Machine Learning Theory 2024 Lecture 1

Tim van Erven

Intro

- Statistical Decision Theory
- Empirical Risk Minimization and Overfitting
- PAC-Learnability for finite classes, realizable case

Book: Shai² (for First Half of the Course)

Shai Shalev-Shwartz and Shai Ben-David

UNDERSTANDING MACHINE LEARNING

FROM THEORY TO ALGORITHMS

Multiclass Classification Example: Images

Y = image class, X = vector with pixel values

Krizhevsky, Sutskever, Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NeurIPS 2012

Binary Classification Example: Spam Detection

Get Messages 👻	📝 Write 🖙	📖 Chat	Address Book	🖗 Tag 🕆	T Quick Filter	Q Search <%K>	⊇≡
From Google Corporation® <claudio.santoriello@finanzaefuturo.it> 🌣</claudio.santoriello@finanzaefuturo.it>					🔦 Reply 🔿 Forward 🌢 Junk 🖉 Delete	More *	
Subject Powered by Google					08/10	/15 15:39	
Reply to Google Corporation© <mr.jonesbradley@foxmail.com> 🏫</mr.jonesbradley@foxmail.com>							
To							

Dear Google User,

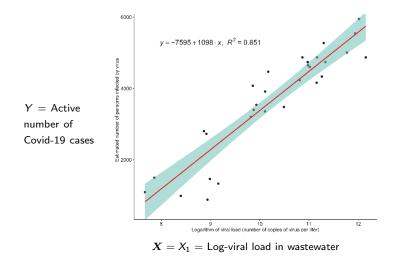
You have been selected as a Google Ambassador for using Google services. Find attached letter for more details and Processing of your claims.

Best Regards,

Y = ham/spam $X = (X_1, \dots, X_{50\ 000})$: X_i is word count for *i*-th word from dictionary

Spam image by Qwertyxp2000 from https://commons.wikimedia.org/wiki/File:Spam_can.png

Regression Example: Covid Cases from Wastewater



Vallejo et al., Highly predictive regression model of active cases of COVID-19 in a population by screening wastewater viral load, medRxiv preprint, 2020

Regression Example: Prostate Cancer

Goal: Predict level of prostate specific antigen (PSA) for men with prostate cancer

- $Y = \log \text{ of PSA}$
- $X = (X_1, \ldots, X_{97})$: 97 clinical measures, including
 - log cancer volume
 - log prostate weight
 - Gleason score
 - ▶ ...

Example from Hastie, Tibshirani, Freedman, Elements of Statistical Learning, 2nd edition, 2009

Scope of the Course I: Supervised vs Unsupervised

In the Course:

Supervised Machine Learning: Learn to predict response Y for input X based on examples of desired responses. E.g.

- Image classification: X = image, Y = class
- Spam classification: X = e-mail, Y = ham/spam
- Covid regression: X = viral load, Y is nr. of active cases
- Cancer regression: X = clinical measures, Y = antigen amount

Not in the Course:

Unsupervised Machine Learning: Identify structure in inputs X. E.g.

- Group data into clusters
- Dimensionality reduction

Scope of the Course II: Batch and Online

We cover two learning models:

Part I, Batch Learning:

- Data is obtained as one big batch
- Then learn a predictor
- Deploy predictor once, to be used unchanged on new data

Part II, Online Learning:

- Data arrives sequentially over time
- Continuously make predictions for incoming data
- Use new data to keep improving predictor

Scope of this Course III: Foundations vs Practice

What is Missing:

- Not: programming, real data, getting rich and famous quickly...
- By itself this course is too theoretical!

... But We Make Up for It:

- Deep understanding via beautiful concepts and proofs
- When is learning possible and what are the fundamental limitations?
- Close connections to statistics, game theory, information theory, optimization, ...

