Machine Learning Theory 2024 Lecture 12

Wouter M. Koolen

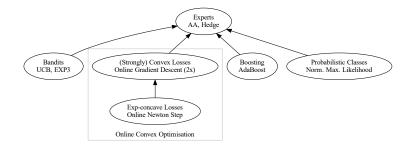
Download these slides now from elo.mastermath.nl!

Boosting:

- Weak and strong PAC learning
- Boosting by Online Learning
- AdaBoost algorithm
- Analysis
- VC dimension results

Recap

Overview of Second Half of Course



Material: course notes on MLT website.

Outlook

Today: application of **online learning** to good effect in **statistical learning**

Main point: Boosting gets the training error down (to 0).

With: Bound on VC dimension Get: PAC learning guarantee

Consider a hypothesis class $\mathcal{H} \subseteq \{\pm 1\}^{\mathcal{X}}$ for binary classification. \mathcal{D} is \mathcal{H} -realisable if there is $h \in \mathcal{H}$ such that $\mathbb{P}_{X,Y \sim \mathcal{D}}[h(X) = Y] = 1$.

Consider a hypothesis class $\mathcal{H} \subseteq \{\pm 1\}^{\mathcal{X}}$ for binary classification. \mathcal{D} is \mathcal{H} -realisable if there is $h \in \mathcal{H}$ such that $\mathbb{P}_{X,Y \sim \mathcal{D}}[h(X) = Y] = 1$.

Definition (Strong Learnability)

Algorithm \mathcal{A} PAC learns \mathcal{H} with sample complexity $m_{\mathcal{H}} : (0,1)^2 \to \mathbb{N}$ if for any \mathcal{H} -realisable \mathcal{D} , any $(\epsilon, \delta) \in (0,1)^2$ and any $m \ge m_{\mathcal{H}}(\epsilon, \delta)$

$$\mathbb{P}_{S^{m} \stackrel{\text{iid}}{\sim} \mathcal{D}} \left\{ \mathcal{L}_{\mathcal{D}}(h_{\mathcal{A},S}) \leq \epsilon \right\} \geq 1 - \delta.$$

Consider a hypothesis class $\mathcal{H} \subseteq \{\pm 1\}^{\mathcal{X}}$ for binary classification. \mathcal{D} is \mathcal{H} -realisable if there is $h \in \mathcal{H}$ such that $\mathbb{P}_{X,Y \sim \mathcal{D}}[h(X) = Y] = 1$.

Definition (Strong Learnability)

Algorithm \mathcal{A} PAC learns \mathcal{H} with sample complexity $m_{\mathcal{H}} : (0,1)^2 \to \mathbb{N}$ if for any \mathcal{H} -realisable \mathcal{D} , any $(\epsilon, \delta) \in (0,1)^2$ and any $m \ge m_{\mathcal{H}}(\epsilon, \delta)$

$$\mathbb{P}_{\mathbb{P}^{\mathsf{mid}}_{\sim \mathcal{D}}}\left\{ \mathcal{L}_{\mathcal{D}}(h_{\mathcal{A},S}) \leq \epsilon \right\} \geq 1-\delta.$$

Definition (γ -Weak Learnability, for $\gamma \in (0, 1/2)$)

Algorithm \mathcal{A} γ -weakly learns \mathcal{H} with sample complexity $m_{\mathcal{H}} : (0,1) \to \mathbb{N}$ if for any \mathcal{H} -realisable \mathcal{D} , any $\delta \in (0,1)$ and any $m \ge m_{\mathcal{H}}(\delta)$

$$\mathbb{P}_{S^{m^{\text{lid}}} \sim \mathcal{D}} \left\{ L_{\mathcal{D}}(h_{\mathcal{A},S}) \leq \frac{1}{2} - \gamma \right\} \geq 1 - \delta.$$

Question

- Is a weakly learnable class always PAC learnable?
 - If NO \Rightarrow perhaps should focus on weak learnability?
 - ▶ If YES \Rightarrow how? efficiency?

What we know

Proposition

 ${\cal H}$ is PAC learnable iff it is weak learnable.

Proof.

- If VCdim(H) < ∞ then H is PAC learnable and hence weak learnable.</p>
- If $VCdim(H) = \infty$, then by the Fundamental Theorem the sample complexity at (ϵ, δ) is at least of order

$$\geq rac{\mathsf{VCdim}(\mathcal{H}) + \ln rac{1}{\delta}}{\epsilon}$$

which is infinite even for $\epsilon = \frac{1}{2} - \gamma.$

What we know

Idea: perhaps ERM for $\mathcal{B} \subseteq \mathcal{H}$ is a weak learner for \mathcal{H} . Can we **boost** an **efficient** weak learner for \mathcal{H} to an **efficient** strong learner for \mathcal{H} ?

