Machine Learning Theory 2023 Lecture 9

Wouter M. Koolen

Download these slides now from elo.mastermath.nl!

Online Convex Optimisation

- Gradient Descent for Convex Losses
- Online to Batch Conversion
- Gradient Descent for Strongly Convex Losses

Recap

Overview of Second Half of Course

Material: course notes on MLT website.

Recap: Finite Classes

So far we have seen learning "finite sets": Our learning algorithms behave like the best among K strategies.

- K-Experts setting
- Mix loss: Aggregating Algorithm
- Dot loss: Hedge algorithm
- K-armed bandit settings
- Adversarial bandit: EXP3
- Stochastic bandit: UCB

Outlook: Beyond the Finite

What if we want to compete with infinite sets?

- Can we?
- How?

In each case, lower bounds grow with $K: \ln K, \sqrt{T \ln K}, \sqrt{T K \ln K}$, $K / \Delta \ln T$. So hopeless in the unstructured $K \rightarrow \infty$ case.

Today: compete with continuous sets of actions, parameterised such that the loss is a convex function of the action.

Convexity Review

Convex Functions I: definition

Fix a convex set $\mathcal{U} \subseteq \mathbb{R}^{d}$.

Convex Functions I : definition

Fix a convex set $\mathcal{U} \subseteq \mathbb{R}^{d}$.

Definition

A function $f: \mathcal{U} \rightarrow \mathbb{R}$ is convex if for all $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{U}$ and weights $\theta \in[0,1]$,

$$
f(\theta \boldsymbol{x}+(1-\theta) \boldsymbol{y}) \leq \theta f(\boldsymbol{x})+(1-\theta) f(\boldsymbol{y})
$$

Convex Functions I : definition

Fix a convex set $\mathcal{U} \subseteq \mathbb{R}^{d}$.

Definition

A function $f: \mathcal{U} \rightarrow \mathbb{R}$ is convex if for all $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{U}$ and weights $\theta \in[0,1]$,

$$
f(\theta \boldsymbol{x}+(1-\theta) \boldsymbol{y}) \leq \theta f(\boldsymbol{x})+(1-\theta) f(\boldsymbol{y})
$$

Extends to arbitrary mixtures: $f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)]$ (Jensen).

Convex Functions II : tangent bound

Fact
A differentiable function $f: \mathcal{U} \rightarrow \mathbb{R}$ is convex iff for all $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{U}$

$$
f(\boldsymbol{y})-f(\boldsymbol{x}) \geq\langle\boldsymbol{y}-\boldsymbol{x}, \nabla f(\boldsymbol{x})\rangle
$$

Convex Functions II : tangent bound

Fact
A differentiable function $f: \mathcal{U} \rightarrow \mathbb{R}$ is convex iff for all $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{U}$

$$
f(\boldsymbol{y})-f(\boldsymbol{x}) \geq\langle\boldsymbol{y}-\boldsymbol{x}, \nabla f(\boldsymbol{x})\rangle
$$

Symmetrically, $\langle\boldsymbol{y}-\boldsymbol{x}, \nabla f(\boldsymbol{y})\rangle \geq f(\boldsymbol{y})-f(\boldsymbol{x})$.

Convex Functions III: sub-gradient

- convex f
- tangent lower bound
- another tangent lower bound
- a third tangent lower bound

Fact (Sub-gradient)

For any convex $f: \mathcal{U} \rightarrow \mathbb{R}$, possibly non-differentiable, and point $\boldsymbol{x} \in \mathcal{U}$, there always exists some vector $\boldsymbol{g} \in \mathbb{R}^{d}$ such that for all $\boldsymbol{y} \in \mathcal{U}$

$$
f(\boldsymbol{y})-f(\boldsymbol{x}) \geq\langle\boldsymbol{y}-\boldsymbol{x}, \boldsymbol{g}\rangle
$$

Any such vector \boldsymbol{g} is called a sub-gradient (of f at \boldsymbol{x}).

