal{D}}(h) \inf_{h} L_{\mathcal{D}}(h)$
- Estimation error (variance): $L_{\mathcal{D}}(h_S) \inf_{h \in \mathcal{H}} L_{\mathcal{D}}(h)$

Double Descent Phenomenon

- Varying the number of hidden units in a two-layer neural network
- ► Classification: MNIST hand-written digits data with 10 classes

Double Descent Phenomenon

- Varying the number of hidden units in a two-layer neural network
- ► Classification: MNIST hand-written digits data with 10 classes

Towards an Explanation

- 1. Large margins turn classification into regression
- 2. Explaining double descent

Classifiers as Real-valued Functions

NB Real-valued classifiers. E.g. $h_{w}(X) = \langle w, X \rangle$. Prediction is $\operatorname{sign}(h(X))$

- ▶ Margin = Yh(X), where $Y \in \{-1, +1\}$
- ► Larger margin > 0: more confident correct classification

Classifiers as Real-valued Functions

NB Real-valued classifiers. E.g. $h_{m{w}}(m{X}) = \langle m{w}, m{X}
angle.$ Prediction is $\operatorname{sign}(h(m{X}))$

- ▶ Margin = Yh(X), where $Y \in \{-1, +1\}$
- Larger margin > 0: more confident correct classification
- ► Common loss functions encourage finding large margin solutions:

$$\mbox{logistic loss: } \ln(1+e^{-Yh(X)})$$
 squared loss for classification: $(Y-h(X))^2=(1-Yh(X))^2$

[Anthony and Bartlett, 1999]

0/1-loss $\leq \gamma$ -Lipschitz loss $\leq \gamma$ -large margin loss

 $[{\sf Anthony} \ {\sf and} \ {\sf Bartlett}, \ 1999]$

 $0/1\text{-loss} \leq \gamma\text{-Lipschitz loss} \leq \gamma\text{-large margin loss}$

$$\begin{split} L_{\mathcal{D}}^{0/1}(h_S) & \leq L_{\mathcal{D}}^{\mathsf{Lipschitz}}(h_S) \\ & \leq L_S^{\mathsf{Lipschitz}}(h_S) + 2 \, \mathbb{E}[\mathcal{R}(\ell^{\mathsf{Lipschitz}}, \mathcal{H}, S)] + \sqrt{\frac{\mathsf{In}(4/\delta)}{2m}} \quad \mathsf{w.p.} \geq 1 - \delta \\ & \leq L_S^{\mathsf{large margin}}(h_S) + 2 \, \mathbb{E}[\mathcal{R}(\ell^{\mathsf{Lipschitz}}, \mathcal{H}, S)] + \sqrt{\frac{\mathsf{In}(4/\delta)}{2m}} \end{split}$$

Theorem

Let $h_S \in \mathcal{H}$ be the output of a learning algorithm. Then, with probability at least $1 - \delta$,

$$L_{\mathcal{D}}^{0/1}(h_S) \leq L_S^{\gamma\text{-large margin}}(h_S) + 2 \operatorname{\mathbb{E}}[\mathcal{R}(\ell^{\gamma\text{-Lipschitz}},\mathcal{H},S)] + \sqrt{\frac{\ln(4/\delta)}{2m}}.$$

Theorem

Let $h_S \in \mathcal{H}$ be the output of a learning algorithm. Then, with probability at least $1 - \delta$,

$$L_{\mathcal{D}}^{0/1}(h_S) \leq L_S^{\gamma\text{-large margin}}(h_S) + 2 \operatorname{\mathbb{E}}[\mathcal{R}(\ell^{\gamma\text{-Lipschitz}},\mathcal{H},S)] + \sqrt{\frac{\ln(4/\delta)}{2m}}.$$