Supervised Learning

Sample of training data: $S = \begin{pmatrix} Y_1 \\ X_1 \end{pmatrix}, \cdots, \begin{pmatrix} Y_m \\ X_m \end{pmatrix}$

(teacher shows us desired response Y_i for input X_i)

 Y_i : class/response variable $X_i \in \mathbb{R}^d$: feature vectors

Goal: Learn function $h_S : \mathcal{X} \to \mathcal{Y}$ from hypothesis class $\mathcal{H} =$ some set of functions

Supervised Learning

Sample of training data: $S = \begin{pmatrix} Y_1 \\ X_1 \end{pmatrix}, \cdots, \begin{pmatrix} Y_m \\ X_m \end{pmatrix}$

(teacher shows us desired response Y_i for input X_i)

 Y_i : class/response variable $X_i \in \mathbb{R}^d$: feature vectors

Goal: Learn function $h_S : \mathcal{X} \to \mathcal{Y}$ from hypothesis class $\mathcal{H} =$ some set of functions

Evaluate h_S on **test data**:

- New X from same source
- Predict corresponding Y by $\hat{Y} = h_S(X)$

Assume $\begin{pmatrix} Y_i \\ X_i \end{pmatrix}$ independent samples from same probability distribution \mathcal{D}

Avoid further assumptions on $\mathcal{D}!$ (So \mathcal{D} can be very complicated)

Supervised Learning: Regression

$$S = \begin{pmatrix} Y_1 \\ X_1 \end{pmatrix}, \cdots, \begin{pmatrix} Y_m \\ X_m \end{pmatrix}$$

 $Y \in \mathbb{R}$ is a continuous variable. E.g.

Linear Regression (\mathcal{H} = affine functions):

$$h_{oldsymbol{w},b}(oldsymbol{X}) = b + \langle oldsymbol{w},oldsymbol{X}
angle = b + \sum_{i=1}^d w_i X_i$$

Can assume b = 0 w.l.o.g. to simplify notation, because:

Supervised Learning: Classification

$$S = \begin{pmatrix} Y_1 \\ X_1 \end{pmatrix}, \cdots, \begin{pmatrix} Y_m \\ X_m \end{pmatrix}$$

Y is a categorical variable

• E.g. $Y \in \{\text{Ham}, \text{Spam}\}$ or $Y \in \{\text{Mite}, \text{Leopard}, \text{Mushroom}\}$

Binary Classification (with two classes):

▶ Can e.g. map "Ham" $\mapsto -1$, "Spam" $\mapsto +1$

So assume Y ∈ {−1, +1} or sometimes Y ∈ {0,1} without loss of generality (w.l.o.g.)

Halfspaces (\mathcal{H} = Linear Predictors):

$$h_{oldsymbol{w},oldsymbol{b}}(oldsymbol{X}) = {
m sign}(oldsymbol{b} + \langle oldsymbol{w},oldsymbol{X}
angle) \in \{-1,+1\}$$

Overfitting

(why machine learning is non-trivial)

The #1 Beginner's Mistake:

- Try many machine learning methods and fine-tune their settings until the number of mistakes on the training data S is small
- What can go wrong?

Poll:

- 1. Trying many methods and settings can take a very long time.
- 2. Few mistakes on S does not guarantee good learning.
- 3. You should only use methods taught in this course.

Overfitting

(why machine learning is non-trivial)

The #1 Beginner's Mistake:

- Try many machine learning methods and fine-tune their settings until the number of mistakes on the training data S is small
- What can go wrong?

Poll:

- 1. Trying many methods and settings can take a very long time.
- 2. Few mistakes on *S* does not guarantee good learning!
- 3. You should only use methods taught in this course.

Overfitting

(why machine learning is non-trivial)

The #1 Beginner's Mistake:

- Try many machine learning methods and fine-tune their settings until the number of mistakes on the training data S is small
- What can go wrong?

Perfect on training data S,

but probability of mistake = 1/2 on new (X, Y) from \mathcal{D} ! No better than random guessing!

Statistical Decision Theory I: Loss

Measure error by loss function: $\ell(h, X, Y)$

Classification (0/1-loss counts mistakes):

$$\ell(h, \mathbf{X}, Y) = \begin{cases} 0 & \text{if } h(\mathbf{X}) = Y \\ 1 & \text{if } h(\mathbf{X}) \neq Y \end{cases}$$

Regression (Squared Error):

$$\ell(h, \boldsymbol{X}, \boldsymbol{Y}) = (\boldsymbol{Y} - h(\boldsymbol{X}))^2$$

Other choices possible! (Depends on what is important in your application)

Statistical Decision Theory II: Risk

Risk:
$$L_{\mathcal{D}}(h) = \mathbb{E}[\ell(h, X, Y)]$$
 for $(X, Y) \sim \mathcal{D}$ Empirical Risk: $L_{\mathcal{S}}(h) = \frac{1}{m} \sum_{i=1}^{m} \ell(h, X_i, Y_i)$