Convex Functions III : sub-gradient

- convex f
- tangent lower bound
- another tangent lower bound
- a third tangent lower bound

Fact (Sub-gradient)

For any convex $f: \mathcal{U} \rightarrow \mathbb{R}$, possibly non-differentiable, and point $\boldsymbol{x} \in \mathcal{U}$, there always exists some vector $\boldsymbol{g} \in \mathbb{R}^{d}$ such that for all $\boldsymbol{y} \in \mathcal{U}$

$$
f(\boldsymbol{y})-f(\boldsymbol{x}) \geq\langle\boldsymbol{y}-\boldsymbol{x}, \boldsymbol{g}\rangle
$$

Any such vector \boldsymbol{g} is called a sub-gradient (of f at \boldsymbol{x}).

The gradient of a differentiable function is a sub-gradient.

Convex Functions III: sub-gradient

- convex f
- tangent lower bound
- another tangent lower bound
- a third tangent lower bound

Fact (Sub-gradient)

For any convex $f: \mathcal{U} \rightarrow \mathbb{R}$, possibly non-differentiable, and point $\boldsymbol{x} \in \mathcal{U}$, there always exists some vector $\boldsymbol{g} \in \mathbb{R}^{d}$ such that for all $\boldsymbol{y} \in \mathcal{U}$

$$
f(\boldsymbol{y})-f(\boldsymbol{x}) \geq\langle\boldsymbol{y}-\boldsymbol{x}, \boldsymbol{g}\rangle
$$

Any such vector \boldsymbol{g} is called a sub-gradient (of f at \boldsymbol{x}).

The gradient of a differentiable function is a sub-gradient.
We will abuse notation and denote any sub-gradient by $\nabla f(\boldsymbol{x})$.

Online Convex Optimisation

Online Convex Optimisation

General yet simple sequential decision problem.
Fix a convex set $\mathcal{U} \subseteq \mathbb{R}^{d}$.
Protocol
For $t=1,2, \ldots$

- Learner chooses a point $\boldsymbol{w}_{t} \in \mathcal{U}$.
- Adversary reveals convex loss function $f_{t}: \mathcal{U} \rightarrow \mathbb{R}$.
- Learner's loss is $f_{t}\left(\boldsymbol{w}_{t}\right)$

Online Convex Optimisation

General yet simple sequential decision problem.
Fix a convex set $\mathcal{U} \subseteq \mathbb{R}^{d}$.

Protocol

For $t=1,2, \ldots$

- Learner chooses a point $\boldsymbol{w}_{t} \in \mathcal{U}$.
- Adversary reveals convex loss function $f_{t}: \mathcal{U} \rightarrow \mathbb{R}$.
- Learner's loss is $f_{t}\left(\boldsymbol{w}_{t}\right)$

Objective:
Regret w.r.t. best point after T rounds:

$$
R_{T}=\max _{u \in \mathcal{U}} \sum_{t=1}^{T}\left(f_{t}\left(\boldsymbol{w}_{t}\right)-f_{t}(\boldsymbol{u})\right)
$$

Example loss functions

Setting	loss function $f_{t}(\boldsymbol{u})$		
Hedge setting	$\boldsymbol{u}^{\top} \boldsymbol{\ell}_{t}$		
Point prediction	$\left\\|\boldsymbol{u}-\boldsymbol{x}_{t}\right\\|^{2}$		
Regression	$\left(\boldsymbol{u}^{\top} \boldsymbol{x}_{t}-y_{t}\right)^{2}$		
Logistic regression	$\ln \left(1+e^{\left.-y_{t} \boldsymbol{u}^{\top} \boldsymbol{x}_{t}\right)}\right.$		
Hinge loss	$\max \left\{0,1-y_{t} \boldsymbol{u}^{\top} \boldsymbol{x}_{t}\right\}$		
Investment	$-\ln \left(\boldsymbol{u}^{\top} \boldsymbol{x}_{t}\right)$		
Offline optimisation	$\mathrm{f}(\boldsymbol{u})$		

Online Gradient Descent (OGD)

Let \mathcal{U} be a closed convex set containing $\mathbf{0}$.

