
Machine Learning Theory 2024
Lecture 5

Tim van Erven

Focus on binary classification:

▶ Review

▶ Remaining proof:
growth function controls uniform convergence



Uniform Convergence Upper Bound with
VC-Dimension

Theorem

Consider binary classification. Suppose VCdim(H) ≤ v < ∞. Then there
exists an absolute constant C > 0 such that

sup
h∈H

|LD(h)− LS(h)| ≤ ϵ with probability ≥ 1− δ,

whenever

m ≥ C
v ln(1/ϵ) + ln(1/δ)+ 1

ϵ2
.
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Proof Approach

Growth function: τH(m) = max
|C|=m

|HC |

▶ Interpretation: How many truly different hypotheses are there when
we only observe m inputs C = {x1, . . . ,xm}?

Part I: Growth function controls uniform convergence:

sup
h∈H

|LD(h)−LS(h)| ≤ c

√
ln τH(m)

m
+c

√
ln(4/δ)

m
with probability ≥ 1−δ

Part II: VC-dimension controls growth function (Sauer’s Lemma):

ln τH(m) ≤ v ln
(em

v

)
for m > v .

▶ Finish: combine Parts I and II, and find lower bound on m s.t.
suph∈H |LD(h)− LS(h)| ≤ ϵ.
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Proof Part I:
Growth Function Controls Uniform

Convergence
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Part I: Proof Outline

Lemma (Two-sided Bound)

Consider binary classification. Then there exists an absolute constant
c > 0 such that, for any δ ∈ (0, 1],

sup
h∈H

|LD(h)− LS(h)| ≤ c

√
ln τH(m)

m
+ c

√
ln(4/δ)

m
w.p. ≥ 1− δ.

Note: could measure loss in binary classification differently.
Sufficient to show:

Lemma (One-sided Bound)

For any loss function ℓ(h,X,Y ) = ℓ̃(h(X),Y ) with range [0, 1]:

sup
h∈H

{LD(h)− LS(h)} ≤ c

√
ln τH(m)

m
+ c

√
ln(2/δ)

m
w.p. ≥ 1− δ.
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One-sided Bound => Two-sided Bound

Let z =

JUP+ SLp(2)-hsChl) ,
z
= p &Ls(h)

-(

Applying one-sided bound withe = 1-l

controls z'
,
because

L'p(h) - L's <h) = lEC1-eCh , x , y)]
- In Y <1-1/4 ,xil

= I [URCh , xi , Yi) - l[fCh , X ,4)

= Ls(h) - Ly(h)



Then

sup (Lp(h) -Is (n)) = max3 z , z 3
Ihtf

-
(m)
+ cw . p
.

z

-
by one-sided bounds for I and 7 with - = =
+ union bound

.



Approach for One-Sided Bound

Lemma (One-sided Bound)

For any loss function ℓ(h,X,Y ) = ℓ̃(h(X),Y ) with range [0, 1]:

sup
h∈H

{LD(h)− LS(h)} ≤ c

√
ln τH(m)

m
+ c

√
ln(2/δ)

m
w.p. ≥ 1− δ.

Remark:

▶ Book first derives suboptimal dependence on δ in
Chapter 6

▶ I am taking a shortcut through Chapters 6, 26
and 28
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Approach for One-Sided Bound

Lemma (One-sided Bound)

For any loss function ℓ(h,X,Y ) = ℓ̃(h(X),Y ) with range [0, 1]:

sup
h∈H

{LD(h)− LS(h)} ≤ c

√
ln τH(m)

m
+ c

√
ln(2/δ)

m
w.p. ≥ 1− δ.

Proof consists of 3 steps:
1. Concentration: Abbreviate Z = suph∈H {LD(h)− LS(h)}. Then,

for any loss function ℓ(h,X,Y ) with range [0, 1],

Z ≤ E
S
[Z ] + c

√
ln(2/δ)

m
w.p. ≥ 1− δ.

2. Symmetrization: For any loss function:

E[Z ] ≤ 2E[R(ℓ,H,S)].

3. For any loss ℓ(h,X,Y ) = ℓ̃(h(X),Y ) with range [0, 1]:

R(ℓ,H,S) ≤
√

2 ln |HS |
m

≤
√

2 ln τH(m)

m
for all S .
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Step 1 : Concentration

To show : loss elh
,
x
, y) + [0 ,+]

= = <Y Lp/n e

M= < lE[z] + < /d w
.p . 3 1-8

m

Proof :
Some complicated function

- z = f (Ay, . . ., Am for Ai : /Xi ,Yil
Bounded differences property :
* If change A ; -Al , then

& changes by at most in

(because ↳ (4) = ineCh , Xi i l

changes by at most in)



McDiarmid 's Inequality

Suppose He
,

.
- r

,
Am are independent random

variables ,
and f : Ah -3112 satisfies for all i

sup lf(a± ,
.
. - .am/-fCae,...,ai.i.ai.aitn ,

- r - law) )
Aa

,
. . . 1am Eb

.

ai
Then with probability > I - d ,
I f- CAI , . . . ,Am) - ECtCA± .

