Machine Learning Theory 2024
Lecture 12

Wouter M. Koolen

Download these slides now from elo.mastermath.nl!

» Boosting:
» Weak and strong PAC learning
»> Boosting by Online Learning
> AdaBoost algorithm
> Analysis
» VC dimension results



https://elo.mastermath.nl

Recap
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Overview of Second Half of Course

Bandits (Strongly) Convex Losses
UCB, EXP3 Online Gradient Descent (2x)

Exp-concave Losses
Online Newton Step

Online Convex Optimisation

Boosting Probabilistic Classes
AdaBoost Norm. Max. Likelihood

Material: course notes on MLT website.
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https://www.cwi.nl/~wmkoolen/MLT_2024/

Outlook

Today: application of to good effect in statistical
learning

Main point: Boosting gets the training error down (to 0).

With: Bound on VC dimension
Get: PAC learning guarantee
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Weak Learning
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Weak Learning

Consider a hypothesis class H C {ﬁ:l}X for binary classification.
D is H-realisable if there is h € H such that Px y~p[h(X) = Y] =1.
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Weak Learning

Consider a hypothesis class H C {jzl}X for binary classification.
D is H-realisable if there is h € H such that Px y.p[h(X) = Y] = 1.

Definition (Strong Learnability)

Algorithm A PAC learns H with sample complexity my; : (0, 1)2 — N if
for any H-realisable D, any (e, ) € (0,1)? and any m > my(e, 6)

P {LD(hA,S) <e€ } > 1-0.
smip
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Weak Learning

Consider a hypothesis class H C {jzl}X for binary classification.
D is H-realisable if there is h € H such that Px y.p[h(X) = Y] = 1.

Definition (Strong Learnability)
Algorithm A ‘H with sample complexity my; : (0, 1)2 — N if
for any H-realisable D, any (e, ) € (0,1)? and any m > my(e, 6)

P {LD(hA75)§€ } > 1-06.
D

smig

Definition (y-Weak Learnability, for v € (0,1/2))

Algorithm A H with sample complexity ms; : (0,1) - N
if for any H-realisable D, any § € (0,1) and any m > my(9)

P {lp(has)<3-7} > 1-4.
Sm&D
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Question

Is a weakly learnable class always PAC learnable?
» If NO = perhaps should focus on weak learnability?
> If YES = how? efficiency?

7/32



What we know

Proposition
H is PAC learnable iff it is weak learnable.

Proof.

> If VCdim(H) < oo then H is PAC learnable and hence weak
learnable.

> If VCdim(H) = oo, then by the Fundamental Theorem the sample
complexity at (e, ) is at least of order

N VCdim(H) + In 1

€

which is infinite even for e = 3 — .
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What we know

Idea: perhaps ERM for B C H is a weak learner for H.
Can we an efficient weak learner for H to an efficient strong
learner for H?
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Example
Consider instance space X = R. Say
M = {Three-piece classifiers}

and
B = {Two-piece classifiers}
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M = {Three-piece classifiers}
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B = {Two-piece classifiers}

For every H-realisable D there is a hypothesis f;; € B with Lp(f}) < 1.

10/32



Example

Consider instance space X = R. Say
M = {Three-piece classifiers}

and
B = {Two-piece classifiers}

For every H-realisable D there is a hypothesis f;; € B with Lp(f}) < 1.
As VCdim(B) = 2, we can agnostlc( ) PAC learn B to accuracy € = &
with sample size of order e~ 2In % 5. E.g. by ERM.

With probability 1 — §, get

o1 11 1 1
Lp(hs) < Lo(f5)+ 35 < 34175 = 57 13

So we can y-weak learn H for v = 1—12
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Boosting
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Boosting Cartoon

Start with sample S = (x;, i)™ ;.

Maintain a hypothesis f;. In round t,
> Create distribution D; reweighting S

» Ask Weak Learner for new hypothesis h; making < 1/2 — v mistakes
on Dt-
So h; gets right what f; gets wrong

» Obtain improved f;;1 by incorporating h; into f;.
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Weak learning interface

Learning Theory Perspective

A weak learner takes a from D and
outputs an (% — v)-good hypothesis w.p. 1 — 4.

Need to account for failure in overall approach.
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Weak learning interface

Learning Theory Perspective

A weak learner takes a from D and
outputs an (3 — v)-good hypothesis w.p. 1 — ¢.

Need to account for failure in overall approach.

Often can avoid failure altogether for explicit D

Implementation Perspective

A weak learner takes a D
explicitly represented by examples (x;, y;)7; and weights w € A, and
outputs an (1 — v)-good hypothesis deterministically.

13/32



Boosting by Online Learning (BOL)
Fix
> A y-weak learner W for H.
> Asample S = (x;,y;))".
» A learner A for bounded losses on the simplex A, e.g. Hedge.

Definition
Fort=1,2,..., T
> Get w; from A
> Get h; from W applied to D (X =x, Y =y) =2, W
> Set /i = 1{h:(x) = yi}.
» Send £; to A.

Output hs(x) = sign (Z;l ht(x)).

