Machine Learning Theory 2024 Lecture 6

Tim van Erven

- Rademacher complexity controls uniform convergence (for any bounded loss)
- Rademacher calculus
- Beyond PAC-Learning

Rademacher Complexity in General

Consider any supervised learning task:

- Hypothesis class \mathcal{H} : some set of functions h from \mathcal{X} to \mathcal{Y}
- Loss: $\ell(h, \boldsymbol{X}, Y)$

Rademacher complexity:

$$
\mathcal{R}(\ell, \mathcal{H}, S)=\frac{1}{m} \underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\sup _{h \in \mathcal{H}} \sum_{i=1}^{m} \sigma_{i} \ell\left(h, \boldsymbol{X}_{i}, Y_{i}\right)\right]
$$

where Rademacher random variables

$$
\begin{gathered}
\boldsymbol{\sigma}=\left(\sigma_{1}, \ldots, \sigma_{m}\right) \in\{-1,+1\}^{m} \\
\text { are i.i.d. with } \\
\operatorname{Pr}\left(\sigma_{i}=-1\right)=\operatorname{Pr}\left(\sigma_{i}=+1\right)=1 / 2 .
\end{gathered}
$$

Concentration and Symmetrization for Any Bounded Loss

For $\ell(h, \boldsymbol{X}, Y) \in[0,1]$, abbreviate $Z=\sup _{h \in \mathcal{H}} L_{\mathcal{D}}(h)-L_{S}(h)$.

1. Concentration:

$$
\underset{S}{\mathbb{E}}[Z]-\sqrt{\frac{\ln (2 / \delta)}{2 m}} \leq Z \leq \underset{S}{\mathbb{E}}[Z]+\sqrt{\frac{\ln (2 / \delta)}{2 m}} \quad \text { w.p. } \geq 1-\delta \text {. }
$$

2. Symmetrization:

$$
\underset{S}{\mathbb{E}}[Z] \leq 2 \underset{S}{\mathbb{E}}[\mathcal{R}(\ell, \mathcal{H}, S)]
$$

Proved last week:

1. McDiarmid's Inequality
2. Symmetrization by a 'ghost' sample S^{\prime}

- NB This step does not require $\ell(h, \boldsymbol{X}, Y) \in[0,1]$

Concentration and Symmetrization for Any Bounded Loss

For $\ell(h, \boldsymbol{X}, Y) \in[0,1]$, abbreviate $Z=\sup _{h \in \mathcal{H}} L_{\mathcal{D}}(h)-L_{S}(h)$.

1. Concentration:

$$
\underset{S}{\mathbb{E}}[Z]-\sqrt{\frac{\ln (2 / \delta)}{2 m}} \leq Z \leq \underset{S}{\mathbb{E}}[Z]+\sqrt{\frac{\ln (2 / \delta)}{2 m}} \quad \text { w.p. } \geq 1-\delta \text {. }
$$

2. Symmetrization:

$$
\underset{S}{\mathbb{E}}[Z] \leq 2 \underset{S}{\mathbb{E}}[\mathcal{R}(\ell, \mathcal{H}, S)]
$$

$$
\sup _{h \in \mathcal{H}} L_{\mathcal{D}}(h)-L_{S}(h) \leq 2 \underset{S}{\mathbb{E}}[\mathcal{R}(\ell, \mathcal{H}, S)]+\sqrt{\frac{\ln (2 / \delta)}{2 m}} \quad \text { w.p. } \geq 1-\delta .
$$

Uniform Convergence via Rademacher Complexity

Lemma

Consider any supervised learning task with $\ell(h, \boldsymbol{X}, Y) \in[0,1]$. Then

$$
\sup _{h \in \mathcal{H}}\left|L_{\mathcal{D}}(h)-L_{S}(h)\right| \leq 2 \mathbb{E}[\mathcal{R}(\ell, \mathcal{H}, S)]+\sqrt{\frac{\ln (4 / \delta)}{2 m}} \quad \text { w.p. } \geq 1-\delta .
$$

