Machine Learning Theory 2024 Lecture 5

Tim van Erven

Focus on binary classification:

- Review
- Remaining proof: growth function controls uniform convergence

Uniform Convergence Upper Bound with VC-Dimension

Theorem

Consider binary classification. Suppose $\mathrm{VCdim}(\mathcal{H}) \leq v<\infty$. Then there exists an absolute constant $C>0$ such that

$$
\sup _{h \in \mathcal{H}}\left|L_{\mathcal{D}}(h)-L_{S}(h)\right| \leq \epsilon \quad \text { with probability } \geq 1-\delta,
$$

whenever

$$
m \geq C \frac{v \ln (1 / \epsilon)+\ln (1 / \delta)+1}{\epsilon^{2}}
$$

Proof Approach

Growth function: $\tau_{\mathcal{H}}(m)=\max _{|\mathcal{C}|=m}\left|\mathcal{H}_{\mathcal{C}}\right|$

- Interpretation: How many truly different hypotheses are there when we only observe m inputs $\mathcal{C}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right\}$?

Proof Approach

Growth function: $\tau_{\mathcal{H}}(m)=\max _{|\mathcal{C}|=m}\left|\mathcal{H}_{\mathcal{C}}\right|$

- Interpretation: How many truly different hypotheses are there when we only observe m inputs $\mathcal{C}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right\}$?

Part I: Growth function controls uniform convergence:
$\sup _{h \in \mathcal{H}}\left|L_{\mathcal{D}}(h)-L_{S}(h)\right| \leq c \sqrt{\frac{\ln \tau_{\mathcal{H}}(m)}{m}}+c \sqrt{\frac{\ln (4 / \delta)}{m}} \quad$ with probability $\geq 1-\delta$
Part II: VC-dimension controls growth function (Sauer's Lemma):

$$
\ln \tau_{\mathcal{H}}(m) \leq v \ln \left(\frac{e m}{v}\right) \quad \text { for } m>v .
$$

- Finish: combine Parts I and II, and find lower bound on m s.t. $\sup _{h \in \mathcal{H}}\left|L_{\mathcal{D}}(h)-L_{S}(h)\right| \leq \epsilon$.

Proof Part I:
 Growth Function Controls Uniform Convergence

Part I: Proof Outline

Lemma (Two-sided Bound)

Consider binary classification. Then there exists an absolute constant $c>0$ such that, for any $\delta \in(0,1]$,

$$
\sup _{h \in \mathcal{H}}\left|L_{\mathcal{D}}(h)-L_{S}(h)\right| \leq c \sqrt{\frac{\ln \tau_{\mathcal{H}}(m)}{m}}+c \sqrt{\frac{\ln (4 / \delta)}{m}} \quad \text { w.p. } \geq 1-\delta .
$$

Part I: Proof Outline

Lemma (Two-sided Bound)

Consider binary classification. Then there exists an absolute constant $c>0$ such that, for any $\delta \in(0,1]$,

$$
\sup _{h \in \mathcal{H}}\left|L_{\mathcal{D}}(h)-L_{s}(h)\right| \leq c \sqrt{\frac{\ln \tau_{\mathcal{H}}(m)}{m}}+c \sqrt{\frac{\ln (4 / \delta)}{m}} \quad \text { w.p. } \geq 1-\delta .
$$

Note: could measure loss in binary classification differently. Sufficient to show:

Lemma (One-sided Bound)

For any loss function $\ell(h, \boldsymbol{X}, Y)=\tilde{\ell}(h(\boldsymbol{X}), Y)$ with range $[0,1]$:

$$
\sup _{h \in \mathcal{H}}\left\{L_{\mathcal{D}}(h)-L_{S}(h)\right\} \leq c \sqrt{\frac{\ln \tau_{\mathcal{H}}(m)}{m}}+c \sqrt{\frac{\ln (2 / \delta)}{m}} \quad \text { w.p. } \geq 1-\delta .
$$