Definition

Online Gradient Descent with learning rate $\eta>0$ plays

$$
\boldsymbol{w}_{1}=\mathbf{0} \quad \text { and } \quad \boldsymbol{w}_{t+1}=\Pi_{\mathcal{U}}\left(\boldsymbol{w}_{t}-\eta \nabla f_{t}\left(\boldsymbol{w}_{t}\right)\right)
$$

where $\Pi_{\mathcal{U}}(\boldsymbol{w})=\arg \min _{\boldsymbol{u} \in \mathcal{U}}\|\boldsymbol{u}-\boldsymbol{w}\|$ is the projection onto \mathcal{U}.

Online Gradient Descent (OGD)

Theorem

Let $\left\|\nabla f_{t}(\boldsymbol{u})\right\| \leq G$ and $\|\boldsymbol{u}\| \leq D$ for all $\boldsymbol{u} \in \mathcal{U}$. Then

$$
R_{T}=\max _{u \in \mathcal{U}} \sum_{t=1}^{T}\left(f_{t}\left(\boldsymbol{w}_{t}\right)-f_{t}(\boldsymbol{u})\right) \leq \frac{1}{2 \eta} D^{2}+\frac{\eta}{2} T G^{2}
$$

Online Gradient Descent (OGD)

Theorem
Let $\left\|\nabla f_{t}(\boldsymbol{u})\right\| \leq G$ and $\|\boldsymbol{u}\| \leq D$ for all $\boldsymbol{u} \in \mathcal{U}$. Then

$$
R_{T}=\max _{u \in \mathcal{U}} \sum_{t=1}^{T}\left(f_{t}\left(\boldsymbol{w}_{t}\right)-f_{t}(\boldsymbol{u})\right) \leq \frac{1}{2 \eta} D^{2}+\frac{\eta}{2} T G^{2}
$$

Corollary

Tuning $\eta=\frac{D}{G \sqrt{T}}$ results in

$$
R_{T} \leq D G \sqrt{T}
$$

Pythagorean Inequality

Lemma (Pythagorean Inequality)

Fix a closed convex set $\mathcal{U} \subseteq \mathbb{R}^{d}$. Let $\boldsymbol{x} \in \mathcal{U}, \boldsymbol{y} \in \mathbb{R}^{d}$ and

$$
\hat{\boldsymbol{y}}=\Pi_{\mathcal{U}}(\boldsymbol{y})=\arg \min _{\boldsymbol{u} \in \mathcal{U}}\|\boldsymbol{u}-\boldsymbol{y}\|^{2}
$$

Then

$$
\|\boldsymbol{x}-\hat{\boldsymbol{y}}\|^{2}+\|\hat{\boldsymbol{y}}-\boldsymbol{y}\|^{2} \leq\|\boldsymbol{x}-\boldsymbol{y}\|^{2}
$$

NB: not to be confused with triangle inequality $\|\boldsymbol{x}-\boldsymbol{y}\| \leq\|\boldsymbol{x}-\hat{\boldsymbol{y}}\|+\|\hat{\boldsymbol{y}}-\boldsymbol{y}\|$.

Proof of GD regret bound I

Fix any $\boldsymbol{u} \in \mathcal{U}$. We have

$$
f_{t}\left(\boldsymbol{w}_{t}\right)-f_{t}(\boldsymbol{u}) \leq\left\langle\boldsymbol{w}_{t}-\boldsymbol{u}, \nabla f_{t}\left(w_{t}\right)\right\rangle
$$

