Machine Learning Theory 2022
Lecture 8

Wouter M. Koolen

Download these slides now from elo.mastermath.nl!

» Online Learning Intro
» Basic Protocol
» Basic Algorithms

» Basic Performance Guarantees
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Online Learning Intro
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The Need to Go Beyond IID

When/why might IID be an assumption?
» When humans (other learning systems) are in the loop
» When predictions are turned into actions
> ...
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When/why might IID be an assumption?
» When humans (other learning systems) are in the loop
» When predictions are turned into actions
> ...

Example (Fashion)
What shirt will consumers buy in spring? Hypotheses:
> Blue
> White
» Tiger print
Collect data revealing preferences = Compute ERM =
Mass produce Tiger print shirts = Huge profit!
Forward to next spring ...
Hardly anyone buys Tiger print shirts.
Why not?
Our mass production consumer preferences.
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Online learning focus
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Online learning focus

Main idea

No assumptions about the data < An evil opponent controls the data.

Is learning possible? When/how/what does it even mean?

Change of setup/perspective/emphasis

| 4
>
>

Tight feedback loop (recurring prediction task)
Continuous learning (no training/learning separation)

Adversarial analysis (Prequential principle, individual sequence.
There is only the data. Also establishes robustness of statistical
estimators.)

Emphasis on both computational and statistical performance

Regret: relative notion of performance

4/21



Application domains

Truly sequential problems:

electricity demand prediction (EDF, also Amazon)
mobile device power management

hybrid cars engine switching

caching

medical trials (bandits)

online advertisement (bandits)

weather forecasting

data compression (CTW)

statistical testing

investment (Universal portfolios)

input assistants (e.g. Dasher)

prediction with expert advice (meld human and machine prediction)
online convex optimisation

VYVVVVVVVVVYYVYY
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Wider application

> Big data sets (transport state of online algorithm instead of data,
online to batch conversion)

» Convex optimisation
» Game theory (online learning methods for approximate equilibrium)

» General understanding

» Uncertainty and ways to manipulate it
» Makeup of and patterns in data
> Complexity of classes of strategies
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Overview of Second Half of Course

Boosting
AdaBoost

Bandits
UCB, EXP3
Reinforcement Learning

(Strongly) Convex Losses
Online Gradient Descent (2x)
Exp-concave Losses
Online Newton Step

Online Convex Optimisation

Probabilistic Classes
Norm. Max. Likelihood

Material: course notes and selection of sources on MLT website.
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https://www.cwi.nl/~wmkoolen/MLT_2021/

The menu for today

Two fundamental and prototypical online learning problems
» The mix-loss game
> Aggregating Algorithm
» Performance analysis
» The dot-loss game

> Hedge Algorithm
> Performance analysis
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The Mix Loss Game
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Mix-loss game

Protocol

> Fort=1,2,...
P Learner chooses a distribution w; € Ak on K “experts”.
> Adversary reveals loss vector £; € (—o0, o0]¥.

i . . K _ ok
> Learner’s loss is the mix loss — In (Zk:l wle Zt)
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Mix-loss game

> Fort=1,2,...
P Learner chooses a distribution w; € Ak on K “experts”.
> Adversary reveals loss vector £; € (—oo, o0]X.

i . . K _ ok
> Learner’s loss is the mix loss — In (Zk:l wle Zt)

Instances:
» Investment (loss is negative log-growth)
» Data compression (loss is code length)
> Probability forecasting (loss is logarithmic loss)

Connection to statistical learning:

» For any finite hypothesis class H = {hy, ..., hx} of binary classifiers,
we may consider X = 1 [h(x;) # yi].
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Two useful properties of the mix loss

Fact
Mix loss passes on additive constant ¢ € R:

K K
—In <Z Wtke_(ef“)) = c—1In (Z er_€f>
k=1

k=1
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Two useful properties of the mix loss

Fact
Mix loss passes on additive constant ¢ € R:

K K
—In (Z Wtke_(ef”)) = c—1In (Z er_e,;>
k=1

k=1

Fact _
Mix loss of deterministic prediction w, = e; € Ak equals ¢;:

K
_ gk i i
—In <Zwtke et> = —In(e éf) = ¥
k=1
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Mix-loss objective

Obviously we cannot guarantee small loss.
Idea: relative evaluation, i.e. seek performance close to best expert.

Definition (Regret)

After T rounds of the mix-loss game, the regret is given by

T K T
Rr = Z—In er_et = mkinZZ’;
t=1 k=1 t=1
Learner's mix loss loss of best expert

Goal: design a strategy for Learner that guarantees low regret.
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Worst-case regret and Minimax regret
A strategy for the learner assigns to each history
(wy,£1),...,(wi—1,€:—1) a next action w.
Definition (Worst-case regret)

The worst-case regret of a strategy S for the learner is

max - - - max Rt
£1 ET

where the w; are chosen according to S.
Definition (Minimax regret)
The minimax regret of the mix loss game is

min worst-case regret = minmax---min max Rt
learner strategy w1 £y wr LT
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Mix-loss regret: lower bound
(adversary construction)

Theorem

Any strategy for Learner has worst-case regret > In K, already in T =1
round.