Example

Consider instance space $\mathcal{X} = \mathbb{R}$. Say

 $\mathcal{H} = \{\text{Three-piece classifiers}\}$

 and

$$\mathcal{B} = \{\mathsf{Two-piece classifiers}\}$$

Example

Consider instance space $\mathcal{X} = \mathbb{R}$. Say

 $\mathcal{H} = \{\text{Three-piece classifiers}\}$

and

$$\mathcal{B} = \{\text{Two-piece classifiers}\}$$

For every \mathcal{H} -realisable \mathcal{D} there is a hypothesis $f_{\mathcal{B}}^* \in \mathcal{B}$ with $L_{\mathcal{D}}(f_{\mathcal{B}}^*) \leq \frac{1}{3}$.

Example

Consider instance space $\mathcal{X} = \mathbb{R}$. Say

 $\mathcal{H} = \{\text{Three-piece classifiers}\}$

and

$$\mathcal{B} = \{\mathsf{Two-piece classifiers}\}$$

For every \mathcal{H} -realisable \mathcal{D} there is a hypothesis $f_{\mathcal{B}}^* \in \mathcal{B}$ with $L_{\mathcal{D}}(f_{\mathcal{B}}^*) \leq \frac{1}{3}$.

As VCdim(\mathcal{B}) = 2, we can agnostic(!) PAC learn \mathcal{B} to accuracy $\epsilon = \frac{1}{12}$ with sample size of order $\epsilon^{-2} \ln \frac{1}{\delta}$. E.g. by ERM.

With probability $1 - \delta$, get

$$L_{\mathcal{D}}(h_{\mathcal{S}}) \leq L_{\mathcal{D}}(f_{\mathcal{B}}^*) + \frac{1}{12} \leq \frac{1}{3} + \frac{1}{12} = \frac{1}{2} - \frac{1}{12}$$

So we can γ -weak learn \mathcal{H} for $\gamma = \frac{1}{12}$.

Boosting

Boosting Cartoon

Start with sample $S = (x_i, y_i)_{i=1}^m$.

Maintain a hypothesis f_t . In round t,

- Create distribution D_t reweighting S
 Put more weight on examples misclassified by f_t
- Ask Weak Learner for new hypothesis h_t making ≤ 1/2 − γ mistakes on D_t.
 So h_t gets right what f_t gets wrong
- Obtain improved f_{t+1} by incorporating h_t into f_t .

Weak learning interface

Learning Theory Perspective

A weak learner takes a sample from \mathcal{D} and outputs an $(\frac{1}{2} - \gamma)$ -good hypothesis w.p. $1 - \delta$.

Need to account for failure in overall approach.

Weak learning interface

Learning Theory Perspective

A weak learner takes a sample from \mathcal{D} and outputs an $(\frac{1}{2} - \gamma)$ -good hypothesis w.p. $1 - \delta$.

Need to account for failure in overall approach.

Often can avoid failure altogether for explicit $\ensuremath{\mathcal{D}}$

Implementation Perspective

A weak learner takes a **distribution** \mathcal{D} explicitly represented by examples $(x_i, y_i)_{i=1}^m$ and weights $w \in \triangle_m$, and outputs an $(\frac{1}{2} - \gamma)$ -good hypothesis **deterministically**.

Boosting by Online Learning (BOL)

Fix

- A γ -weak learner \mathcal{W} for \mathcal{H} .
- A sample $S = (x_i, y_i)_{i=1}^m$.
- ▶ A learner A for bounded losses on the simplex \triangle_m , e.g. Hedge.

Definition

For t = 1, 2, ..., T• Get w_t from \mathcal{A} • Get h_t from \mathcal{W} applied to $\mathcal{D}^t (X = x, Y = y) = \sum_{i:x=x_i, y=y_i} w_t^i$ • Set $\ell_t^i = \mathbf{1} \{h_t(x_i) = y_i\}$. • Send ℓ_t to \mathcal{A} . Output $h_S(x) = \text{sign} \left(\sum_{t=1}^T h_t(x)\right)$.

 ${\sf Duality:} \ {\sf Experts} \Leftrightarrow {\sf data} \ {\sf points} \quad {\sf Rounds} \Leftrightarrow {\sf hypotheses}.$

BOL Analysis

Let R_T be a regret bound for \mathcal{A} .