Duality: Experts < data points Rounds < hypotheses.
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BOL Analysis

Let Rt be a regret bound for A.
Theorem (Zero training loss)

Consider BOL run for T rounds such that R—TT < % with the weak learner

error probability set to § = 557. Then
Ls(hs) = 0

with probability 1 — & (over the possibly randomised weak learner)
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BOL Analysis

Let Rt be a regret bound for A.
Theorem (Zero training loss)

Consider BOL run for T rounds such that R—TT < % with the weak learner

error probability set to § = 557. Then
Ls(hs) = 0
with probability 1 — & (over the possibly randomised weak learner)

For the typical case Rt = v/ T In m we find zero training loss after
T > 4'7# rounds.
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BOL Analysis |

Suppose hs misclassifies sample (x;, y;). Then

hs(x;) = sign <Z ht(Xi)> #y; sothat Y 1{h(x;)=y} < %

t=1

This means that

T

T T
mjnZéJ; < Zl{ht(xi):yi} < 2
O t=1

and hence by the regret bound for A,

T

T 1
Zwlet < E"FRT < T(2+;>

t=1
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BOL Analysis Il

Moreover
T m

Zwtft = ZZW{l{htXJ yi}

t=1 j=1
In each round, we have
wil, = Z W{I {he(x) =y} = 1= Lsw.(h)
j=1
The weak learner, with probability % guarantees in each round

1
Lsw,(he) < 57

Overall, with probability > 1 — §, we have

T

Dowite > T(L=(3-7) = T(3+7)
t=1
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BOL Analysis Il

But then we obtain the contradiction

1 1 v
il < 4L
() =7(3)

So after all, hs must be on S.
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AdaBoost
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AdaBoost

In particular, do not want to assume knowledge of ~ up front.

AdaBoost instead the empirical error:

e = Y wil{h(x)# yi}

i=1

Fancy online learning method = fancy boosting.
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AdaBoost
Fix
> Aggregating Algorithm
> A y-weak learner W for H.
> Asample S = (x;,y)",.

Definition
Fort=1,2,..., T

» Get w; from AA.

> Get h; from W applied to D (X =x, Y =y) =2, W
> Compute error ¢, = > i) wil{h(x;) # yi}
>
>

Sets the round-coefficient to a; = 1 In (q — 1)

Set 01 = ayyih:(x;).
» Send 4; to AA.

Output hs(x) = sign (Z;l atht(x)).
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AdaBoost Result

Theorem

Suppose W ~y-weak learns H, i.e. €; < % — ~v. Then the training error
after T rounds of AdaBoost is at most

Ls(hs) < e 2°T.
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AdaBoost |

Get w; by running AA on losses Ei = a;yiht(x;). The mix loss in round t
is

i . o
—In E W,_!e_ér = —In (E w,_{e_aty‘h‘(x'))
i i
= —Inle ™ g w; + et E A

ithe(xi)=yi ithe(xi)#yi
= —In(e™(1—€)+ e e)

maxq, 1
= 7§|n(46t(1 7€t))

assn.

1
(-4
> 29
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AdaBoost Il

Moreover, observe that

e ) > 1{yf(x) <0} = 1{sign(f(x)) # y}

Then by the AA telescope

In (Z 1owsl mh:(x»)
m

i

(i) )

—In (Z %1 {hs(xi) # y,-})

T2+

IN

IN

i

—In (Ls(hs))
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AdaBoost Conclusion

Training error < % means training error = 0.

2
We have e T < L for
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AdaBoost Conclusion

Training error < % means training error = 0.

2
We have e T < L for

Is 0 training error useful?
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Risk
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Is zero training loss good?

Should we worry about over-fitting?
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The VC story

AdaBoost outputs

hs(x) = sign (Z%’h(&'))

A half-space classifier applied to features (h:(x))/];.
Definition

Consider the class of all size T half-spaces over B

-
L(B, T) = {x — sign (Z Wtht(X)> ‘w €R” and h; € B}

t=1
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Capacity control

Boosting is safe.

Theorem
Let d = VCdim(B). Then

VCdim (L(B, T)) < 2(d+1)T log, (2(d +1)T)
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Capacity control, Analysis
Let C be shattered by L(B, T). Let’s abbreviate d = VCdim(B).
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Picking hy - - - ht from B represents the data set C by the point cloud
{(m(x),...,h7(x)) | x € C} C {-1,1}T CRT.
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Capacity control, Analysis
Let C be shattered by L(B, T). Let’s abbreviate d = VCdim(B).

Each labelling of C consists of a halfspace w applied to hy,..., ht € B.
By Sauer's Lemma, C can only be labeled in (em/d)9 ways by B.

Picking hy - - - ht from B represents the data set C by the point cloud
{(m(x),...,h7(x)) | x € C} C {-1,1}T CRT.

All choices of T hypotheses from B yield at most (em/d) " point clouds.

A point cloud in R” can be labelled by halfspaces in at most (em/T)"
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Capacity control, Analysis
Let C be shattered by L(B, T). Let’s abbreviate d = VCdim(B).

Each labelling of C consists of a halfspace w applied to hy,..., ht € B.
By Sauer's Lemma, C can only be labeled in (em/d)9 ways by B.

Picking hy - - - ht from B represents the data set C by the point cloud
{(m(x),...,h7(x)) | x € C} C {-1,1}T CRT.

All choices of T hypotheses from B yield at most (em/d) " point clouds.

A point cloud in R” can be labelled by halfspaces in at most (em/T)"
ways, by VCDim of halfspaces and Sauer’'s lemma.

All in all, the total number of labelings thus found is
(em/T)T(em/d)™ < m(@*DT,

and C being shattered means 2™ < m(d+1T

Taking the log and solving (using the tangent bound) implies
m < 2(d+1)Tlog, (2(d +1)T)
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Conclusion
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Conclusion

» Can boost weak learner to strong learner efficiently.

» Can hence compute ERM on big class from ERM on small class.
» Useful technique in theory/practice.

> Relation to margin theory (Chapter 15).
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