Moreover,

$$
\begin{aligned}
\left\|\boldsymbol{w}_{t+1}-\boldsymbol{u}\right\|^{2} & =\left\|\Pi_{\mathcal{U}}\left(\boldsymbol{w}_{t}-\eta \nabla f_{t}\left(\boldsymbol{w}_{t}\right)\right)-\boldsymbol{u}\right\|^{2} \\
& \stackrel{\text { Pyth.lneq }}{\leq}\left\|\boldsymbol{w}_{t}-\eta \nabla f_{t}\left(\boldsymbol{w}_{t}\right)-\boldsymbol{u}\right\|^{2} \\
& =\left\|\boldsymbol{w}_{t}-\boldsymbol{u}\right\|^{2}-2 \eta\left\langle\boldsymbol{w}_{t}-\boldsymbol{u}, \nabla f_{t}\left(\boldsymbol{w}_{t}\right)\right\rangle+\eta^{2}\left\|\nabla f_{t}\left(\boldsymbol{w}_{t}\right)\right\|^{2}
\end{aligned}
$$

Hence

$$
\left\langle\boldsymbol{w}_{t}-\boldsymbol{u}, \nabla f_{t}\left(\boldsymbol{w}_{t}\right)\right\rangle \leq \frac{\left\|\boldsymbol{w}_{t}-\boldsymbol{u}\right\|^{2}-\left\|\boldsymbol{w}_{t+1}-\boldsymbol{u}\right\|^{2}}{2 \eta}+\frac{\eta}{2}\left\|\nabla f_{t}\left(\boldsymbol{w}_{t}\right)\right\|^{2}
$$

Proof of GD regret bound II

Summing over T rounds, we find

$$
\begin{aligned}
\sum_{t=1}^{T}\left(f_{t}\left(\boldsymbol{w}_{t}\right)-f_{t}(\boldsymbol{u})\right) & \leq \sum_{t=1}^{T}\left\langle\boldsymbol{w}_{t}-\boldsymbol{u}, \nabla f_{t}\left(\boldsymbol{w}_{t}\right)\right\rangle \\
& \leq \underbrace{\sum_{t=1}^{T} \frac{\left\|\boldsymbol{w}_{t}-\boldsymbol{u}\right\|^{2}-\left\|\boldsymbol{w}_{t+1}-\boldsymbol{u}\right\|^{2}}{2 \eta}+\frac{\eta}{2} \sum_{t=1}^{T}\left\|\nabla f_{t}\left(\boldsymbol{w}_{t}\right)\right\|^{2}}_{\text {telescopes }} \\
& \leq \frac{\|\boldsymbol{u}\|^{2}-\left\|\boldsymbol{w}_{T+1}-\boldsymbol{u}\right\|^{2}}{2 \eta}+\frac{\eta}{2} \sum_{t=1}^{T}\left\|\nabla f_{t}\left(\boldsymbol{w}_{t}\right)\right\|^{2} \\
& \leq \frac{D^{2}}{2 \eta}+\frac{\eta}{2} T G^{2}
\end{aligned}
$$

Online to Batch Conversion

Online to Batch Conversion

Goal: obtain an estimator $\hat{\boldsymbol{w}}_{T}$ with small expected excess risk.

$$
\underset{f_{1}, \ldots, f_{T}}{\mathbb{E}}\left[\underset{f}{\mathbb{E}}\left[f\left(\hat{\boldsymbol{w}}_{T}\right)-f\left(\boldsymbol{u}^{*}\right)\right]\right] \leq \text { small }
$$

where the training set f_{1}, \ldots, f_{T} and the test sample f are drawn i.i.d. and \boldsymbol{u}^{*} optimises the risk $\boldsymbol{u} \mapsto \mathbb{E}_{f}[f(\boldsymbol{u})]$.

Online to Batch Conversion

Goal: obtain an estimator $\hat{\boldsymbol{w}}_{T}$ with small expected excess risk.

$$
\underset{f_{1}, \ldots, f_{T}}{\mathbb{E}}\left[\underset{f}{\mathbb{E}}\left[f\left(\hat{\boldsymbol{w}}_{T}\right)-f\left(\boldsymbol{u}^{*}\right)\right]\right] \leq \text { small }
$$

where the training set f_{1}, \ldots, f_{T} and the test sample f are drawn i.i.d. and \boldsymbol{u}^{*} optimises the risk $\boldsymbol{u} \mapsto \mathbb{E}_{f}[f(\boldsymbol{u})]$.