One-sided Bound \Rightarrow Two-sided Bound
Let $z=\sup _{h \in+H}\left\{L_{D}(h)-L_{s}(h)\right\}, \quad z^{\prime}=\sup _{h \in H}\left\{L_{s}\left(h \mid-L_{D}(h)\right\}\right.$
Applying one-sided bound with $\ell^{\prime}=1-l$ controls Z^{\prime}, because

$$
\begin{aligned}
L_{b}^{\prime}(h)-L_{s}^{\prime}(h) & =\mathbb{E}[1-e(h, x, y)] \\
& -\frac{1}{m} \sum_{i=1}^{m}\left(1-l\left(h, x_{i}, y_{i}\right)\right) \\
& =\frac{1}{m} \sum_{i=1}^{m} l\left(h, x_{i}, y_{i}\right)-\mathbb{E}\left[l\left(h, x_{1}, y\right)\right] \\
& =L_{s}(h)-L_{b}(h)
\end{aligned}
$$

Then

$$
\begin{aligned}
& \sup _{h \in H}\left|L_{D}(h)-L_{S}(h)\right|=\max \left\{z, z^{\prime}\right\} \\
& \leq c \sqrt{\frac{\ln \tau_{H}(m)}{m}}+c \sqrt{\frac{\ln (4 / \delta)}{m}} \text { w.p. } \geq 1-\delta
\end{aligned}
$$

by one-sided bounds for z and z^{\prime} with $\delta^{\prime}=\frac{\delta}{2}$ tunion bound.

Approach for One-Sided Bound

Lemma (One-sided Bound)

For any loss function $\ell(h, \boldsymbol{X}, Y)=\tilde{\ell}(h(\boldsymbol{X}), Y)$ with range $[0,1]$:

$$
\sup _{h \in \mathcal{H}}\left\{L_{\mathcal{D}}(h)-L_{S}(h)\right\} \leq c \sqrt{\frac{\ln \tau_{\mathcal{H}}(m)}{m}}+c \sqrt{\frac{\ln (2 / \delta)}{m}} \quad \text { w.p. } \geq 1-\delta .
$$

- Book first derives suboptimal dependence on δ in Chapter 6
Remark:
- I am taking a shortcut through Chapters 6, 26 and 28

Approach for One-Sided Bound

Lemma (One-sided Bound)

For any loss function $\ell(h, \boldsymbol{X}, Y)=\tilde{\ell}(h(\boldsymbol{X}), Y)$ with range $[0,1]$:

$$
\sup _{h \in \mathcal{H}}\left\{L_{\mathcal{D}}(h)-L_{S}(h)\right\} \leq c \sqrt{\frac{\ln \tau_{\mathcal{H}}(m)}{m}}+c \sqrt{\frac{\ln (2 / \delta)}{m}} \quad \text { w.p. } \geq 1-\delta .
$$

Proof consists of 3 steps:

1. Concentration: Abbreviate $Z=\sup _{h \in \mathcal{H}}\left\{L_{\mathcal{D}}(h)-L_{S}(h)\right\}$. Then, for any loss function $\ell(h, \boldsymbol{X}, Y)$ with range $[0,1]$,

$$
Z \leq \underset{S}{\mathbb{E}}[Z]+c \sqrt{\frac{\ln (2 / \delta)}{m}} \quad \text { w.p. } \geq 1-\delta .
$$

Approach for One-Sided Bound

Lemma (One-sided Bound)

For any loss function $\ell(h, \boldsymbol{X}, Y)=\tilde{\ell}(h(\boldsymbol{X}), Y)$ with range $[0,1]$:

$$
\sup _{h \in \mathcal{H}}\left\{L_{\mathcal{D}}(h)-L_{S}(h)\right\} \leq c \sqrt{\frac{\ln \tau_{\mathcal{H}}(m)}{m}}+c \sqrt{\frac{\ln (2 / \delta)}{m}} \quad \text { w.p. } \geq 1-\delta .
$$

Proof consists of 3 steps:

1. Concentration: Abbreviate $Z=\sup _{h \in \mathcal{H}}\left\{L_{\mathcal{D}}(h)-L_{S}(h)\right\}$. Then, for any loss function $\ell(h, \boldsymbol{X}, Y)$ with range $[0,1]$,

$$
Z \leq \underset{S}{\mathbb{E}}[Z]+c \sqrt{\frac{\ln (2 / \delta)}{m}} \quad \text { w.p. } \geq 1-\delta .
$$

