Machine Learning Theory 2024
Lecture 13

Wouter M. Koolen

Download these slides now from elo.mastermath.nl!

» Prediction with log-loss:

» NML/Shtarkov
» Bayes Uniform Prior/Jeffreys Prior
> Finite ©/Parametric ©

Application:
» Markov and CTW prediction



https://elo.mastermath.nl

Recap
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Overview of Second Half of Course

Experts
AA, Hedge
(Strongly) Convex Losses Boosting
Online Gradient Descent (2x) AdaBoost

Exp-concave Losses

Online Newton Step

Online Convex Optimisation

Bandits Probabilistic Classes
UCB, EXP3 Norm. Max. Likelihood

Material: course notes on MLT website.

Background Material: Chapter 9 from Prediction, Learning and Games by
Cesa-Bianchi and Lugosi.
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https://www.cwi.nl/~wmkoolen/MLT_2024/
https://elo.mastermath.nl/mod/resource/view.php?id=27915

Outlook

Today: with statistical models as our
hypotheses

Main points:
» Minimax analyis tractable, elegant, insightful
» Bayesian methods can get very close
» Foundation for practical methods
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Log-loss prediction
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Log Loss Prediction Setup

Start with a class © of simulatable predictors for outcomes y1, ys, . . ..

After seeing past y" !, each § € © assigns a probability ps to the next
outcome y, denoted by
po(yaly™™1)

Interesting examples:

> Finite class

» Bernoulli
> Mixtures (categorical distributions)
» Markov chains
>

Logistic regression
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Conditional vs Joint Equivalence
A sequential one-step-ahead forecaster (aka conditional distribution)
plyely™™)
induces a distribution on length-T sequences (aka joint distribution)

T

p(y”) = [[pUely*™)

t=1
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Conditional vs Joint Equivalence
A sequential one-step-ahead forecaster (aka conditional distribution)
plyely™™)
induces a distribution on length-T sequences (aka joint distribution)

T

p(y”) = [[pUely*™)

t=1

Conversely, any distribution over full T-length outcome sequences

p(y")
induces a one-step forecaster (by integrating out the future)
t—1y Zygu P(yt_ldfta)’rll)
plrely™) = >, Py L)
So: two of the same object
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Log Loss Prediction Notation

A predictor 6 assigns to sequence y ' probability

;
po(y™) =] polyely'™)

Definition

The maximum likelihood estimator (MLE) for data y7 is
AuTY — T

O(y’) = argmaxpo(y’),

and the maximum likelihood is

T __ T
Por(y') = maxps(y’).

NB ZyT pé(yr)(yT) > 1
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Log-loss Prediction Game

Fix a class © of simulatable predictors

Protocol

» Fort=1,2,..., T
1. The learner assigns probability p: € Ay to the next outcome.
2. The next outcome y; € ) is revealed
3. Learner incurs —In Be(ye).

NB: p; typically improper (not a prediction in ©)
Definition (Regret)

After T rounds, the regret is

T T
=1
> " —Inpe(y:) — E —Inpg(yely*™)
t=1 =
Learner’s log loss log loss of MLE: —In py, (yT)

9/36



Data compression connection

Intuition
#bits =~ log-loss

Key words:
» Shannon-Fano code : code lengths are — log(p) rounded-up
> Kraft Inequality : 2Pt length syms to < 1 for any code
» arithmetic coding: bits ~ —log(p") sequentially
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What we already know: Experts

Theorem

For finite |©| < oo, there is an algorithm for the log loss game with
regret at most In|©)|.

Proof.

By reduction to the mix loss game. Consider running the Agregating
Algorithm from Lecture 8 on experts © with losses

0] = —Inpy(yely™™)

and using w; to form the predictions

pe(y) = > wipo(yly'™).
e

Then log loss equals mix loss

—Inpe(yr) = InZwt o

€O

and the In|©| regret bound follows. O 11/



What we already know: Experts
AA-based strategy takes a particularly simple form

Bely) = > wips(yly™)

0co
t—1 4,60
Soco e 21 Lpy(ylytTt)
> pco € gt

s—1
Ypee e = Tl gy (y |yt
Scoe” i —Inpalyslys—?)

_ Yseollsmi polysly* Hpo(yly* ™)
> oco TT:21 pa(ysly=—1)
_ Loeo Py T Hpa(yly )
Y gco Po(yi1)

Average of predictions pg(y|yt~!) with weights oc pg(yt~1).

Bayes rule (uniform prior on ©).
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What we already know: Exp-concavity

Log loss is a function of the prediction p; € Ay.

With f.(p:) = — In Br(yt), we have gradient

e
V6(p:) = V—Inp = %
+(Pt) Pz(yt) pt(yt)

Potentially gradient (as we saw in Homework 11.2). Online

Newton Step may need additional assumptions.
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Questions for Today

> |s regret < In|©| good for this problem?
> And what if |©] = 00?
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Minimax Regret for Log Loss
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Log Loss Prediction Minimax Regret

Fix a model ©.