Theorem (Zero training loss)

Consider BOL run for T rounds such that $\frac{R_T}{T} \leq \frac{\gamma}{2}$, with the weak learner error probability set to $\delta = \frac{\delta}{T}$. Then

$$L_S(h_S) = 0$$

with probability $1 - \delta$ (over the possibly randomised weak learner)

BOL Analysis

Let R_T be a regret bound for \mathcal{A} .

Theorem (Zero training loss)

Consider BOL run for T rounds such that $\frac{R_T}{T} \leq \frac{\gamma}{2}$, with the weak learner error probability set to $\delta = \frac{\delta}{T}$. Then

$$L_S(h_S) = 0$$

with probability $1 - \delta$ (over the possibly randomised weak learner)

For the typical case $R_T = \sqrt{T \ln m}$ we find zero training loss after $T \ge \frac{4 \ln m}{\gamma^2}$ rounds.

BOL Analysis I

Suppose h_S misclassifies sample (x_i, y_i) . Then

$$h_{\mathcal{S}}(x_i) = \operatorname{sign}\left(\sum_{t=1}^{T} h_t(x_i)\right) \neq y_i \quad \text{so that} \quad \sum_{t=1}^{T} \mathbf{1}\left\{h_t(x_i) = y_i\right\} \leq \frac{T}{2}$$

This means that

$$\min_{j} \sum_{t=1}^{T} \ell_{t}^{j} \leq \sum_{t=1}^{T} \mathbf{1} \{ h_{t}(x_{i}) = y_{i} \} \leq \frac{T}{2}$$

and hence by the regret bound for \mathcal{A} ,

$$\sum_{t=1}^{T} \boldsymbol{w}_t^{\mathsf{T}} \boldsymbol{\ell}_t \leq \frac{T}{2} + \boldsymbol{R}_T \leq T \left(\frac{1}{2} + \frac{\gamma}{2} \right)$$

BOL Analysis II

Moreover

$$\sum_{t=1}^{T} w_t^{\mathsf{T}} \ell_t = \sum_{t=1}^{T} \sum_{j=1}^{m} w_t^j \mathbf{1} \{ h_t(x_j) = y_j \}$$

In each round, we have

$$w_t^{\mathsf{T}} \ell_t = \sum_{j=1}^m w_t^j \mathbf{1} \{ h_t(x_j) = y_j \} = 1 - L_{S,w_t}(h_t)$$

The weak learner, with probability $\frac{\delta}{T}$ guarantees in each round

$$L_{S,\boldsymbol{w}_t}(h_t) \leq \frac{1}{2} - \gamma$$

Overall, with probability $\geq 1-\delta$, we have

$$\sum_{t=1}^T w_t^\intercal \ell_t \geq T(1-(rac{1}{2}-\gamma)) = T(rac{1}{2}+\gamma)$$

BOL Analysis III

But then we obtain the contradiction

$$T\left(rac{1}{2}+\gamma
ight) ~\leq~ T\left(rac{1}{2}+rac{\gamma}{2}
ight)$$

So after all, h_S must be **perfect** on S.

AdaBoost

AdaBoost

In particular, do not want to assume knowledge of γ up front.

AdaBoost instead **computes** the empirical error:

$$\epsilon_t = \sum_{i=1}^m w_t^i \mathbf{1} \{ h_t(x_i) \neq y_i \}$$

Fancy online learning method \Rightarrow fancy boosting.

AdaBoost

Fix

- Aggregating Algorithm
- A γ -weak learner \mathcal{W} for \mathcal{H} .

• A sample
$$S = (x_i, y_i)_{i=1}^m$$
.

Definition

For t = 1, 2, ..., T

- Get w_t from AA.
- Get h_t from \mathcal{W} applied to $\mathcal{D}^t (X = x, Y = y) = \sum_{i:x=x_i, y=y_i} w_t^i$
- Compute error $\epsilon_t = \sum_{i=1}^m w_t^i \mathbf{1} \{ h_t(x_i) \neq y_i \}$
- Sets the round-coefficient to $\alpha_t = \frac{1}{2} \ln \left(\frac{1}{\epsilon_t} 1 \right)$

• Set
$$\ell_t^i = \alpha_t y_i h_t(x_i)$$
.

Send ℓ_t to AA.