2. Symmetrization: For any loss function:

$$
\mathbb{E}[Z] \leq 2 \mathbb{E}[\mathcal{R}(\ell, \mathcal{H}, S)]
$$

Approach for One-Sided Bound

Lemma (One-sided Bound)

For any loss function $\ell(h, \boldsymbol{X}, Y)=\tilde{\ell}(h(\boldsymbol{X}), Y)$ with range $[0,1]$:

$$
\sup _{h \in \mathcal{H}}\left\{L_{\mathcal{D}}(h)-L_{S}(h)\right\} \leq c \sqrt{\frac{\ln \tau_{\mathcal{H}}(m)}{m}}+c \sqrt{\frac{\ln (2 / \delta)}{m}} \quad \text { w.p. } \geq 1-\delta .
$$

Proof consists of 3 steps:

1. Concentration: Abbreviate $Z=\sup _{h \in \mathcal{H}}\left\{L_{\mathcal{D}}(h)-L_{S}(h)\right\}$. Then, for any loss function $\ell(h, \boldsymbol{X}, Y)$ with range $[0,1]$,

$$
Z \leq \underset{S}{\mathbb{E}}[Z]+c \sqrt{\frac{\ln (2 / \delta)}{m}} \quad \text { w.p. } \geq 1-\delta .
$$

2. Symmetrization: For any loss function:

$$
\mathbb{E}[Z] \leq 2 \mathbb{E}[\mathcal{R}(\ell, \mathcal{H}, S)]
$$

3. For any loss $\ell(h, \boldsymbol{X}, Y)=\tilde{\ell}(h(\boldsymbol{X}), Y)$ with range $[0,1]$:

$$
\mathcal{R}(\ell, \mathcal{H}, S) \leq \sqrt{\frac{2 \ln \left|\mathcal{H}_{S}\right|}{m}} \leq \sqrt{\frac{2 \ln \tau_{\mathcal{H}}(m)}{m}} \quad \text { for all } S
$$

Step 1: Concentration
To show: loss $\ell(h, x, y) \in[0,1]$

$$
\begin{aligned}
& z=\sup _{L_{H}} L_{D}(h)-L_{s}(h) \\
& z \leq \mathbb{E}[z]+c \sqrt{\frac{\ln (2 / \delta)}{m} \quad \text { w.p. } \geqslant 1-\delta}
\end{aligned}
$$

Proof:
some complicated function
$z=f\left(A_{1}, \ldots, A_{m}\right)$ for $A_{i}=\left(x_{i}, y_{i}\right)$
Bounded differences property:

* If change $A_{i} \rightarrow A_{i}^{\prime}$, then
Z changes by af most $\frac{1}{m}$
(because $L_{s}(h)=\frac{1}{m} \sum_{i=1}^{n} l\left(h, x_{i}, y_{i}\right)$
changes by at most $\frac{1}{m}$)

McDiarmid's Inequality
Suppose A_{1}, \ldots, A_{m} are independent random variables, and $f: A^{m} \rightarrow \mathbb{R}$ satisfies for all

$$
\sup _{a_{1}, \ldots, a_{m}}\left|f\left(a_{1}, \ldots, a_{m}\right)-f\left(a_{1}, \ldots, a_{i-1}, a_{i}^{\prime}, a_{i+1}, \ldots, a_{m}\right)\right|
$$

Then, withprobability $\geqslant 1-J$,

$$
\left\lvert\, f\left(A_{1}, \ldots, A_{m}\right)-\mathbb{E}\left[f\left(A_{1}, \ldots, A_{m}\right)\right] \leq b \sqrt{\frac{m}{2} \ln \left(\frac{2}{v}\right)}\right.
$$

z satisfies this with $b=1 / m$:

$$
\begin{aligned}
|z-\mathbb{E}[z]| & \leq \sqrt{\frac{\ln (2 / \delta)}{2 m}} \text { w.p. } \geqslant 1-\delta \\
& \leq c \sqrt{\frac{\ln (2 / \delta)}{m}} \text { for } c \geqslant \frac{1}{\sqrt{2}}
\end{aligned}
$$

Rademacher Complexity

How much can the losses of $h \in \mathcal{H}$ on S correlate with random errors?

