# Machine Learning Theory 2024 Lecture 1

### Tim van Erven

#### Intro

- Statistical Decision Theory
- Empirical Risk Minimization and Overfitting
- PAC-Learnability for finite classes, realizable case

# **Book:** Shai<sup>2</sup> (for First Half of the Course)

Shai Shalev-Shwartz and Shai Ben-David

# UNDERSTANDING MACHINE LEARNING

FROM THEORY TO ALGORITHMS



### **Multiclass Classification Example: Images**



#### Y = image class, X = vector with pixel values

Krizhevsky, Sutskever, Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NeurIPS 2012

# **Binary Classification Example: Spam Detection**

| Get Messages 👻                                                                                             | 📝 Write 🖙 | 📖 Chat | Address Book | 🖗 Tag 🕆 | <b>T</b> Quick Filter             | Q Search <%K> | ⊇≡ |
|------------------------------------------------------------------------------------------------------------|-----------|--------|--------------|---------|-----------------------------------|---------------|----|
| From Google Corporation® <claudio.santoriello@finanzaefuturo.it> 🌣</claudio.santoriello@finanzaefuturo.it> |           |        |              |         | 🔦 Reply 🔿 Forward 🌢 Junk 🖉 Delete | More *        |    |
| Subject Powered by Google                                                                                  |           |        |              |         | 08/10                             | /15 15:39     |    |
| Reply to Google Corporation© <mr.jonesbradley@foxmail.com> 🏫</mr.jonesbradley@foxmail.com>                 |           |        |              |         |                                   |               |    |
| To                                                                                                         |           |        |              |         |                                   |               |    |

Dear Google User,

You have been selected as a Google Ambassador for using Google services. Find attached letter for more details and Processing of your claims.

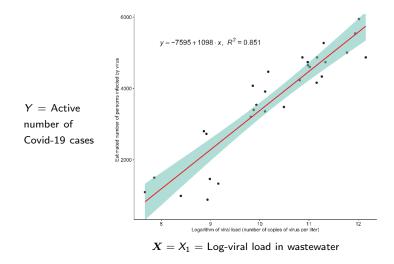
Best Regards,



Y = ham/spam $X = (X_1, \dots, X_{50\ 000})$ :  $X_i$  is word count for *i*-th word from dictionary

Spam image by Qwertyxp2000 from https://commons.wikimedia.org/wiki/File:Spam\_can.png

### **Regression Example: Covid Cases from Wastewater**



Vallejo et al., Highly predictive regression model of active cases of COVID-19 in a population by screening wastewater viral load, medRxiv preprint, 2020

### **Regression Example: Prostate Cancer**

Goal: Predict level of prostate specific antigen (PSA) for men with prostate cancer

- $Y = \log \text{ of PSA}$
- $X = (X_1, \ldots, X_{97})$ : 97 clinical measures, including
  - log cancer volume
  - log prostate weight
  - Gleason score
  - ▶ ...

Example from Hastie, Tibshirani, Freedman, Elements of Statistical Learning, 2nd edition, 2009

# Scope of the Course I: Supervised vs Unsupervised

#### In the Course:

**Supervised** Machine Learning: Learn to predict response Y for input X based on examples of desired responses. E.g.

- Image classification: X = image, Y = class
- Spam classification: X = e-mail, Y = ham/spam
- Covid regression: X = viral load, Y is nr. of active cases
- Cancer regression: X = clinical measures, Y = antigen amount

#### Not in the Course:

**Unsupervised** Machine Learning: Identify structure in inputs X. E.g.

- Group data into clusters
- Dimensionality reduction

## Scope of the Course II: Batch and Online

We cover two learning models:

#### Part I, Batch Learning:

- Data is obtained as one big batch
- Then learn a predictor
- Deploy predictor once, to be used unchanged on new data

#### Part II, Online Learning:

- Data arrives sequentially over time
- Continuously make predictions for incoming data
- Use new data to keep improving predictor

## Scope of this Course III: Foundations vs Practice

#### What is Missing:

- Not: programming, real data, getting rich and famous quickly...
- By itself this course is too theoretical!

#### ... But We Make Up for It:

- Deep understanding via beautiful concepts and proofs
- When is learning possible and what are the fundamental limitations?
- Close connections to statistics, game theory, information theory, optimization, ...