Idea: use online learning algorithm. Given training sample f_{1}, \ldots, f_{T}, the algorithm picks $\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{T}$. Let us define the average iterate estimator

$$
\hat{\boldsymbol{w}}_{T}=\frac{1}{T} \sum_{t=1}^{T} \boldsymbol{w}_{t}
$$

Online to Batch Conversion

Goal: obtain an estimator $\hat{\boldsymbol{w}}_{T}$ with small expected excess risk.

$$
\underset{f_{1}, \ldots, f_{T}}{\mathbb{E}}\left[\underset{f}{\mathbb{E}}\left[f\left(\hat{\boldsymbol{w}}_{T}\right)-f\left(\boldsymbol{u}^{*}\right)\right]\right] \leq \text { small }
$$

where the training set f_{1}, \ldots, f_{T} and the test sample f are drawn i.i.d. and \boldsymbol{u}^{*} optimises the risk $\boldsymbol{u} \mapsto \mathbb{E}_{f}[f(\boldsymbol{u})]$.
Idea: use online learning algorithm. Given training sample f_{1}, \ldots, f_{T}, the algorithm picks $\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{T}$. Let us define the average iterate estimator

$$
\hat{\boldsymbol{w}}_{T}=\frac{1}{T} \sum_{t=1}^{T} \boldsymbol{w}_{t}
$$

Theorem

An online regret bound $R_{T} \leq B(T)$ implies

$$
\underset{\text { iid } f_{1}, \ldots, f_{T}, f}{\mathbb{E}}\left[f\left(\hat{\boldsymbol{w}}_{T}\right)-f\left(\boldsymbol{u}^{*}\right)\right] \leq \frac{B(T)}{T}
$$

Online to Batch Proof

$$
\begin{aligned}
& \text { iid } f_{1}, \ldots, f_{T}, f \\
& \leq \underset{\text { iid } f_{1}, \ldots, f_{T}, f}{\mathbb{E}}\left[\frac{\left.\left.\boldsymbol{w}_{T}\right)-f\left(\boldsymbol{u}^{*}\right)\right]}{\mathbb{E}} \sum_{t=1}^{\mathbb{E}}\left(f\left(\boldsymbol{w}_{t}\right)-f\left(\boldsymbol{u}^{*}\right)\right)\right] \\
& =\underset{\text { iid } f_{1}, \ldots, f_{T}, f}{\mathbb{E}}\left[\frac{1}{T} \sum_{t=1}^{T}\left(f_{t}\left(\boldsymbol{w}_{t}\right)-f_{t}\left(\boldsymbol{u}^{*}\right)\right)\right] \leq \frac{B(T)}{T}
\end{aligned}
$$

The first step is convexity of f. The last step uses that f and f_{t} have the same distribution (and \boldsymbol{w}_{t} is not a function of f_{t}).

Online Strongly Convex Optimisation

Structure

What if I know more about my setting than convexity of the loss function? Can I learn faster?

Strongly Convex Case

- strongly convex f
- tangent lower bound
- improved quadratic lower bound

Definition

A function $f: \mathcal{U} \rightarrow \mathbb{R}$ is strongly convex to degree $\alpha \geq 0$ if

$$
f(\boldsymbol{u})-f(\boldsymbol{w}) \geq\langle\boldsymbol{u}-\boldsymbol{w}, \nabla f(\boldsymbol{w})\rangle+\frac{\alpha}{2}\|\boldsymbol{u}-\boldsymbol{w}\|^{2}
$$