Uniform Convergence via Rademacher Complexity

Lemma

Consider any supervised learning task with $\ell(h, \boldsymbol{X}, Y) \in[0,1]$. Then

$$
\sup _{h \in \mathcal{H}}\left|L_{\mathcal{D}}(h)-L_{S}(h)\right| \leq 2 \mathbb{E}[\mathcal{R}(\ell, \mathcal{H}, S)]+\sqrt{\frac{\ln (4 / \delta)}{2 m}} \quad \text { w.p. } \geq 1-\delta .
$$

Proof:

$$
\sup _{h \in \mathcal{H}} L_{\mathcal{D}}(h)-L_{S}(h) \leq 2 \underset{S}{\mathbb{E}}[\mathcal{R}(\ell, \mathcal{H}, S)]+\sqrt{\frac{\ln (2 / \delta)}{2 m}} \quad \text { w.p. } \geq 1-\delta .
$$

1. Apply with ℓ and $\ell^{\prime}=1-\ell+$ union bound. Then, w.p. $\geq 1-\delta$,

$$
\sup _{h \in \mathcal{H}}\left|L_{\mathcal{D}}(h)-L_{S}(h)\right| \leq 2 \max \left\{\begin{array}{c}
\mathbb{E}_{S}[\mathcal{R}(\ell, \mathcal{H}, S)], \\
\mathbb{E}_{S}[\mathcal{R}(1-\ell, \mathcal{H}, S)]
\end{array}\right\}+\sqrt{\frac{\ln (4 / \delta)}{2 m}} .
$$

2. $\mathcal{R}(1-\ell, \mathcal{H}, S)=\mathcal{R}(\ell, \mathcal{H}, S)$ by Rademacher calculus

Uniform Convergence via Rademacher Complexity

Lemma

Consider any supervised learning task with $\ell(h, \boldsymbol{X}, Y) \in[0,1]$. Then

$$
\sup _{h \in \mathcal{H}}\left|L_{\mathcal{D}}(h)-L_{S}(h)\right| \leq 2 \mathbb{E}[\mathcal{R}(\ell, \mathcal{H}, S)]+\sqrt{\frac{\ln (4 / \delta)}{2 m}} \quad \text { w.p. } \geq 1-\delta .
$$

Recall that uniform convergence is sufficient for agnostic PAC-learnability:

If $h_{S} \in \arg \min _{h \in \mathcal{H}} L_{S}(h)$ is ERM hypothesis, then

$$
L_{\mathcal{D}}\left(h_{S}\right)-\inf _{h \in \mathcal{H}} L_{\mathcal{D}}(h) \leq 2 \sup _{h \in \mathcal{H}}\left|L_{\mathcal{D}}(h)-L_{S}(h)\right|
$$

But for learning tasks other than binary classification, uniform convergence may not be a necessary requirement.

Uniform Convergence via Rademacher Complexity

Lemma
Consider any supervised learning task with $\ell(h, \boldsymbol{X}, Y) \in[0,1]$. Then

$$
\sup _{h \in \mathcal{H}}\left|L_{\mathcal{D}}(h)-L_{S}(h)\right| \leq 2 \mathbb{E}[\mathcal{R}(\ell, \mathcal{H}, S)]+\sqrt{\frac{\ln (4 / \delta)}{2 m}} \quad \text { w.p. } \geq 1-\delta \text {. }
$$

Is this bound tight?

Uniform Convergence via Rademacher Complexity

Lemma

Consider any supervised learning task with $\ell(h, \boldsymbol{X}, Y) \in[0,1]$. Then

$$
\sup _{h \in \mathcal{H}}\left|L_{\mathcal{D}}(h)-L_{S}(h)\right| \leq 2 \mathbb{E}[\mathcal{R}(\ell, \mathcal{H}, S)]+\sqrt{\frac{\ln (4 / \delta)}{2 m}} \quad \text { w.p. } \geq 1-\delta .
$$

Is this bound tight? YES!
Rademacher complexity sandwiches uniform convergence for bounded losses!

Lemma (Converse Bound*)

Consider any supervised learning task with $\ell(h, \boldsymbol{X}, Y) \in[0,1]$. Then

$$
\sup _{h \in \mathcal{H}}\left|L_{\mathcal{D}}(h)-L_{S}(h)\right| \geq \frac{1}{2} \mathbb{E}[\mathcal{R}(\ell, \mathcal{H}, S)]-\sqrt{\frac{2 \ln (2 / \delta)}{m}} \quad \text { w.p. } \geq 1-\delta .
$$

*Converse bound is bonus, will not be on the exam.