Rademacher random variables: Let $\boldsymbol{\sigma}=\left(\sigma_{1}, \ldots, \sigma_{m}\right) \in\{-1,+1\}^{m}$ be i.i.d. with $\operatorname{Pr}\left(\sigma_{i}=-1\right)=\operatorname{Pr}\left(\sigma_{i}=+1\right)=1 / 2$.

Rademacher complexity:

$$
\mathcal{R}(\ell, \mathcal{H}, S)=\frac{1}{m} \underset{\sigma}{\mathbb{E}}\left[\sup _{h \in \mathcal{H}} \sum_{i=1}^{m} \sigma_{i} \ell\left(h, \boldsymbol{X}_{i}, Y_{i}\right)\right]
$$

- Interpret $\sum_{i=1}^{m} \sigma_{i} \ell\left(h, \boldsymbol{X}_{i}, Y_{i}\right)$ as correlation of losses with random errors

Step 2: Symmetrization

$\mathcal{R}(\ell, \mathcal{H}, S)=\frac{1}{m} \mathbb{E}_{\boldsymbol{\sigma}}\left[\sup _{h \in \mathcal{H}} \sum_{i=1}^{m} \sigma_{i} \ell\left(h, \boldsymbol{X}_{i}, Y_{i}\right)\right]$
Lemma

$$
\underset{S}{\mathbb{E}}\left[\sup _{h \in \mathcal{H}}\left\{L_{\mathcal{D}}(h)-L_{S}(h)\right\}\right] \leq 2 \underset{S}{\mathbb{E}}[\mathcal{R}(\ell, \mathcal{H}, S)]
$$

Step 2: Symmetrization

$\mathcal{R}(\ell, \mathcal{H}, S)=\frac{1}{m} \mathbb{E}_{\boldsymbol{\sigma}}\left[\sup _{h \in \mathcal{H}} \sum_{i=1}^{m} \sigma_{i} \ell\left(h, \boldsymbol{X}_{i}, Y_{i}\right)\right]$
Lemma

$$
\underset{S}{\mathbb{E}}\left[\sup _{h \in \mathcal{H}}\left\{L_{\mathcal{D}}(h)-L_{S}(h)\right\}\right] \leq 2 \underset{S}{\mathbb{E}}[\mathcal{R}(\ell, \mathcal{H}, S)]
$$

Amazing because:

- $\sup _{h \in \mathcal{H}}\left\{L_{\mathcal{D}}(h)-L_{S}(h)\right\}$ may be large for very unlikely S
- But Rademacher complexity $\mathcal{R}(\ell, \mathcal{H}, S)$ is small for all S !

Consequence:

- Can measure complexity of \mathcal{H} conditional on S
- So only restriction of \mathcal{H} to inputs $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{m}$ in S matters!

Step 2: "Symmetrization"
To show: $R(l, H, s)=\frac{1}{m} \underset{\sigma}{\mathbb{E}}\left[\sup _{h \in H} \sum_{i=1}^{m} \sigma_{i} l\left(h, x_{i}, y_{i}\right)\right]$

$$
\mathbb{E}_{s}\left[\sup _{h \in H} L_{D}(h)-L_{s}(h)\right] \leq 2 \underset{S}{\mathbb{E}}[R(e, H, s)]
$$

Proof: Let $S^{\prime}=\binom{y_{1}^{\prime}}{x_{1}^{\prime}}, \cdots,\binom{y_{i}^{\prime}}{x_{m}^{\prime}}$ be independent

$$
\begin{aligned}
& \mathbb{E}\left[\sup _{S \in H} L_{D}(h)-L_{S}(h)\right]=\mathbb{E} \underset{S}{\mathbb{E}}\left[\sup _{h \in H} \mathbb{E}_{S^{\prime}}\left[L_{s^{\prime}}(h)\right]-L_{S}(h)\right] \\
& =\mathbb{E}\left[\sup _{s \in H} \underset{L_{s^{\prime}}}{\mathbb{E}}\left[L_{s^{\prime}}(h)-L_{s}(L)\right]\right] \leq \underset{s, s^{\prime}}{\mathbb{E}} \sum_{h \in \mathcal{H}^{\prime}} \sup _{s^{\prime}}\left(h \mid-L_{s}(h)\right] \\
& =\frac{1}{m} \frac{\mathbb{E}}{s, S^{\prime}}\left[\sup _{h \in H} \sum_{i=1}^{m}\left\{l\left(h, x_{i}^{\prime}, y_{i}^{\prime}\right)-l\left(h, x_{i}, y_{i}\right)\right\}\right.
\end{aligned}
$$