Output
$$h_{\mathcal{S}}(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right).$$

AdaBoost Result

Theorem

Suppose $W \gamma$ -weak learns H, i.e. $\epsilon_t \leq \frac{1}{2} - \gamma$. Then the training error after T rounds of AdaBoost is at most

$$L_S(h_s) \leq e^{-2\gamma^2 T}.$$

AdaBoost I

Get w_t by running AA on losses $\ell_t^i = \alpha_t y_i h_t(x_i)$. The mix loss in round t is

$$\begin{split} -\ln\sum_{i} w_{t}^{i} e^{-\ell_{t}^{i}} &= -\ln\left(\sum_{i} w_{t}^{i} e^{-\alpha_{t} y_{i} h_{t}(x_{i})}\right) \\ &= -\ln\left(e^{-\alpha_{t}} \sum_{i:h_{t}(x_{i})=y_{i}} w_{t}^{i} + e^{\alpha_{t}} \sum_{i:h_{t}(x_{i})\neq y_{i}} w_{t}^{i}\right) \\ &= -\ln\left(e^{-\alpha_{t}} (1-\epsilon_{t}) + e^{\alpha_{t}} \epsilon_{t}\right) \\ &\stackrel{\max_{i} \alpha_{t}}{=} -\frac{1}{2} \ln\left(4\epsilon_{t} (1-\epsilon_{t})\right) \\ &\stackrel{\text{assn.}}{\geq} -\frac{1}{2} \ln\left(1-4\gamma^{2}\right) \\ &\geq 2\gamma^{2} \end{split}$$

AdaBoost II

Moreover, observe that

$$e^{-yf(x)} \geq \mathbf{1} \{ yf(x) \leq 0 \} = \mathbf{1} \{ sign(f(x)) \neq y \}$$

Then by the AA telescope

$$T2\gamma^{2} \leq -\ln\left(\sum_{i} \frac{1}{m} e^{-y_{i} \sum_{t=1}^{T} \alpha_{t} h_{t}(x_{i})}\right)$$

$$\leq -\ln\left(\sum_{i} \frac{1}{m} \mathbf{1} \left\{ \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_{t} h_{t}(x_{i})\right) \neq y_{i} \right\} \right)$$

$$= -\ln\left(\sum_{i} \frac{1}{m} \mathbf{1} \left\{ h_{S}(x_{i}) \neq y_{i} \right\} \right)$$

$$= -\ln\left(L_{S}(h_{S})\right)$$

AdaBoost Conclusion

Training error $<\frac{1}{m}$ means training error = 0.

We have $e^{-2\gamma^2 T} < rac{1}{m}$ for $T > rac{\ln m}{2\gamma^2}.$

AdaBoost Conclusion

Training error $<\frac{1}{m}$ means training error = 0.

We have
$$e^{-2\gamma^2 T} < rac{1}{m}$$
 for $T > rac{\ln m}{2\gamma^2}.$

Is 0 training error useful?

Risk

Is zero training loss good?

Should we worry about over-fitting?

The VC story

AdaBoost outputs

$$h_{\mathcal{S}}(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x_i)\right)$$

A half-space classifier applied to features $(h_t(x))_{t=1}^T$.

Definition

Consider the class of all size ${\mathcal T}$ half-spaces over ${\mathcal B}$

$$L(\mathcal{B}, T) = \left\{ x \mapsto \operatorname{sign}\left(\sum_{t=1}^{T} w_t h_t(x)\right) \middle| w \in \mathbb{R}^T \text{ and } h_t \in \mathcal{B}
ight\}$$

Capacity control

Boosting is safe.

Theorem

Let d = VCdim(B). Then

 $\operatorname{VCdim}\left(L(\mathcal{B}, T)\right) \leq 2(d+1)T \log_2\left(2(d+1)T\right)$

Let C be shattered by $L(\mathcal{B}, T)$. Let's abbreviate $d = VCdim(\mathcal{B})$.

Let C be shattered by $L(\mathcal{B}, T)$. Let's abbreviate $d = VCdim(\mathcal{B})$.

Each labelling of C consists of a halfspace w applied to $h_1, \ldots, h_T \in \mathcal{B}$.

Let C be shattered by $L(\mathcal{B}, T)$. Let's abbreviate $d = VCdim(\mathcal{B})$.

Each labelling of C consists of a halfspace w applied to $h_1, \ldots, h_T \in \mathcal{B}$.

By Sauer's Lemma, C can only be labeled in $(em/d)^d$ ways by \mathcal{B} .

Let C be shattered by $L(\mathcal{B}, T)$. Let's abbreviate $d = VCdim(\mathcal{B})$.

Each labelling of C consists of a halfspace w applied to $h_1, \ldots, h_T \in \mathcal{B}$.