Definition

The minimax regret of the T-round log-loss game on © is

V7(©) = minmaxminmax...min max Regret
pL 1 P2 )2 pT YT

Note: can be linear if © is too large.
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Normalised Maximum Likelihood

Easier to solve the problem in whole-sequence-at-once form:

V7(©) = minmaxminmax...min max Regret
P 1 P2 )2 pT YT

= minmax —Inp(y") +Inp; T
s T P(y ) pg(yr)(y )
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Normalised Maximum Likelihood
Theorem (Shtarkov)

The minimax predictor is

yT) = Mmaxece po(yT")
>, maxgeo po(y ")

PNML (

and the minimax regret is

_ T
Vr(©) = In yZnggpo(y )

Game-theoretic measure of capacity of © called Stochastic Complexity

Counts number of parameters 6 € © that are “essentially different” at
horizon T.

Rate at which you need to grow cardinality when using finite
discretisation.
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Proof

See Theorem 9.1 in the material.
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Minimax regret

Consider again the finite © case. Then

Vr(©) = In | S maxps(yT)

(IC]
Y7
< (> > poly")
yT 6€©
= In|©|

Can be much smaller in practise.
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Asymptotic Expansion for Minimax Regret |

Now consider the i.i.d. Bernoulli model © = [0, 1] where py(1]y*~1) = 6.

Vr(e) = In%+o(1)

Proof.
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Asymptotic Expansion for Minimax Regret |l

Vr(©) = In (Z [peagpe(yT))
" (Z (D (4>i (7 ))

Where the approximation is Stirling’s n! ~ v/27n (2)". So that

</T) ~ \/%(;)’\/ZT(D;)(T—I‘)T—’ - 27ri(;—i) <T)i<TT—f)7

e

i

O
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Asymptotic Expansion for Categorical

Consider the k-outcome categorical model © = Ay with pg = 6.
Bernoulli is the case k =2

Theorem

Vr(©) = le 1+| rr((1k//22)) +o(1)

Proof.

See reading material O
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Asymptotic Expansion for i.i.d. Classes

NB: This is just for context

Theorem
Consider any “suitably regular” model © C R¥ of i.i.d. predictors. Then

Vr(©) = gln%+Iog/\/detl(0)d0+o(1)

where /() is the Fisher information matrix (Hessian of negative entropy)

10) = JE [V5Inpy(Y)].

~Po
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Bayesian Predictors
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Idea

For finite classes ©, we saw that AA reduces to a Bayesian mixture.
Do Bayesian mixtures also control the regret for infinite ©7

For example, what about Bernoulli? How good is e.g. the uniform average

p(y7) = /0 Po(yT) do
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Uniform Average aka Laplace Mixture

Theorem

The uniform average predictor has predictions

n1(yt‘1) +1

1 t—1y _

and worst-case regret equal to

max Regret = In(T +1)
y

About twice V7(O) ...
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Jeffreys’ Average

Jeffreys proposed prior (based on invariance considerations)

1

PO = i

Theorem
The Jeffreys predictor is equivalent to the Krichevsky- Trofimoff predictor

_ m(yt=1)+1/2
palytl) = L2

and has worst-case regret equal to

1
max Regret < = In(T)+In2
yT 2

Matches V7(©) up to lower-order constant.
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General Bayesian Mixures

NB:
For a general model, Jeffreys' prior is

0) = /det 1(6)
PO = Jdet 1(6) do

Where [(0) is the Fisher Information matrix.

Theorem

Consider a suitably regular i.i.d. @ C R¥. The worst-case regret of
Bayesian model averaging with Jeffreys’ prior is

max Regret = glnzl+|og/\/detl(6)d6+o(1)
s

y

Equal to minimax regret V(©) up to o(1).

Practice: Bayesian methods easier to interpret/compute.
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Applications
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Markov Models

kth order Markov model can be summarised by a table

context  prediction

00 fo0
01 Oo1
10 010
11 011

In context x, assign probability 8, to seeing outcome 1 next.

0101001010101 017
~—~—
context

2k parameters.

Bayesian average can be maintained efficiently. Regret is about 21 In T.
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Application: Context Tree Weighting (CTW)

Predict next symbol: look up context right-to-left from root, use leaf dist.

context

—N————
oriorgor? = 13
used NI
prediction

» 2k+1 parameters for maximum context length k.

» O(k) per round implementation of Bayesian model average over all
context tree predictors

» Excellent data compression performance.
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Conclusions
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Conclusion of the Lecture

» Prediction with log loss has elegant exact minimax solution:
normalized maximum likelihood

> Bayesian mixtures (version of AA) with carefully selected priors can
often match the minimax regret

» Can tackle complex models with (hierarchical) Bayesian mixtures
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Conclusion of the Course

We saw
» Stochastic and game-theoretic frameworks for learning
» Ways to characterise the complexity of learning problems
» Algorithms and their analysis

Advanced topics that may interest you
» Reinforcement Learning
» Learning in (strategic) multi-agent problems
» Fairness, Accountability, Transparency
> Beyond convexity (NNs, tensor dec.)
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Conclusion

This concludes the lectures.
» It has been a pleasure
» Good luck for the exam

» If you have an idea that you want to work on . ..
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