Homogenize the two samples
N.B. If we swap any $\binom{y_{i}}{x_{i}}$ and $\binom{y_{i}^{\prime}}{x_{i}^{i}}$ between S and S^{\prime}, then their distribution does not change.
Hence, for any $\sigma_{i} \in\{-1,+1\}$

$$
\begin{aligned}
& \frac{1}{m} \underset{S, s^{\prime}}{\mathbb{E}}\left[\sup _{h \in \mathcal{H}} \sum_{i=1}^{n}\left\{\ell\left(h, x_{i}^{\prime}, y_{i}^{\prime}\right)-l\left(h, x_{i}, y_{i}\right)\right\}\right] \\
& =\frac{1}{m} \mathbb{E}\left[\sup _{s, s^{\prime}} \sum_{h \in \mathcal{H}}^{m} \sigma_{i}\left\{l\left(h, x_{i}^{\prime}, y_{i}^{\prime}\right)-l\left(h, x_{i}, y_{i}\right)\right\}\right\} \\
& =\frac{1}{n} \mathbb{E} \mathbb{E}_{\sigma, 5, s^{\prime}}\left\{\sup _{h \in)^{\prime}} \sum_{i=1}^{m} \sigma_{i}\left\{l\left(h, x_{i}^{\prime}, y_{i}^{\prime}\right)-l\left(h, x_{i}, y_{i}\right)\right)\right\} \\
& \left.\leq \frac{1}{m} \mathbb{E} \underset{\sigma, s, s^{\prime}}{ } \sup _{h \in H} \sum_{i=1}^{m} \sigma_{i} \rho\left(h, x_{i}^{\prime}, y_{i}^{\prime}\right)+\sup _{h \in \mathcal{H}} \sum_{i=1}^{n}-\sigma_{i} l\left(h, x_{i}, y_{i}\right)\right] \\
& \text { (using that }-\sigma \text { has same distribution as } \sigma \text {) } \\
& =\frac{2}{m} \underset{\sigma, s}{\mathbb{E}}\left[\sup _{h \in \mathcal{M}} \sum_{i=1}^{n} \sigma_{i} l\left(h, x_{i}, y_{i}\right)\right]=2 \underset{s}{\mathbb{E}}[R(l, H, s)]
\end{aligned}
$$

Step 3: Bound the Rademacher Complexity

Lemma

For any loss function $\ell(h, \boldsymbol{X}, Y)=\tilde{\ell}(h(\boldsymbol{X}), Y)$ with range $[0,1]$ and any sample S:

$$
\mathcal{R}(\ell, \mathcal{H}, S) \leq \sqrt{\frac{2 \ln \left|\mathcal{H}_{S}\right|}{m}} \leq \sqrt{\frac{2 \ln \tau_{\mathcal{H}}(m)}{m}} .
$$

Step 3
To show: $\quad l(h, x, y)=\tilde{\ell}(h(x), y) \in[0,1]$
For any $S: R(l, H, S) \leq \sqrt{\frac{2 \ln \left|H_{s}\right|}{m}}$
Proof: $m \cdot R(e, x, S)=\underset{\sigma}{\mathbb{E}}\left[\sup _{h \in J+} \sum_{i=1}^{m} \sigma_{i} \tilde{e}\left(h\left(x_{i}\right), y_{i}\right)\right]$

$$
=\frac{\mathbb{E}}{}\left[\max _{h \in H_{S}} \sum_{i=1}^{m} \sigma_{i} \hat{l}\left(h\left(x_{i}\right), y_{i}\right)\right]
$$