## **Supervised Learning**

Sample of training data:  $S = \begin{pmatrix} Y_1 \\ X_1 \end{pmatrix}, \cdots, \begin{pmatrix} Y_m \\ X_m \end{pmatrix}$ 

(teacher shows us desired response  $Y_i$  for input  $X_i$ )

 $Y_i$ : class/response variable  $X_i \in \mathbb{R}^d$ : feature vectors

Goal: Learn function  $h_S : \mathcal{X} \to \mathcal{Y}$  from hypothesis class  $\mathcal{H} =$  some set of functions

# **Supervised Learning**

Sample of training data:  $S = \begin{pmatrix} Y_1 \\ X_1 \end{pmatrix}, \cdots, \begin{pmatrix} Y_m \\ X_m \end{pmatrix}$ 

(teacher shows us desired response  $Y_i$  for input  $X_i$ )

 $Y_i$ : class/response variable  $X_i \in \mathbb{R}^d$ : feature vectors

Goal: Learn function  $h_S : \mathcal{X} \to \mathcal{Y}$  from hypothesis class  $\mathcal{H} =$  some set of functions

Evaluate  $h_S$  on **test data**:

- New X from same source
- Predict corresponding Y by  $\hat{Y} = h_S(X)$

Assume  $\begin{pmatrix} Y_i \\ X_i \end{pmatrix}$  independent samples from same probability distribution  $\mathcal{D}$ 

Avoid further assumptions on  $\mathcal{D}!$ (So  $\mathcal{D}$  can be very complicated)

### Supervised Learning: Regression

$$S = \begin{pmatrix} Y_1 \\ X_1 \end{pmatrix}, \cdots, \begin{pmatrix} Y_m \\ X_m \end{pmatrix}$$

 $Y \in \mathbb{R}$  is a continuous variable. E.g.

**Linear Regression** ( $\mathcal{H}$  = affine functions):

$$h_{oldsymbol{w},b}(oldsymbol{X}) = b + \langle oldsymbol{w},oldsymbol{X}
angle = b + \sum_{i=1}^d w_i X_i$$

Can assume b = 0 w.l.o.g. to simplify notation, because:

### Supervised Learning: Classification

$$S = \begin{pmatrix} Y_1 \\ X_1 \end{pmatrix}, \cdots, \begin{pmatrix} Y_m \\ X_m \end{pmatrix}$$

Y is a categorical variable

• E.g.  $Y \in \{\text{Ham}, \text{Spam}\}$  or  $Y \in \{\text{Mite}, \text{Leopard}, \text{Mushroom}\}$ 

#### Binary Classification (with two classes):

▶ Can e.g. map "Ham"  $\mapsto -1$ , "Spam"  $\mapsto +1$ 

So assume Y ∈ {−1, +1} or sometimes Y ∈ {0,1} without loss of generality (w.l.o.g.)

**Halfspaces** ( $\mathcal{H}$  = Linear Predictors):

$$h_{oldsymbol{w},oldsymbol{b}}(oldsymbol{X}) = {
m sign}(oldsymbol{b} + \langle oldsymbol{w},oldsymbol{X} 
angle) \in \{-1,+1\}$$

# Overfitting

# (why machine learning is non-trivial)

#### The #1 Beginner's Mistake:

- Try many machine learning methods and fine-tune their settings until the number of mistakes on the training data S is small
- What can go wrong?

Poll:

- 1. Trying many methods and settings can take a very long time.
- 2. Few mistakes on S does not guarantee good learning.
- 3. You should only use methods taught in this course.

# Overfitting

# (why machine learning is non-trivial)

#### The #1 Beginner's Mistake:

- Try many machine learning methods and fine-tune their settings until the number of mistakes on the training data S is small
- What can go wrong?

Poll:

- 1. Trying many methods and settings can take a very long time.
- 2. Few mistakes on *S* does not guarantee good learning!
- 3. You should only use methods taught in this course.

# Overfitting

# (why machine learning is non-trivial)

#### The #1 Beginner's Mistake:

- Try many machine learning methods and fine-tune their settings until the number of mistakes on the training data S is small
- What can go wrong?

#### Perfect on training data S,

but probability of mistake = 1/2 on new (X, Y) from  $\mathcal{D}$ ! No better than random guessing!

### **Statistical Decision Theory I: Loss**

Measure error by loss function:  $\ell(h, X, Y)$ 

**Classification** (0/1-loss counts mistakes):

$$\ell(h, \mathbf{X}, Y) = \begin{cases} 0 & \text{if } h(\mathbf{X}) = Y \\ 1 & \text{if } h(\mathbf{X}) \neq Y \end{cases}$$

**Regression** (Squared Error):

$$\ell(h, \boldsymbol{X}, \boldsymbol{Y}) = (\boldsymbol{Y} - h(\boldsymbol{X}))^2$$

Other choices possible! (Depends on what is important in your application)

### Statistical Decision Theory II: Risk

Risk:
$$L_{\mathcal{D}}(h) = \mathbb{E}[\ell(h, X, Y)]$$
 for  $(X, Y) \sim \mathcal{D}$ Empirical Risk: $L_{\mathcal{S}}(h) = \frac{1}{m} \sum_{i=1}^{m} \ell(h, X_i, Y_i)$ 