1. If h_S has margin $\geq \gamma$ on (most of) S, then $L_S^{\gamma-\text{large margin}}(h_S)$ is small

Theorem

Let $h_S \in \mathcal{H}$ be the output of a learning algorithm. Then, with probability at least $1 - \delta$,

$$L_{\mathcal{D}}^{0/1}(h_S) \leq L_S^{\gamma\text{-large margin}}(h_S) + 2 \operatorname{\mathbb{E}}[\mathcal{R}(\ell^{\gamma\text{-Lipschitz}},\mathcal{H},S)] + \sqrt{\frac{\ln(4/\delta)}{2m}}.$$

- 1. If h_S has margin $\geq \gamma$ on (most of) S, then $L_S^{\gamma-\text{large margin}}(h_S)$ is small
- 2. Lipschitz loss is $\frac{1}{\gamma}$ -Lipschitz, so can apply contraction lemma:

$$\mathcal{R}(\ell^{\mathsf{Lipschitz}}, \mathcal{H}, \mathcal{S}) \leq \frac{1}{\gamma} \mathcal{R}\Big(\big\{(h(\boldsymbol{X}_1), \dots, h(\boldsymbol{X}_m)) : h \in \mathcal{H}\big\}\Big)$$

- So small changes in h imply small changes in loss
- ▶ We have turned the classification problem into a regression task!
- ▶ Complexity of \mathcal{H} can be controlled by some norm on h.

Towards an Explanation

- 1. Large margins turn classification into regression
- 2. Explaining double descent

A Potential Explanation

[Belkin, Hsu, Ma, Mandal, 2019]

A Potential Explanation

[Belkin, Hsu, Ma, Mandal, 2019]

Proposed explanation: suppose learning alg roughly behaves as

among ERM solutions
$$h_S \in \arg\min_{h \in \mathcal{H}} L_S(h)$$
 choose solution with smallest norm $||h_S||_{??}$

Below int. threshold: ERM unique \rightarrow classical bias-variance trade-off Above int. threshold: larger $\mathcal{H} \rightarrow$ more ERM solutions \rightarrow smaller $\|h_S\|_{??}$

A Potential Explanation

[Belkin, Hsu, Ma, Mandal, 2019]

Proposed explanation: suppose learning alg roughly behaves as

among ERM solutions
$$h_S \in \arg\min_{h \in \mathcal{H}} L_S(h)$$
 choose solution with smallest norm $||h_S||_{??}$

Below int. threshold: ERM unique \to classical bias-variance trade-off Above int. threshold: larger $\mathcal{H} \to \text{more ERM solutions} \to \text{smaller } \|h_S\|_{??}$

- \triangleright L_S for e.g. logistic or squared loss (encouraging large margin)
- Different norm depending on manifestation of double descent

Double Descent for Neural Networks Again

[Belkin, Hsu, Ma, Mandal, 2019]

Classification: CIFAR-10 32x32 images from 10 classes, e.g. airplanes, cats, dogs

Double Descent for Neural Networks Again

[Belkin, Hsu, Ma, Mandal, 2019]

 Classification: CIFAR-10 32x32 images from 10 classes, e.g. airplanes, cats, dogs

Which norm $||h_S||_{??}$?

Implicitly induced by optimization algorithm!

Exist proposals in the literature to characterize norm.
 E.g. using neural tangent kernel [Jacot, Gabriel, Hongler, 2018]

Double Descent: Not Just for Neural Networks

[Belkin et al., 2019] reproduce double descent phenomenon on e.g. MNIST:

Random Fourier features: linear model over N randomly generated basis functions that approximate a certain (reproducing kernel) Hilbert space as $N \to \infty$

Double Descent: Not Just for Neural Networks

[Belkin et al., 2019] reproduce double descent phenomenon on e.g. MNIST:

Random forests: ensembles of decision trees

 Complexity controlled by number of leaves per tree and by number of trees

Conclusion

Exciting new attempts to understand the double descent phenomenon observed in deep learning, random Fourier features, random forests, etc.

- Using tools like Rademacher complexity that you have learned in this course.
- ▶ Whether proposed explanation holds up and can be fully formalized remains to be seen...

In any case, it has already radically changed our view of the classical bias-variance trade-off.