Converse Bound

Lemma (Converse Bound*)

Consider any supervised learning task with $\ell(h, \boldsymbol{X}, Y) \in[0,1]$. Then

$$
\sup _{h \in \mathcal{H}}\left|L_{\mathcal{D}}(h)-L_{S}(h)\right| \geq \frac{1}{2} \mathbb{E}[\mathcal{R}(\ell, \mathcal{H}, S)]-\sqrt{\frac{2 \ln (2 / \delta)}{m}} \quad \text { w.p. } \geq 1-\delta .
$$

Proof: Let $Z=\sup _{h \in \mathcal{H}}\left|L_{\mathcal{D}}(h)-L_{S}(h)\right|$.

1. McDiarmid: Z satisfies bounded differences with $b=1 / m$, so

$$
Z \geq \underset{S}{\mathbb{E}}[Z]-\sqrt{\frac{\ln (2 / \delta)}{2 m}} \quad \text { w.p. } \geq 1-\delta .
$$

2. Desymmetrization:

$$
\underset{S}{\mathbb{E}}[Z] \geq \frac{1}{2} \underset{S}{\mathbb{S}}[\mathcal{R}(\ell, \mathcal{H}, S)]-\sqrt{\frac{\ln 2}{2 m}}
$$

Desymmetrization
Lemma:

$$
\mathbb{E}_{s}\left[\sup _{h \in H}\left|L_{D}(h)-L_{s}(h)\right|\right] \geqslant \frac{1}{2} \underset{s}{\mathbb{E}}[R(e, H, s)]-\sqrt{\frac{\ln 2}{2 m}}
$$

Proof: Abbreviate $z_{i}(h)=e\left(h, x_{i}, y_{i}\right), z_{i}^{\prime}(h)=l\left(h, x_{i}^{\prime}, y_{i}^{\prime}\right)$ Key symmetrization identity (x) :
for all $\sigma \in\{-1,+1\}^{m}$:

$$
\left.\underset{s, s^{\prime}}{\mathbb{E}}\left[\sup _{h \in)^{\prime}} \frac{1}{m} \sum_{i=1}^{m} z_{i}(h)-z_{i}^{\prime}(h)\right]=\underset{s_{1} s^{\prime}}{\mathbb{E}} \sup _{h \in t+1} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i}\left(Z_{i}(h)-z_{i}^{\prime}(h)\right)\right]
$$

where $s^{\prime}=\binom{y_{1}^{\prime}}{x_{1}^{\prime}}, \ldots,\binom{y_{m}^{\prime}}{x_{m}}$