**Bayes Optimal Predictor**:  $f_{\mathcal{D}} \in \arg \min_{f} L_{\mathcal{D}}(f)$ 

- $\blacktriangleright$  Unknown, because risk depends on  $\mathcal{D}$
- No learning alg can do better (by definition)

#### **Examples for Classification:**

$$\blacktriangleright L_{\mathcal{D}}(h) = \Pr(h(X) \neq Y)$$

•  $L_S(h)$  = proportion of mistakes on the training data S

• 
$$f_{\mathcal{D}}(X) = \operatorname{arg\,max}_{y} \Pr(Y = y \mid X)$$
 is most likely class

### Statistical Decision Theory II: Risk

Risk:
$$L_{\mathcal{D}}(h) = \mathbb{E}[\ell(h, X, Y)]$$
for  $(X, Y) \sim \mathcal{D}$ Empirical Risk: $L_{S}(h) = \frac{1}{m} \sum_{i=1}^{m} \ell(h, X_{i}, Y_{i})$ 

**Bayes Optimal Predictor**:  $f_{\mathcal{D}} \in \arg \min_{f} L_{\mathcal{D}}(f)$ 

- Unknown, because risk depends on  $\mathcal{D}$
- No learning alg can do better (by definition)

**Empirical Risk Minimization (ERM):**  $f_s \in \arg \min_{h \in \mathcal{H}} L_S(h)$ 

- Minimize empirical risk (known) instead of risk (unknown)
- Restrict to hypothesis class H to prevent overfitting

Choice of  $\mathcal{H}$  is a **modeling decision**, made before seeing the data!

# No Overfitting for (Multiclass) Classification

#### Definition (Realizability assumption)

Exists  $h^* \in \mathcal{H}$  that perfectly predicts Y (with probability 1):  $\Pr(h^*(X) = Y) = 1.$ 

Huge simplification:

- ▶ Y = h<sup>\*</sup>(X) without any noise
- We were lucky enough to include  $h^*$  in  $\mathcal{H}$

# No Overfitting for (Multiclass) Classification

#### Definition (Realizability assumption)

Exists  $h^* \in \mathcal{H}$  that perfectly predicts Y (with probability 1):  $\Pr(h^*(X) = Y) = 1.$ 

Huge simplification:

- ▶ Y = h<sup>\*</sup>(X) without any noise
- We were lucky enough to include  $h^*$  in  $\mathcal{H}$

#### Theorem (First Example of PAC-Learning)

Assume  $\mathcal{H}$  is finite, realizability holds. Choose any  $\delta \in (0, 1)$ ,  $\epsilon > 0$ . Then, for all  $m \geq \frac{\ln(|\mathcal{H}|/\delta)}{\epsilon}$ , ERM over  $\mathcal{H}$  guarantees

 $L_{\mathcal{D}}(h_S) \leq \epsilon$ 

with probability at least  $1 - \delta$ .

NB Lower bound on m does not depend on  $\mathcal{D}$  or on  $h^*!$ 

PAC learning: probably approximately correct

# Proof (handwritten)

Recall that  $L_D(h) = \Pr(h(X) \neq Y)$ 'Bad" hypotheses:  $\mathcal{H}_B = \{h \in \mathcal{H} : \Pr(h(X) \neq Y) > \epsilon\}$ ERM only selects a bad hypothesis h if  $L_S(h) = 0$ . So sufficient to show that

$$\mathsf{Pr}(\mathsf{exists}\ h \in \mathcal{H}_B : L_S(h) = 0) \leq \delta.$$

#### Lemma (Union Bound)

For any two events A and B,  $Pr(A \text{ or } B) \leq Pr(A) + Pr(B)$ .

Hence

$$\begin{split} \mathsf{Pr}(\mathsf{exists} \ h \in \mathcal{H}_B : L_S(h) = 0) &\leq \sum_{h \in \mathcal{H}_B} \mathsf{Pr}(L_S(h) = 0) \\ &\leq \sum_{h \in \mathcal{H}_B} (1 - \epsilon)^m \leq |\mathcal{H}| (1 - \epsilon)^m \leq |\mathcal{H}| e^{-\epsilon m} \end{split}$$

This is guaranteed to be at most  $\delta$  if  $m \geq \frac{\ln(|\mathcal{H}|/\delta)}{\epsilon}$ .

### **Close Relation to Statistics, But...**

#### Stats:

- Estimate true parameters, with uncertainty quantification
- Follow rigorous procedures or results are nonsense

#### Machine Learning:

- Estimate parameters that predict well
  - Possible under weaker assumptions/more complicated models!
- Can always estimate risk on a test set, even for crazy learning algorithm → cowboy mentality can work!
- (Fast!) algorithms

### ML vs Stats (Handwritten)

