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The Need to Go Beyond IID

When/why might IID be an unreasonable assumption?

▶ When humans (other learning systems) are in the loop

▶ When predictions are turned into actions

▶ . . .

Example (Fashion)
What shirt will consumers buy in spring? Hypotheses:

▶ Blue

▶ White

▶ Tiger print

Collect data revealing preferences ⇒ Compute ERM ⇒ Tiger print
Mass produce Tiger print shirts ⇒ Huge profit!
Forward to next spring . . .
Hardly anyone buys Tiger print shirts.
Why not?
Our mass production changed consumer preferences.
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Online learning focus

Main idea
No assumptions about the data ⇔ An evil opponent controls the data.

Is learning possible? When/how/what does it even mean?

Change of setup/perspective/emphasis

▶ Tight feedback loop (recurring prediction task)

▶ Continuous learning (no training/learning separation)

▶ Adversarial analysis (Prequential principle, individual sequence.
There is only the data. Also establishes robustness of statistical
estimators.)

▶ Emphasis on both computational and statistical performance

▶ Regret: relative notion of performance
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Application domains

Truly sequential problems:

▶ electricity demand prediction (EDF, also Amazon)
▶ mobile device power management
▶ hybrid cars engine switching
▶ caching
▶ medical trials (bandits)
▶ online advertisement (bandits)
▶ weather forecasting
▶ data compression (CTW)
▶ statistical testing
▶ investment (Universal portfolios)
▶ input assistants (e.g. Dasher)
▶ prediction with expert advice (meld human and machine prediction)
▶ online convex optimisation
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Wider application

▶ Big data sets (transport state of online algorithm instead of data,
online to batch conversion)

▶ Convex optimisation

▶ Game theory (online learning methods for approximate equilibrium)

▶ General understanding
▶ Uncertainty and ways to manipulate it
▶ Makeup of and patterns in data
▶ Complexity of classes of strategies
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Overview of Second Half of Course

Online Convex Optimisation

Experts
AA, Hedge

Bandits
UCB, EXP3

Reinforcement Learning

(Strongly) Convex Losses
Online Gradient Descent (2x)

Exp-concave Losses
Online Newton Step

Boosting
AdaBoost

Probabilistic Classes
Norm. Max. Likelihood

Material: course notes and selection of sources on MLT website.
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The menu for today

Two fundamental and prototypical online learning problems

▶ The mix-loss game
▶ Aggregating Algorithm
▶ Performance analysis

▶ The dot-loss game
▶ Hedge Algorithm
▶ Performance analysis
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The Mix Loss Game
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Mix-loss game

Protocol

▶ For t = 1, 2, . . .
▶ Learner chooses a distribution wt ∈ △K on K “experts”.
▶ Adversary reveals loss vector ℓt ∈ (−∞,∞]K .

▶ Learner’s loss is the mix loss − ln
(∑K

k=1 w
k
t e

−ℓkt

)

Instances:

▶ Investment (loss is negative log-growth)

▶ Data compression (loss is code length)

▶ Probability forecasting (loss is logarithmic loss)

Connection to statistical learning:

▶ For any finite hypothesis class H = {h1, . . . , hK} of binary classifiers,
we may consider ℓkt = 1 [hk(xt) ̸= yt ].
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Two useful properties of the mix loss

Fact
Mix loss passes on additive constant c ∈ R:

− ln

(
K∑

k=1

wk
t e

−(ℓkt +c)

)
= c − ln

(
K∑

k=1

wk
t e

−ℓkt

)

Fact
Mix loss of deterministic prediction wt = ej ∈ △K equals ℓjt :

− ln

(
K∑

k=1

wk
t e

−ℓkt

)
= − ln

(
e−ℓjt

)
= ℓjt
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Mix-loss objective

Obviously we cannot guarantee small loss.
Idea: relative evaluation, i.e. seek performance close to best expert.

Definition (Regret)

After T rounds of the mix-loss game, the regret is given by

RT =
T∑
t=1

− ln

(
K∑

k=1

wk
t e

−ℓkt

)
︸ ︷︷ ︸

Learner’s mix loss

− min
k

T∑
t=1

ℓkt︸ ︷︷ ︸
loss of best expert

Goal: design a strategy for Learner that guarantees low regret.
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Worst-case regret and Minimax regret

A strategy for the learner assigns to each history
(w1, ℓ1), . . . , (wt−1, ℓt−1) a next action wt .

Definition (Worst-case regret)

The worst-case regret of a strategy S for the learner is

max
ℓ1

· · ·max
ℓT

RT

where the wt are chosen according to S .

Definition (Minimax regret)

The minimax regret of the mix loss game is

min
learner strategy

worst-case regret = min
w1

max
ℓ1

· · ·min
wT

max
ℓT

RT
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Mix-loss regret: lower bound
(adversary construction)

Theorem

Any strategy for Learner has worst-case regret ≥ lnK, already in T = 1
round.

Proof.
Look at klow ∈ argmink w

k
1 so that wklow

1 ≤ 1
K .

Administer loss killing everyone but klow

ℓk1 =

{
∞ k ̸= klow

0 k = klow

Now Learner’s mix loss equals

− ln

(
K∑

k=1

wk
1 e

−ℓk1

)
= − ln

(
wklow
1 e−ℓ

klow
t

)
≥ lnK + ℓklowt
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The Aggregating Algorithm for mix loss

Definition (Aggregating Algorithm)

The Aggregating Algorithm plays weights in round t:

wk
t =

e−
∑t−1

s=1 ℓks∑K
j=1 e

−
∑t−1

s=1 ℓjs
(AA)

or, equivalently, wk
1 = 1

K and

wk
t+1 =

wk
t e

−ℓkt∑K
j=1 w

j
t e−ℓjt

(AA, incremental)

Many names

▶ (Generalisation of) Bayes’ rule

▶ Exponentially weighted average
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Mix-loss regret: upper bound (algorithm)
Theorem

The regret of the Aggregating Algorithm is at most RT ≤ lnK for all
T ≥ 0.