. . - Html)EbzhCZT
Z satisfies this with b Elm :

Iz - ECZTI EKITI up . > i - r

Ec for CZ TE
ym



Rademacher Complexity

How much can the losses of h ∈ H on S
correlate with random errors?

Rademacher random variables: Let σ = (σ1, . . . , σm) ∈ {−1,+1}m be
i.i.d. with Pr(σi = −1) = Pr(σi = +1) = 1/2.

Rademacher complexity:

R(ℓ,H,S) =
1

m
E
σ

[
sup
h∈H

m∑
i=1

σiℓ(h,Xi ,Yi )

]

▶ Interpret
∑m

i=1 σiℓ(h,Xi ,Yi ) as correlation of losses with random
errors
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Step 2: Symmetrization

R(ℓ,H,S) = 1
m Eσ

[
suph∈H

∑m
i=1 σiℓ(h,Xi ,Yi )

]
Lemma

E
S
[ sup
h∈H

{LD(h)− LS(h)}] ≤ 2E
S
[R(ℓ,H,S)]

Amazing because:

▶ suph∈H {LD(h)− LS(h)} may be large for very unlikely S

▶ But Rademacher complexity R(ℓ,H,S) is small for all S!

Consequence:

▶ Can measure complexity of H conditional on S

▶ So only restriction of H to inputs X1, . . . ,Xm in S matters!
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Step 2 : "Sy umetrization"

To show : R(2
,
H

,
5) = In (E) up In 0; eCh , X . : e

#[ sup LpCh) - Ls(h)] = z(( [ (2)2 , H,

Rf : Let S' = (i) , ....C) be independent
sample.

1E[sup [p(h) - Ls(h)] = [S, [Ls'(h))-
= I) suPlE[Ls'(h) - Ls (2)]]=,[sup Lj(h)- e

= +E ,[supEmdeCh ,
x i 3i) - ICh , Xi ie



Homogenize the two samples
N .B. If we swap any (i) and il between

5 and 5
,
then their distribution does not change .

Hence
, for any 2+ 3-1 ,

+ 13

i IE < sup [2 32Ch , xi 1>i) - eCh , Xi ,y e
s ,5

= FIE[ sup[ G: 31(2 , xi (i) - llh ,xi is e

sup=Eis
,

sit nat [0: 31/2 ,xi , i) - elh , xi , yi)

= In IE [sup & "0: /h . xi ,3i) + gpS-0, Ch ,xil e
5 S

,
5' he f i= 1

Susing that -I has same distribution as o

= EIE [SUP, E: eCh , xi yi) =
2 (E[R(l,



Step 3: Bound the Rademacher Complexity

Lemma

For any loss function ℓ(h,X,Y ) = ℓ̃(h(X),Y ) with range [0, 1] and any
sample S :

R(ℓ,H,S) ≤
√

2 ln |HS |
m

≤
√

2 ln τH(m)

m
.

15 / 18



step 3

To show : Eth , x. yl = Eth Cx) , y) Elo , I]

For any S :
R (e

,
His) E¥YnM

Proofing mine ,H ,
s) -

- Effy:p, ?? ri Elhlxil , Yi )]

~

= Eff Feaf, ¥79.514Gil , y:D
Let 2- ich) -- Gil( h Gil , y ; ) E C- I .tt] .

The- Eff ZichD= o

HoeffdiugislemmaCB.7i-SL.ae#
Suppose Z takes values i- Ca , b) and EEZ 7=0. Then

EE et Z] E e Mb
-a)48

for any
too

.



m -Rce
, Hesh Ifl Is ?? Zich ))

EL [ In max e
EF t Zich') for an, a> o

h EHS

← IT # Clu ⇐*se
Eiht Eich ']

( Jensen 's inequality )
= .TK#E&*sei?7tZiCh1 ) )
= Th#*, it?

E[et Zich ) )
(Hoeffdiug's lemma)E.tl#ensITiiet2k)='TklHsltxF

Take t= : = TzmhIHsT
Rte

,
H , s) e o



Back to the Big Picture

Part I: Growth function controls uniform convergence:

sup
h∈H

|LD(h)−LS(h)| ≤ c

√
ln τH(m)

m
+c

√
ln(4/δ)

m
with probability ≥ 1−δ

Part II: VC-dimension controls growth function (Sauer’s Lemma):

ln τH(m) ≤ v ln
(em

v

)
for m > v .

For m > v :

sup
h∈H

|LD(h)−LS(h)| ≤ c

√
v ln

(
em
v

)
m

+c

√
ln(4/δ)

m
with probability ≥ 1−δ

▶ Remaining: find lower bound on m s.t. bound is at most ϵ.
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