By Sauer's Lemma, C can only be labeled in $(em/d)^d$ ways by \mathcal{B} .

Picking $h_1 \cdots h_T$ from \mathcal{B} represents the data set C by the point cloud $\{(h_1(x), \ldots, h_T(x)) \mid x \in C\} \subseteq \{-1, 1\}^T \subseteq \mathbb{R}^T$.

Let C be shattered by $L(\mathcal{B}, T)$. Let's abbreviate $d = VCdim(\mathcal{B})$.

Each labelling of C consists of a halfspace w applied to $h_1, \ldots, h_T \in \mathcal{B}$.

By Sauer's Lemma, C can only be labeled in $(em/d)^d$ ways by \mathcal{B} .

Picking $h_1 \cdots h_T$ from \mathcal{B} represents the data set C by the point cloud $\{(h_1(x), \ldots, h_T(x)) \mid x \in C\} \subseteq \{-1, 1\}^T \subseteq \mathbb{R}^T$.

All choices of T hypotheses from \mathcal{B} yield at most $(em/d)^{Td}$ point clouds.

Let C be shattered by $L(\mathcal{B}, T)$. Let's abbreviate $d = VCdim(\mathcal{B})$.

Each labelling of C consists of a halfspace w applied to $h_1, \ldots, h_T \in \mathcal{B}$.

By Sauer's Lemma, C can only be labeled in $(em/d)^d$ ways by \mathcal{B} .

Picking $h_1 \cdots h_T$ from \mathcal{B} represents the data set C by the point cloud $\{(h_1(x), \ldots, h_T(x)) \mid x \in C\} \subseteq \{-1, 1\}^T \subseteq \mathbb{R}^T$.

All choices of T hypotheses from \mathcal{B} yield at most $(em/d)^{Td}$ point clouds.

A point cloud in \mathbb{R}^{T} can be labelled by halfspaces in at most $(em/T)^{T}$ ways, by VCDim of halfspaces and Sauer's lemma.

Let C be shattered by $L(\mathcal{B}, T)$. Let's abbreviate $d = VCdim(\mathcal{B})$.

Each labelling of C consists of a halfspace w applied to $h_1, \ldots, h_T \in \mathcal{B}$.

By Sauer's Lemma, C can only be labeled in $(em/d)^d$ ways by \mathcal{B} .

Picking $h_1 \cdots h_T$ from \mathcal{B} represents the data set C by the point cloud $\{(h_1(x), \ldots, h_T(x)) \mid x \in C\} \subseteq \{-1, 1\}^T \subseteq \mathbb{R}^T$.

All choices of T hypotheses from \mathcal{B} yield at most $(em/d)^{Td}$ point clouds.

A point cloud in \mathbb{R}^{T} can be labelled by halfspaces in at most $(em/T)^{T}$ ways, by VCDim of halfspaces and Sauer's lemma.

All in all, the total number of labelings thus found is

$$(em/T)^T(em/d)^{Td} \leq m^{(d+1)T},$$

and C being shattered means $2^m \leq m^{(d+1)T}$.

Let C be shattered by $L(\mathcal{B}, T)$. Let's abbreviate $d = VCdim(\mathcal{B})$.

Each labelling of *C* consists of a halfspace *w* applied to $h_1, \ldots, h_T \in \mathcal{B}$. By Sauer's Lemma, *C* can only be labeled in $(em/d)^d$ ways by \mathcal{B} .

Picking $h_1 \cdots h_T$ from \mathcal{B} represents the data set C by the point cloud $\{(h_1(x), \ldots, h_T(x)) \mid x \in C\} \subseteq \{-1, 1\}^T \subseteq \mathbb{R}^T$.

All choices of T hypotheses from \mathcal{B} yield at most $(em/d)^{Td}$ point clouds.

A point cloud in \mathbb{R}^{T} can be labelled by halfspaces in at most $(em/T)^{T}$ ways, by VCDim of halfspaces and Sauer's lemma.

All in all, the total number of labelings thus found is

$$(em/T)^T(em/d)^{Td} \leq m^{(d+1)T},$$

and C being shattered means $2^m \leq m^{(d+1)T}$.

Taking the log and solving (using the tangent bound) implies

$$m \leq 2(d+1)T \log_2(2(d+1)T)$$

Conclusion

Conclusion

- Can boost weak learner to strong learner efficiently.
- Can hence compute ERM on big class from ERM on small class.
- Useful technique in theory/practice.
- Relation to margin theory (Chapter 15).