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Overview of Second Half of Course

Online Convex Optimisation

Experts
AA, Hedge

Bandits
UCB, EXP3

(Strongly) Convex Losses
Online Gradient Descent (2x)

Exp-concave Losses
Online Newton Step

Boosting
AdaBoost

Probabilistic Classes
Norm. Max. Likelihood

Material: course notes on MLT website.
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Outlook

Today: application of online learning to good effect in statistical
learning

Main point: Boosting gets the training error down (to 0).

With: Bound on VC dimension
Get: PAC learning guarantee
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Weak Learning

5 / 32



Weak Learning

Consider a hypothesis class H ⊆ {±1}X for binary classification.
D is H-realisable if there is h ∈ H such that PX ,Y∼D[h(X ) = Y ] = 1.

Definition (Strong Learnability)

Algorithm A PAC learns H with sample complexity mH : (0, 1)2 → N if
for any H-realisable D, any (ϵ, δ) ∈ (0, 1)2 and any m ≥ mH(ϵ, δ)

P
Sm iid∼D

{
LD(hA,S) ≤ ϵ

}
≥ 1− δ.

Definition (γ-Weak Learnability, for γ ∈ (0, 1/2))

Algorithm A γ-weakly learns H with sample complexity mH : (0, 1) → N
if for any H-realisable D, any δ ∈ (0, 1) and any m ≥ mH(δ)

P
Sm iid∼D

{
LD(hA,S) ≤ 1

2 − γ
}

≥ 1− δ.
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Question

Is a weakly learnable class always PAC learnable?

▶ If NO ⇒ perhaps should focus on weak learnability?

▶ If YES ⇒ how? efficiency?
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What we know

Proposition

H is PAC learnable iff it is weak learnable.

Proof.
▶ If VCdim(H) < ∞ then H is PAC learnable and hence weak

learnable.

▶ If VCdim(H) = ∞, then by the Fundamental Theorem the sample
complexity at (ϵ, δ) is at least of order

≥
VCdim(H) + ln 1

δ

ϵ

which is infinite even for ϵ = 1
2 − γ.

8 / 32



What we know

Idea: perhaps ERM for B ⊆ H is a weak learner for H.
Can we boost an efficient weak learner for H to an efficient strong
learner for H?

9 / 32



Example

Consider instance space X = R. Say

H = {Three-piece classifiers}

and
B = {Two-piece classifiers}

For every H-realisable D there is a hypothesis f ∗B ∈ B with LD(f
∗
B ) ≤ 1

3 .

As VCdim(B) = 2, we can agnostic(!) PAC learn B to accuracy ϵ = 1
12

with sample size of order ϵ−2 ln 1
δ . E.g. by ERM.

With probability 1− δ, get

LD(hS) ≤ LD(f
∗
B ) +

1

12
≤ 1

3
+

1

12
=

1

2
− 1

12

So we can γ-weak learn H for γ = 1
12 .
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Boosting
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Boosting Cartoon

Start with sample S = (xi , yi )
m
i=1.

Maintain a hypothesis ft . In round t,

▶ Create distribution Dt reweighting S
Put more weight on examples misclassified by ft

▶ Ask Weak Learner for new hypothesis ht making ≤ 1/2− γ mistakes
on Dt .
So ht gets right what ft gets wrong

▶ Obtain improved ft+1 by incorporating ht into ft .
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Weak learning interface

Learning Theory Perspective
A weak learner takes a sample from D and
outputs an ( 12 − γ)-good hypothesis w.p. 1− δ.

Need to account for failure in overall approach.

Often can avoid failure altogether for explicit D

Implementation Perspective
A weak learner takes a distribution D
explicitly represented by examples (xi , yi )

m
i=1 and weights w ∈ △m, and

outputs an ( 12 − γ)-good hypothesis deterministically.
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Boosting by Online Learning (BOL)

Fix

▶ A γ-weak learner W for H.

▶ A sample S = (xi , yi )
m
i=1.

▶ A learner A for bounded losses on the simplex △m, e.g. Hedge.

Definition

For t = 1, 2, . . . ,T

▶ Get wt from A
▶ Get ht from W applied to Dt (X = x ,Y = y) =

∑
i :x=xi ,y=yi

w i
t

▶ Set ℓit = 1 {ht(xi ) = yi}.
▶ Send ℓt to A.

Output hS(x) = sign
(∑T

t=1 ht(x)
)
.

Duality: Experts ⇔ data points Rounds ⇔ hypotheses.
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BOL Analysis

Let RT be a regret bound for A.

Theorem (Zero training loss)

Consider BOL run for T rounds such that RT

T ≤ γ
2 , with the weak learner

error probability set to δ = δ
T . Then

LS(hS) = 0

with probability 1− δ (over the possibly randomised weak learner)

For the typical case RT =
√
T lnm we find zero training loss after

T ≥ 4 lnm
γ2 rounds.
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BOL Analysis I

Suppose hS misclassifies sample (xi , yi ). Then

hS(xi ) = sign

(
T∑
t=1

ht(xi )