Strongly Convex Case

- strongly convex f
- tangent lower bound
- improved quadratic lower bound

Definition

A function $f: \mathcal{U} \rightarrow \mathbb{R}$ is strongly convex to degree $\alpha \geq 0$ if

$$
f(\boldsymbol{u})-f(\boldsymbol{w}) \geq\langle\boldsymbol{u}-\boldsymbol{w}, \nabla f(\boldsymbol{w})\rangle+\frac{\alpha}{2}\|\boldsymbol{u}-\boldsymbol{w}\|^{2}
$$

Example: $f(\boldsymbol{w})=\left\|\boldsymbol{w}-\boldsymbol{x}_{t}\right\|^{2}$.

Strongly Convex Case

- strongly convex f
- tangent lower bound
- improved quadratic lower bound

Definition

A function $f: \mathcal{U} \rightarrow \mathbb{R}$ is strongly convex to degree $\alpha \geq 0$ if

$$
f(\boldsymbol{u})-f(\boldsymbol{w}) \geq\langle\boldsymbol{u}-\boldsymbol{w}, \nabla f(\boldsymbol{w})\rangle+\frac{\alpha}{2}\|\boldsymbol{u}-\boldsymbol{w}\|^{2}
$$

Example: $f(\boldsymbol{w})=\left\|\boldsymbol{w}-\boldsymbol{x}_{t}\right\|^{2}$.
Idea: could this extra knowledge help in the regret rate?

Online Gradient Descent with time-varying learning rate

Definition (OGD with time-varying learning rate)

$$
\boldsymbol{w}_{1}=\mathbf{0} \quad \text { and } \quad \boldsymbol{w}_{t+1}=\Pi_{\mathcal{U}}\left(\boldsymbol{w}_{t}-\eta_{t} \nabla f_{t}\left(\boldsymbol{w}_{t}\right)\right)
$$

Online Gradient Descent with time-varying learning rate

Definition (OGD with time-varying learning rate)

$$
\boldsymbol{w}_{1}=\mathbf{0} \quad \text { and } \quad \boldsymbol{w}_{t+1}=\Pi_{\mathcal{U}}\left(\boldsymbol{w}_{t}-\eta_{t} \nabla f_{t}\left(\boldsymbol{w}_{t}\right)\right)
$$

Theorem

For α-strongly convex loss functions, OGD with learning rate $\eta_{t}=\frac{1}{\alpha t}$ ensures

$$
R_{T} \leq \frac{G^{2}}{2 \alpha}(1+\ln T)
$$

Proof I

We start with

$$
\begin{aligned}
\left\|\boldsymbol{w}_{t+1}-\boldsymbol{u}\right\|^{2} & =\left\|\boldsymbol{\Pi}_{\mathcal{U}}\left(\boldsymbol{w}_{t}-\eta_{t} \nabla f_{t}\left(\boldsymbol{w}_{t}\right)\right)-\boldsymbol{u}\right\|^{2} \\
& \stackrel{\text { Pyythneq. }}{\leq}\left\|\boldsymbol{w}_{t}-\eta_{t} \nabla f_{t}\left(\boldsymbol{w}_{t}\right)-\boldsymbol{u}\right\|^{2} \\
& =\left\|\boldsymbol{w}_{t}-\boldsymbol{u}\right\|^{2}-2 \eta_{t}\left\langle\boldsymbol{w}_{t}-\boldsymbol{u}, \nabla f_{t}\left(\boldsymbol{w}_{t}\right)\right\rangle+\eta_{t}^{2}\left\|\nabla f_{t}\left(\boldsymbol{w}_{t}\right)\right\|^{2}
\end{aligned}
$$

