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▶ (Agnostic) PAC learning

▶ Agnostic PAC-learnability for finite classes

▶ Uniform convergence
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Formal Setup Review

S =

(
Y1

X1

)
, · · · ,

(
Ym

Xm

)
∼ D

Risk: LD(h) = E[ℓ(h,X,Y )] for (X,Y ) ∼ D

Empirical Risk: LS(h) =
1

m

m∑
i=1

ℓ(h,Xi ,Yi ) for (Xi ,Yi ) in S

Classification (0/1-loss counts mistakes):

ℓ(h,X,Y ) = 1{h(X) ̸= Y } =

{
0 if h(X) = Y

1 if h(X) ̸= Y

Regression (Squared Error):

ℓ(h,X,Y ) = (Y − h(X))2
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No Overfitting for (Multiclass) Classification

Realizability assumption: Exists perfect predictor h∗ ∈ H, i.e.
Pr(h∗(X) = Y ) = 1.

Theorem (First Example of PAC-Learning)

Assume H is finite, realizability holds. Choose any δ ∈ (0, 1), ϵ > 0.

Then, for all m ≥ ln(|H|/δ)
ϵ , ERM over H guarantees

LD(hS) ≤ ϵ with probability ≥ 1− δ.

NB Lower bound on m does not depend on D or on h∗!

PAC learning: probably approximately correct
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(Agnostic) PAC Learning

▶ PAC learning (always for binary classification)

▶ Agnostic PAC learning for binary classification

▶ Agnostic PAC learning in general

▶ Improper Agnostic PAC learning in general
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Definition: PAC Learning (Binary Classification)

A hypothesis class H is PAC-learnable if there exist

▶ a function mH : (0, 1)2 → N
▶ and learning algorithm that outputs hS ∈ H

such that for all

▶ distributions D for which realizability holds w.r.t. H
▶ and all ϵ, δ ∈ (0, 1)

LD(hS) ≤ ϵ with probability ≥ 1− δ,

whenever m ≥ mH(ϵ, δ).

Sample complexity:
The function mH such that mH(ϵ, δ) is smallest possible for all ϵ, δ
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No Overfitting for (Multiclass) Classification

Theorem (First Example of PAC-Learning)

Assume H is finite, realizability holds. Choose any δ ∈ (0, 1), ϵ > 0.

Then, for all m ≥ ln(|H|/δ)
ϵ , ERM over H guarantees

LD(hS) ≤ ϵ

with probability at least 1− δ.

For binary classification this is equivalent to:

Theorem

Every finite hypothesis class H is PAC-learnable with sample complexity

mH(ϵ, δ) ≤
⌈
ln(|H|/δ)

ϵ

⌉
and learning algorithm ERM.
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Definition: Agnostic PAC Learning
(Binary Classification)

A hypothesis class H is Agnostic PAC-learnable if there exist

▶ a function mH : (0, 1)2 → N
▶ and learning algorithm that outputs hS ∈ H

such that for all

▶ distributions D for which realizability holds w.r.t. H
▶ and all ϵ, δ ∈ (0, 1)

LD(hS) ≤ inf
h∈H

LD(h) + ϵ with probability ≥ 1− δ,

whenever m ≥ mH(ϵ, δ).
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Definition: Agnostic PAC Learning
(Binary Classification) (In General)

A hypothesis class H is Agnostic PAC-learnable if there exist

▶ a function mH : (0, 1)2 → N
▶ and learning algorithm that outputs hS ∈ H

such that for all
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Definition: Improper Agnostic PAC Learning
(In General)

A hypothesis class H is Improperly Agnostic PAC-learnable if there
exist

▶ a function mH : (0, 1)2 → N
▶ and learning algorithm that outputs hS ∈ H

such that for all

▶ distributions D
▶ and all ϵ, δ ∈ (0, 1)

LD(hS) ≤ inf
h∈H

LD(h) + ϵ with probability ≥ 1− δ,

whenever m ≥ mH(ϵ, δ).

7 / 18



Agnostic PAC-Learnability for Finite Classes
via Uniform Convergence
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Agnostic PAC-Learnability for Finite Classes

Theorem (Bounded Loss, Finite Class)

Suppose ℓ : H×X × Y → [0, 1]. Then every finite hypothesis class H is
agnostically PAC-learnable with sample complexity

mH(ϵ, δ) ≤
⌈
2 ln(2|H|/δ)

ϵ2

⌉
and learning algorithm ERM.

▶ Worse dependence on ϵ compared to mH(ϵ, δ) ≤
⌈
ln(|H|/δ)

ϵ

⌉
for

PAC-learnability

▶ Losses with different range [a, b] can be reduced to [0, 1] range by
subtracting a and dividing by (b − a).
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Technical Tool: Uniform Convergence

A hypothesis class H has the uniform convergence property if there
exists

▶ a function mUC
H : (0, 1)2 → N

such that for all

▶ distributions D
▶ and all ϵ, δ ∈ (0, 1)

sup
h∈H

|LS(h)− LD(h)| ≤ ϵ with probability ≥ 1− δ,

whenever m ≥ mUC
H (ϵ, δ).
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Uniform Convergence → Agnostic PAC-Learnability

Uniform convergence implies agnostic PAC-learnability:

Lemma

If H has the uniform convergence property, then it is agnostic
PAC-learnable with

mH(ϵ, δ) ≤ mUC
H
(
ϵ
2 , δ
)

and learning algorithm ERM.