)
̸= yi so that

T∑
t=1

1 {ht(xi ) = yi} ≤ T

2

This means that

min
j

T∑
t=1

ℓjt ≤
T∑
t=1

1 {ht(xi ) = yi} ≤ T

2

and hence by the regret bound for A,

T∑
t=1

w⊺
t ℓt ≤ T

2
+ RT ≤ T

(
1

2
+

γ

2

)
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BOL Analysis II
Moreover

T∑
t=1

w⊺
t ℓt =

T∑
t=1

m∑
j=1

w j
t1 {ht(xj) = yj}

In each round, we have

w⊺
t ℓt =

m∑
j=1

w j
t1 {ht(xj) = yj} = 1− LS,wt (ht)

The weak learner, with probability δ
T guarantees in each round

LS,wt (ht) ≤ 1

2
− γ

Overall, with probability ≥ 1− δ, we have

T∑
t=1

w⊺
t ℓt ≥ T (1− ( 12 − γ)) = T ( 12 + γ)
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BOL Analysis III

But then we obtain the contradiction

T

(
1

2
+ γ

)
≤ T

(
1

2
+

γ

2

)
So after all, hS must be perfect on S .
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AdaBoost
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AdaBoost

In particular, do not want to assume knowledge of γ up front.

AdaBoost instead computes the empirical error:

ϵt =
m∑
i=1

w i
t1 {ht(xi ) ̸= yi}

Fancy online learning method ⇒ fancy boosting.
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AdaBoost
Fix

▶ Aggregating Algorithm

▶ A γ-weak learner W for H.

▶ A sample S = (xi , yi )
m
i=1.

Definition

For t = 1, 2, . . . ,T

▶ Get wt from AA.

▶ Get ht from W applied to Dt (X = x ,Y = y) =
∑

i :x=xi ,y=yi
w i
t

▶ Compute error ϵt =
∑m

i=1 w
i
t1 {ht(xi ) ̸= yi}

▶ Sets the round-coefficient to αt =
1
2 ln
(

1
ϵt
− 1
)

▶ Set ℓit = αtyiht(xi ).

▶ Send ℓt to AA.

Output hS(x) = sign
(∑T

t=1 αtht(x)
)
.
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AdaBoost Result

Theorem

Suppose W γ-weak learns H, i.e. ϵt ≤ 1
2 − γ. Then the training error

after T rounds of AdaBoost is at most

LS(hs) ≤ e−2γ2T .
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AdaBoost I

Get wt by running AA on losses ℓit = αtyiht(xi ). The mix loss in round t
is

− ln
∑
i

w i
t e

−ℓit = − ln

(∑
i

w i
t e

−αtyiht(xi )

)

= − ln

e−αt

∑
i :ht(xi )=yi

w i
t + eαt

∑
i :ht(xi ) ̸=yi

w i
t


= − ln

(
e−αt (1− ϵt) + eαt ϵt

)
maxαt= −1

2
ln (4ϵt(1− ϵt))

assn.
≥ −1

2
ln
(
1− 4γ2

)
≥ 2γ2
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AdaBoost II

Moreover, observe that

e−yf (x) ≥ 1 {yf (x) ≤ 0} = 1 {sign(f (x)) ̸= y}

Then by the AA telescope

T2γ2 ≤ − ln

(∑
i

1

m
e−yi

∑T
t=1 αtht(xi )

)

≤ − ln

(∑
i

1

m
1

{
sign

(
T∑
t=1

αtht(xi )

)
̸= yi

})

= − ln

(∑
i

1

m
1 {hS(xi ) ̸= yi}

)
= − ln (LS(hS))
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AdaBoost Conclusion

Training error < 1
m means training error = 0.

We have e−2γ2T < 1
m for

T >
lnm

2γ2
.

Is 0 training error useful?
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Risk
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Is zero training loss good?

Should we worry about over-fitting?
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The VC story

AdaBoost outputs

hS(x) = sign

(
T∑
t=1

αtht(xi )

)

A half-space classifier applied to features (ht(x))
T
t=1.

Definition

Consider the class of all size T half-spaces over B

L(B,T ) =

{
x 7→ sign

(
T∑
t=1

wtht(x)

)∣∣∣∣∣w ∈ RT and ht ∈ B

}
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Capacity control

Boosting is safe.

Theorem

Let d = VCdim(B). Then

VCdim (L(B,T )) ≤ 2(d + 1)T log2 (2(d + 1)T )
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Capacity control, Analysis
Let C be shattered by L(B,T ). Let’s abbreviate d = VCdim(B).

Each labelling of C consists of a halfspace w applied to h1, . . . , hT ∈ B.

By Sauer’s Lemma, C can only be labeled in (em/d)d ways by B.

Picking h1 · · · hT from B represents the data set C by the point cloud
{(h1(x), . . . , hT (x)) | x ∈ C} ⊆ {−1, 1}T ⊆ RT .

All choices of T hypotheses from B yield at most (em/d)Td point clouds.

A point cloud in RT can be labelled by halfspaces in at most (em/T )T

ways, by VCDim of halfspaces and Sauer’s lemma.

All in all, the total number of labelings thus found is

(em/T )T (em/d)Td ≤ m(d+1)T ,

and C being shattered means 2m ≤ m(d+1)T .

Taking the log and solving (using the tangent bound) implies

m ≤ 2(d + 1)T log2 (2(d + 1)T )
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Conclusion
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Conclusion

▶ Can boost weak learner to strong learner efficiently.

▶ Can hence compute ERM on big class from ERM on small class.

▶ Useful technique in theory/practice.

▶ Relation to margin theory (Chapter 15).
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