Proof.
Crucial observation is that mix loss telescopes

T∑
t=1

− ln

(
K∑

k=1

w k
t e

−ℓkt

)
=

T∑
t=1

− ln

 K∑
k=1

e−
∑t−1

s=1 ℓks∑K
j=1 e

−
∑t−1

s=1 ℓ
j
s

e−ℓkt


=

T∑
t=1

− ln

∑K
k=1 e

−
∑t

s=1 ℓks∑K
j=1 e

−
∑t−1

s=1 ℓ
j
s


= − ln

(
K∑

k=1

e−
∑T

t=1 ℓkt

)
+ lnK .

Bounding the sum from below by a max results in

≤ min
k

T∑
t=1

ℓkt + lnK (1)
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The Dot Loss Game
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Dot-loss game

Protocol

▶ For t = 1, 2, . . .
▶ Learner chooses a distribution wt ∈ △K on K “experts”.
▶ Adversary reveals loss vector ℓt ∈ [0, 1]K .
▶ Learner’s loss is the dot loss w⊺

t ℓt =
∑K

k=1 w
k
t ℓ

k
t

Many names:

▶ Decision Theoretic Online Learning

▶ Prediction with Expert Advice

▶ The Hedge setting

▶ The Experts setting

18 / 27



Dot-loss objective

Definition (Regret)

Regret after T rounds:

RT =
T∑
t=1

w⊺
t ℓt −min

k

T∑
t=1

ℓkt

Goal: design an algorithm for Learner that guarantees low regret.
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Mix loss vs Dot-loss (Jensen)

By Jensen’s Inequality for the convex function x 7→ − ln(x)

− ln

(
K∑

k=1

wk
t e

−ℓkt

)
︸ ︷︷ ︸

mix loss

≤
K∑

k=1

wk
t ℓ

k
t︸ ︷︷ ︸

dot loss

(2)

So the dot loss game is harsher for the Learner . . .
. . . but maybe we can find a converse inequality (with small overhead)
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Mix loss vs Dot loss (Hoeffding)

Lemma (Hoeffding)

Fix zero-mean r.v. X ∈ [a, b], and let η ∈ R. Then

E[eηX ] ≤ eη
2(b−a)2/8

(Note: Lemma is main ingredient of but not equal to Hoeffding’s Bound)

Application: Fix wt ∈ △K and ℓt ∈ [0, 1]K . Define r.v. X to take value
w⊺

t ℓt − ℓkt with probability wk
t for all k = 1, . . . ,K . Then X has mean

zero, and takes values in an interval of length 1. So∑
k

wk
t e

η(w⊺
t ℓt−ℓkt ) ≤ eη

2/8

and hence we obtain a converse to (2):

w⊺
t ℓt︸ ︷︷ ︸

dot loss

≤ −1

η
ln

(∑
k

wk
t e

−ηℓkt

)
︸ ︷︷ ︸

η-scaled mix loss

+
η

8
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Hedge algorithm

Idea: re-use AA for mix loss, now with learning rate η > 0.

Definition (Hedge Algorithm)

The Hedge algorithm with learning rate η plays weights in round t:

wk
t =

e−η
∑t−1

s=1 ℓks∑K
j=1 e

−η
∑t−1

s=1 ℓjs
. (Hedge)

or, equivalently, wk
1 = 1

K and

wk
t+1 =

wk
t e

−ηℓkt∑K
j=1 w

j
t e−ηℓjt

(Hedge, incremental)
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Hedge analysis
Lemma

The regret of Hedge is bounded by

RT ≤ lnK

η
+ T

η

8

Proof.
Applying Hoeffding’s Lemma to the loss of each round gives

T∑
t=1

w⊺
t ℓt ≤

T∑
t=1

(
−1

η
ln

(
K∑

k=1

wk
t e

−ηℓkt

)
︸ ︷︷ ︸

mix loss

+ η/8︸︷︷︸
overhead

)

The mix loss telescopes, and is bounded by (1) by

T∑
t=1

−1

η
ln

(
K∑

k=1

wk
t e

−ηℓkt

)
≤ min

k

T∑
t=1

ℓkt +
lnK

η
. (3)
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Hedge tuning

Theorem

The Hedge regret bound is minimised at η =
√

8 lnK
T where it states

RT ≤
√
T/2 lnK .

Proof.
Pick η to cancel the derivative.

Note: tuning requires knowledge of the time horizon T . This can be
solved by the “Doubling Trick”. You will see it in the exercises.
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Regret lower bound for the Dot loss game

Is the Hedge algorithm actually good?

Theorem

The minimax regret for the dot loss game is Ω
(√

T lnK
)
.

Proof. (Bonus Material).
We will see in the homework that there is an adversary for the 2-expert
game with lower bound c

√
T . Here we boost it to K experts. The

construction works by splitting the horizon T into T/ logK epochs.
Within each epoch, we will cluster the experts into 2 groups, and apply
the 2-expert adversary to each group. This inflicts regret c

√
T/ logK

w.r.t. each expert in the winning group. With K experts, we can split
them logK many times completely independently (see the figure below).
The overall regret w.r.t. the expert that is in the wining group in every
epoch is

RT ≥ log(K )c
√
T/ logK = c

√
T logK
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Regret lower bound for the Dot loss game
lo
g
K

ep
o
ch
s

K experts
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Conclusion

Two simple settings.

▶ Adversary controls data

▶ Efficient learning algorithms

▶ With performance guarantees

▶ Matching lower bounds
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