So that

$$
\begin{aligned}
& f_{t}\left(\boldsymbol{w}_{t}\right)-f_{t}(\boldsymbol{u}) \\
& \quad \leq\left\langle\boldsymbol{w}_{t}-\boldsymbol{u}, \nabla f_{t}\left(\boldsymbol{w}_{t}\right)\right\rangle-\frac{\alpha}{2}\left\|\boldsymbol{w}_{t}-\boldsymbol{u}\right\|^{2} \\
& \leq \frac{\left\|\boldsymbol{w}_{t}-\boldsymbol{u}\right\|^{2}-\left\|\boldsymbol{w}_{t+1}-\boldsymbol{u}\right\|^{2}+\eta_{t}^{2}\left\|\nabla f_{t}\left(\boldsymbol{w}_{t}\right)\right\|^{2}}{2 \eta_{t}}-\frac{\alpha}{2}\left\|\boldsymbol{w}_{t}-\boldsymbol{u}\right\|^{2} \\
& =\left\|\boldsymbol{w}_{t}-\boldsymbol{u}\right\|^{2}\left(\frac{1}{2 \eta_{t}}-\frac{\alpha}{2}\right)-\frac{\left\|\boldsymbol{w}_{t+1}-\boldsymbol{u}\right\|^{2}}{2 \eta_{t}}+\frac{\eta_{t}\left\|\nabla f_{t}\left(\boldsymbol{w}_{t}\right)\right\|^{2}}{2}
\end{aligned}
$$

Proof II

Summing over rounds gives

$$
\begin{aligned}
& \sum_{t=1}^{T} f_{t}\left(\boldsymbol{w}_{t}\right)-f_{t}(\boldsymbol{u}) \\
& \leq \sum_{t=1}^{T}\left(\left\|\boldsymbol{w}_{t}-\boldsymbol{u}\right\|^{2}\left(\frac{1}{2 \eta_{t}}-\frac{\alpha}{2}\right)-\frac{\left\|\boldsymbol{w}_{t+1}-\boldsymbol{u}\right\|^{2}}{2 \eta_{t}}+\frac{\eta_{t}\left\|\nabla f_{t}\left(\boldsymbol{w}_{t}\right)\right\|^{2}}{2}\right) \\
& =\left\|\boldsymbol{w}_{1}-\boldsymbol{u}\right\|^{2}\left(\frac{1}{2 \eta_{1}}-\frac{\alpha}{2}\right)+\sum_{t=2}^{T}\left\|\boldsymbol{w}_{t}-\boldsymbol{u}\right\|^{2}\left(\frac{1}{2 \eta_{t}}-\frac{\alpha}{2}-\frac{1}{2 \eta_{t-1}}\right) \\
& \quad-\frac{\left\|\boldsymbol{w}_{T+1}-\boldsymbol{u}\right\|^{2}}{2 \eta_{T}}+\sum_{t=1}^{T} \frac{\eta_{t}\left\|\nabla f_{t}\left(\boldsymbol{w}_{t}\right)\right\|^{2}}{2}
\end{aligned}
$$

Key idea for telescoping is to cancel coefficient on $\left\|\boldsymbol{w}_{t}-\boldsymbol{u}\right\|^{2}$ in the sum:

$$
\frac{1}{\eta_{t+1}}-\alpha=\frac{1}{\eta_{t}}
$$

Proof III

So

$$
\eta_{t+1}=\frac{1}{\frac{1}{\eta_{t}+\alpha}}
$$

A good starting point (cancelling the first term) is $\eta_{1}=\frac{1}{\alpha}$. This leads to $\eta_{t}=\frac{1}{\alpha t}$. We then find

$$
\sum_{t=1}^{T} f_{t}\left(\boldsymbol{w}_{t}\right)-f_{t}(\boldsymbol{u}) \leq \sum_{t=1}^{T} \frac{\left\|\nabla f_{t}\left(\boldsymbol{w}_{t}\right)\right\|^{2}}{2 \alpha t} \leq \frac{G^{2}}{2 \alpha}(1+\ln T)
$$

Conclusion

Tools for learning in convex settings.

- Guaranteed robustness against adversarial losses
- Efficient
- Building block for
- Learning in non-convex settings (AdaGrad for DNN)
- Learning in games
- Non-convex games (GANs)