Let $z_{i}(h)=\sigma_{i} \hat{l}\left(h\left(x_{i}\right), y_{i}\right) \in[-1,+1]$. Then $\underset{\sigma}{\mathbb{E}}\left[z_{i}(h)\right]=0$
Hoeffling's Lemma (B.7 i- Shai ${ }^{2}$):
Suppose Z takes values in $[a, b]$ and $\mathbb{E}[z]=0$. Then $\mathbb{E}\left[e^{\lambda z}\right] \leq e^{\lambda^{2}(b-a)^{2} / 8} \quad$ for any $\lambda>0$.

$$
\begin{aligned}
m \cdot R\left(l_{1}, H_{1} s\right) & =\frac{\mathbb{E}}{\sigma}\left[\max _{h \in H_{s}} \sum_{i=1}^{m} z_{i}(h)\right] \\
& =\frac{1}{\lambda} \mathbb{E}\left[\ln \max _{h \in H_{s}} e^{\sum_{i=1}^{m} \lambda z_{i}(h)}\right] \text { for ang } \lambda>0 \\
& \leq \frac{1}{\lambda} \mathbb{E}\left[\ln \sum_{h \in H_{s}} e^{\sum_{i=1}^{m} \lambda z_{i}(h)}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { (Sensen's } \text { inequality) } \\
& \leq \frac{1}{\lambda} \ln \left(\mathbb { E } \left[\sum_{h \in H_{s}} e^{\left.\left.\sum_{i=1}^{m} \lambda z_{i}(h)\right]\right)}\right.\right. \\
&=\frac{1}{\lambda} \ln \left(\sum_{h \in H_{s}} \prod_{i=1}^{m} \mathbb{E}\left[e^{\lambda z_{i}(h)}\right]\right) \\
&\text { (Hoeffling's } \operatorname{lRnnal}) \\
& \leq \frac{1}{\lambda} \ln \left(\sum_{n \in H_{s}} \prod_{i=1}^{m} e^{\lambda^{2} / 2}\right)=\frac{1}{\lambda} \ln \left|H_{s}\right|+\lambda \frac{m}{2}
\end{aligned}
$$

Take

$$
\begin{aligned}
& \lambda=\sqrt{\frac{\ln \left|H_{s}\right|}{n / 2}:=\sqrt{2 m \ln \left|H_{s}\right|}} \\
& R(l, H, s) \leq \sqrt{\frac{2 \ln \left|H_{s}\right|}{m}}
\end{aligned}
$$

Back to the Big Picture

Part I: Growth function controls uniform convergence:
$\sup _{h \in \mathcal{H}}\left|L_{\mathcal{D}}(h)-L_{S}(h)\right| \leq c \sqrt{\frac{\ln \tau_{\mathcal{H}}(m)}{m}}+c \sqrt{\frac{\ln (4 / \delta)}{m}} \quad$ with probability $\geq 1-\delta$
Part II: VC-dimension controls growth function (Sauer's Lemma):

$$
\ln \tau_{\mathcal{H}}(m) \leq v \ln \left(\frac{e m}{v}\right) \quad \text { for } m>v .
$$

Back to the Big Picture

Part I: Growth function controls uniform convergence:

$\sup _{h \in \mathcal{H}}\left|L_{\mathcal{D}}(h)-L_{S}(h)\right| \leq c \sqrt{\frac{\ln \tau_{\mathcal{H}}(m)}{m}}+c \sqrt{\frac{\ln (4 / \delta)}{m}} \quad$ with probability $\geq 1-\delta$
Part II: VC-dimension controls growth function (Sauer's Lemma):

$$
\ln \tau_{\mathcal{H}}(m) \leq v \ln \left(\frac{e m}{v}\right) \quad \text { for } m>v
$$

For $m>v$:
$\sup _{h \in \mathcal{H}}\left|L_{\mathcal{D}}(h)-L_{S}(h)\right| \leq c \sqrt{\frac{v \ln \left(\frac{e m}{v}\right)}{m}}+c \sqrt{\frac{\ln (4 / \delta)}{m}} \quad$ with probability $\geq 1-\delta$

- Remaining: find lower bound on m s.t. bound is at most ϵ.