Proof.
Look at Kiew € arg ming wf so that wi <
Administer loss killing everyone but ko

1 =
0 k= kow

1
%

Now Learner’s mix loss equals

K
¢k _ pklow
—In(E wie él) = —In (W1k'°we Zto) > InK—|—€f'°W
k=1
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The Aggregating Algorithm for mix loss

Definition (Aggregating Algorithm)
The Aggregating Algorithm plays weights in round t:
-Xo
whk = — S = (AA)

K _st1g4
ijle 2o bs

or, equivalently, wf = % and

k o—K
k wpe -t

Wi, = ——— (AA, incremental)
t+1 Zszl Wée—lﬁ

Many names
» (Generalisation of) Bayes' rule
» Exponentially weighted average
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Mix-loss regret: upper bound (algorithm)

Theorem

The regret of the Aggregating Algorithm is at most Rt < In K for all
T>0.

Proof.

Crucial observation is that mix loss telescopes

K T K _t—1 gk
K ok e Zs:l A ok
E —In E W e & = E —In E ﬁe t
t=1 t=1 k=1 Zj:l e X bs

XT: Zk le 25—155
t=1 ZJ 1€ T

K
—In (Ze_zz‘let) +InK.
k=1

Bounding the sum from below by a max results in

.
. k
< min E i +InK ()

t=1
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The Dot Loss Game
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Dot-loss game

Protocol

> Fort=1,2,...
P Learner chooses a distribution w; € Ak on K “experts”.

> Adversary reveals loss vector £; € [0,1]¥.
> Learner’s loss is the dot loss w]£; = Zle wi ek

Many names:
» Decision Theoretic Online Learning
» Prediction with Expert Advice
» The Hedge setting
» The Experts setting
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Dot-loss objective

Definition (Regret)

Regret after T rounds:
T T
Ry = ;wm — mkin;zf

Goal: design an algorithm for Learner that guarantees low regret.
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Mix loss vs Dot-loss (Jensen)

By Jensen's Inequality for the convex function x — — In(x)

(Z k —”) < Zwkek (2)

mix loss dot loss

So the dot loss game is harsher for the Learner ...
.. but maybe we can find a converse inequality (with small overhead)
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Mix loss vs Dot loss (Hoeffding)
Lemma (Hoeffding)

Fix zero-mean r.v. X € [a, b], and let n € R. Then

E[e"X] < e7'(b=2)/8

(Note: Lemma is main ingredient of but not equal to Hoeffding's Bound)
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Mix loss vs Dot loss (Hoeffding)

Lemma (Hoeffding)
Fix zero-mean r.v. X € [a, b], and let n € R. Then
E[e"X] < e7'(b=2)/8
(Note: Lemma is main ingredient of but not equal to Hoeffding's Bound)
Application: Fix w; € Ak and £, € [0,1]%. Define r.v. X to take value

w{ €, — (¥ with probability wX for all k =1,..., K. Then X has mean
zero, and takes values in an interval of length 1. So

T k 2
Z Wtken(wt £:—ty) < el /8
k
and hence we obtain a converse to (2):

1
thKt < —E|n (wae—nét> +g
k

~——

dot loss n-scaled mix loss
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Hedge algorithm

Idea: re-use AA for mix loss, now with learning rate n > 0.

Definition (Hedge Algorithm)
The Hedge algorithm with learning rate n plays weights in round t:

e_77 22211 e:

k
= - Hed
" ZJK=1 e S b (Hedge)

or, equivalently, wf = % and
k
whe b

K .
Wi = SR g (Hedge, incremental)
Zj:l Me né:
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Hedge analysis

Lemma

The regret of Hedge is bounded by

I
Rr < n—K—i-Tﬂ
n 8

Proof.
Applying Hoeffding’s Lemma to the loss of each round gives

T T/ 4 K )
Zw{ft < Z —n Zw,f‘e_"éf + n/8
t=1 =1\ " k=1

mix loss overhead

The mix loss telescopes, and is bounded by (1) by

T _1 K . T
Z |n <Z er‘ﬁ@) S mkin ZEI;JFT (3)

]
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Hedge tuning

Theorem
The Hedge regret bound is minimised at n = % where it states

Rr < /T/2InK.

Proof.

Pick n to cancel the derivative. OJ

Note: tuning requires knowledge of the time horizon T. This can be
solved by the “Doubling Trick”. You will see it in the exercises.
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Regret lower bound for the Dot loss game

Is the Hedge algorithm actually good?

The minimax regret for the dot loss game is (\/ TinK )
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Regret lower bound for the Dot loss game
Is the Hedge algorithm actually good?

Theorem
The minimax regret for the dot loss game is (\/ TIn K).

Proof. (Bonus Material).

We will see in the homework that there is an adversary for the 2-expert
game with lower bound cv/T. Here we boost it to K experts. The
construction works by splitting the horizon T into T/log K epochs.
Within each epoch, we will cluster the experts into 2 groups, and apply
the 2-expert adversary to each group. This inflicts regret ¢/ T/ log K
w.r.t. each expert in the winning group. With K experts, we can split
them log K many times completely independently (see the figure below).
The overall regret w.r.t. the expert that is in the wining group in every

epoch is
Ry > log(K)cy/T/logK = ¢cy/TlogK
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log K epochs

Regret lower bound for the Dot loss game

K experts
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Conclusion

Two simple settings.
» Adversary controls data
> Efficient learning algorithms
» With performance guarantees
» Matching lower bounds
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