Bayes Optimal Predictor: $f_{\mathcal{D}} \in \arg \min_{f} L_{\mathcal{D}}(f)$

- \blacktriangleright Unknown, because risk depends on \mathcal{D}
- No learning alg can do better (by definition)

Examples for Classification:

$$\blacktriangleright L_{\mathcal{D}}(h) = \Pr(h(X) \neq Y)$$

• $L_S(h)$ = proportion of mistakes on the training data S

•
$$f_{\mathcal{D}}(X) = \operatorname{arg\,max}_{y} \Pr(Y = y \mid X)$$
 is most likely class

Statistical Decision Theory II: Risk

Risk:
$$L_{\mathcal{D}}(h) = \mathbb{E}[\ell(h, X, Y)]$$
for $(X, Y) \sim \mathcal{D}$ Empirical Risk: $L_{S}(h) = \frac{1}{m} \sum_{i=1}^{m} \ell(h, X_{i}, Y_{i})$

Bayes Optimal Predictor: $f_{\mathcal{D}} \in \arg \min_{f} L_{\mathcal{D}}(f)$

- Unknown, because risk depends on \mathcal{D}
- No learning alg can do better (by definition)

Empirical Risk Minimization (ERM): $f_s \in \arg \min_{h \in \mathcal{H}} L_S(h)$

- Minimize empirical risk (known) instead of risk (unknown)
- Restrict to hypothesis class H to prevent overfitting

Choice of \mathcal{H} is a **modeling decision**, made before seeing the data!

No Overfitting for (Multiclass) Classification

Definition (Realizability assumption)

Exists $h^* \in \mathcal{H}$ that perfectly predicts Y (with probability 1): $\Pr(h^*(X) = Y) = 1.$

Huge simplification:

- ▶ Y = h^{*}(X) without any noise
- We were lucky enough to include h^* in \mathcal{H}

No Overfitting for (Multiclass) Classification

Definition (Realizability assumption)

Exists $h^* \in \mathcal{H}$ that perfectly predicts Y (with probability 1): $\Pr(h^*(X) = Y) = 1.$

Huge simplification:

- ▶ Y = h^{*}(X) without any noise
- We were lucky enough to include h^* in \mathcal{H}

Theorem (First Example of PAC-Learning)

Assume \mathcal{H} is finite, realizability holds. Choose any $\delta \in (0, 1)$, $\epsilon > 0$. Then, for all $m \geq \frac{\ln(|\mathcal{H}|/\delta)}{\epsilon}$, ERM over \mathcal{H} guarantees

 $L_{\mathcal{D}}(h_S) \leq \epsilon$

with probability at least $1 - \delta$.

NB Lower bound on m does not depend on \mathcal{D} or on $h^*!$

PAC learning: probably approximately correct

Proof (handwritten)

Recall that $L_D(h) = \Pr(h(X) \neq Y)$ 'Bad" hypotheses: $\mathcal{H}_B = \{h \in \mathcal{H} : \Pr(h(X) \neq Y) > \epsilon\}$ ERM only selects a bad hypothesis h if $L_S(h) = 0$. So sufficient to show that

$$\mathsf{Pr}(\mathsf{exists}\ h \in \mathcal{H}_B : L_S(h) = 0) \leq \delta.$$

Lemma (Union Bound)

For any two events A and B, $Pr(A \text{ or } B) \leq Pr(A) + Pr(B)$.

Hence

$$\begin{split} \mathsf{Pr}(\mathsf{exists} \ h \in \mathcal{H}_B : L_S(h) = 0) &\leq \sum_{h \in \mathcal{H}_B} \mathsf{Pr}(L_S(h) = 0) \\ &\leq \sum_{h \in \mathcal{H}_B} (1 - \epsilon)^m \leq |\mathcal{H}| (1 - \epsilon)^m \leq |\mathcal{H}| e^{-\epsilon m} \end{split}$$

This is guaranteed to be at most δ if $m \geq \frac{\ln(|\mathcal{H}|/\delta)}{\epsilon}$.

Close Relation to Statistics, But...

Stats:

- Estimate true parameters, with uncertainty quantification
- Follow rigorous procedures or results are nonsense

Machine Learning:

- Estimate parameters that predict well
 - Possible under weaker assumptions/more complicated models!
- Can always estimate risk on a test set, even for crazy learning algorithm → cowboy mentality can work!
- (Fast!) algorithms

ML vs Stats (Handwritten)