▶ We will prove uniform convergence for finite H and loss range [0, 1]

▶ Then the desired agnostic PAC-learnability follows
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Proof (Handwritten)

To show, for hS ERM hypothesis:

LD(hS) ≤ inf
h∈H

LD(h) + ϵ with probability ≥ 1− δ,

whenever m ≥ mUC
H
(
ϵ
2 , δ
)
.

Assuming uniform convergence, applied for ϵ/2:

sup
h∈H

|LS(h)− LD(h)| ≤ ϵ
2 with probability ≥ 1− δ,

whenever m ≥ mUC
H
(
ϵ
2 , δ
)
.

Proof: On the event that |LS(h)− LD(h)| ≤ ϵ
2 for all h ∈ H, we have for

all h′ ∈ H

LD(hS) ≤ LS(hS) +
ϵ

2
≤ LS(h

′) +
ϵ

2
≤ LD(h

′) + ϵ.

Then take the infimum over h′.
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Uniform Convergence for Finite Classes

Lemma (Bounded Loss, Finite Class)

Suppose ℓ : H×X × Y → [0, 1]. Then every finite hypothesis class H
has the uniform convergence property with

mUC
H (ϵ, δ) ≤

⌈
ln(2|H|/δ)

2ϵ2

⌉
.

To show:

Pr
(
sup
h∈H

|LS(h)− LD(h)| ≤ ϵ
)
≥ 1− δ

whenever m ≥ ln(2|H|/δ)
2ϵ2
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Proof (Handwritten)

Pr
(
sup
h∈H

|LS(h)− LD(h)| ≤ ϵ
) ?
≥ 1− δ

Pr
(
sup
h∈H

|LS(h)− LD(h)| > ϵ
) ?
≤ δ

Pr
(
exists h ∈ H : |LS(h)− LD(h)| > ϵ

) ?
≤ δ

Part I (union bound):

Pr
(
exists h ∈ H : |LS(h)− LD(h)| > ϵ

)
≤
∑
h∈H

Pr
(
|LS(h)− LD(h)| > ϵ

)
Part II (Hoeffding’s inequality): Let Zi = ℓ(h,Xi ,Yi ) ∈ [0, 1].

Pr
(
|LS(h)−LD(h)| > ϵ

)
= Pr

(∣∣∣∣∣ 1m
m∑
i=1

Zi − E[Z ]

∣∣∣∣∣ > ϵ

)
Hoeffding

≤ 2e−2mϵ2
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Proof Continued (Handwritten)

Part I+II:

Pr
(
exists h ∈ H : |LS(h)− LD(h)| > ϵ

)
≤
∑
h∈H

Pr
(
|LS(h)− LD(h)| > ϵ

)
≤ |H|2e−2mϵ2

?
≤ δ

Yes, for m ≥ ln 2|H|
δ

2ϵ2
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Putting Everything Together

Theorem (Bounded Loss, Finite Class)

Suppose ℓ : H×X × Y → [0, 1]. Then every finite hypothesis class H
has the uniform convergence property with

mUC
H (ϵ, δ) ≤

⌈
ln(2|H|/δ)

2ϵ2

⌉
,

and is therefore agnostically PAC-learnable with sample complexity

mH(ϵ, δ) ≤ mUC
H
(
ϵ
2 , δ
)
≤
⌈
2 ln(2|H|/δ)

ϵ2

⌉
and learning algorithm ERM.
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No-Free-Lunch Theorem
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No-Free-Lunch Theorem
(Binary Classification)

Is there a learner that works on all learning tasks? No!

Theorem (No-Free-Lunch)

Let A be any learning algorithm for binary classification. If m ≤ |X |/2,
then there exists a distribution D such that

1. There exists a perfect predictor f with LD(f ) = 0.

2. Pr
(
LD(A(S)) ≥ 1/8

)
≥ 1/7 for S ∼ Dm.

Interpretation:

▶ Hall = all functions from X to {−1,+1}
▶ mHall

(ϵ, δ) > |X |/2 for any ϵ < 1/8, δ < 1/7

Corollary

Suppose |X | = ∞. Then Hall is not PAC-learnable.
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No-Free-Lunch Theorem
(Binary Classification)

Is there a learner that works on all learning tasks? No!

Theorem (No-Free-Lunch)

Let A be any learning algorithm for binary classification. If m ≤ |X |/2,
then there exists a distribution D such that

1. There exists a perfect predictor f with LD(f ) = 0.

2. Pr
(
LD(A(S)) ≥ 1/8

)
≥ 1/7 for S ∼ Dm.

Proof Intuition:
▶ Suppose D is uniform on 2m points in X ,

and Y = f (X ) for some unknown function f .

▶ From S we only know f (X ) for m observed points.

▶ Without any assumptions about f , learner cannot do better than
random guessing on m unobserved points.
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