$$
\begin{aligned}
& \underset{S}{\mathbb{E}}\left[R\left(l, x_{1} S\right)\right]=\frac{\mathbb{E}}{S_{i, D}}\left[\sup _{h+j} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} z_{i}(h)\right] \\
& \underbrace{\leq \mathbb{E}\left[\sup _{h \in H} \frac{1}{m} \sum_{i=1}^{n} \sigma_{i}\left(Z_{i}(L)-L_{D}(h)\right)\right]}_{\text {s, }}+\underbrace{\underset{\sigma}{\mathbb{E}}\left[\sup _{2 \in H} \frac{1}{n} \sum_{i=1}^{m} \sigma_{i} L_{D}(h)\right]}_{\mathbb{I}} \\
& I=\frac{\mathbb{E}}{S, \sigma}\left[\sup _{h \in \mathcal{H}} \underset{S^{\prime}}{\mathbb{E}}\left[\frac{1}{n} \sum_{i=1}^{n} \sigma_{i}\left(z_{i}(L)-z_{i}^{\prime}(h)\right)\right]\right. \\
& \leq \mathbb{E} \underset{S_{S} S^{\prime}}{\mathbb{E}}\left\{\sup _{h \in f^{f}} \frac{1}{m} \sum_{i=1}^{h} \sigma_{i}\left(z_{i}(h)-z_{i}^{\prime}(h)\right)\right] \\
& \stackrel{\text { by }(*)}{=} \frac{\mathbb{E}}{S, S^{\prime}}\left[\sup _{h \in)^{\prime}} \frac{1}{m} \sum_{i=1}^{m}\left(z_{i}(h)-z_{i}^{\prime}(h)\right)\right] \\
& =\underset{S, S^{\prime}}{\mathbb{E}}\left[\sup _{h \in f} \frac{1}{m} \sum_{i=1}^{h}\left(z_{i}(h)-L_{D}(h)+L_{D}(h)-z_{i}^{i}(h)\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \leq \underset{S}{\mathbb{E}}\left[\sup _{h \in H} \frac{1}{m} \sum_{i=r}^{m}\left(z_{i}(L)-L_{D}(h)\right)\right] \\
& +\underset{S^{\prime}}{\mathbb{E}}\left[\sup _{h \in H} \frac{1}{m} \sum_{i=1}^{m}\left(L_{D}(h)-Z_{i}^{\prime}(h)\right)\right] \\
& \leq 2 \underset{S}{\mathbb{E}}\left[\sup _{h \in H}\left|L_{D}(h)-L_{S}(h)\right|\right] \\
& \mathbb{I} \leq \frac{\mathbb{E}}{\sigma}\left[\max \left\{0 \cdot \frac{1}{m} \sum_{i=1}^{n} \sigma_{i}, 1 \cdot \frac{1}{m} \sum_{i=1}^{n} \sigma_{i}\right\}\right] \\
& =\frac{\mathbb{F}}{\sigma}\left\{\max _{a \in\left\{\left(\begin{array}{l}
0 \\
\vdots \\
0
\end{array}\right),\binom{2}{i}\right\}}^{\left.\frac{1}{m} \sum_{i=1}^{n} \sigma_{i} \cdot a_{i}\right]}\right. \\
& \leq \sqrt{\frac{2 \ln 2}{m}} \text { (by Massart's Lemma) }
\end{aligned}
$$

$$
\begin{aligned}
& {\underset{S}{G}}_{\mathbb{G}}\left[\sup _{h \in \mathcal{H}} \left\lvert\, L_{D}(h)-L_{S}(L| |] \geqslant \frac{1}{2} \underset{S}{\mathbb{E}}[R(l, H, S)]-\sqrt{\frac{\ln 2}{2 m}} \square\right.\right.
\end{aligned}
$$

Rademacher Calculus 1

More abstractly, Rademacher complexity depends on a set of vectors:

$$
\begin{gathered}
\mathcal{A}=\left\{\left(\ell\left(h, \boldsymbol{X}_{1}, Y_{1}\right), \ldots, \ell\left(h, \boldsymbol{X}_{m}, Y_{m}\right)\right): h \in \mathcal{H}\right\} \subset \mathbb{R}^{m} \\
\mathcal{R}(\ell, \mathcal{H}, S)=\frac{1}{m} \underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\sup _{h \in \mathcal{H}} \sum_{i=1}^{m} \sigma_{i} \ell\left(h, \boldsymbol{X}_{i}, Y_{i}\right)\right] \\
\mathcal{R}(\mathcal{A})=\frac{1}{m} \underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\sup _{a \in \mathcal{A}} \sum_{i=1}^{m} \sigma_{i} a_{i}\right]
\end{gathered}
$$

Rademacher complexity behaves very nicely under certain operations on \mathcal{A} !

Rademacher Calculus 2

$$
\mathcal{R}(\mathcal{A})=\frac{1}{m} \underset{\sigma}{\mathbb{E}}\left[\sup _{a \in \mathcal{A}} \sum_{i=1}^{m} \sigma_{i} a_{i}\right]
$$

Enlarging the Class:
$\mathcal{R}(\mathcal{A}) \leq \mathcal{R}(\mathcal{B}) \quad$ for $\mathcal{A} \subset \mathcal{B}$

Rademacher Calculus 2

$$
\mathcal{R}(\mathcal{A})=\frac{1}{m} \underset{\sigma}{\mathbb{E}}\left[\sup _{a \in \mathcal{A}} \sum_{i=1}^{m} \sigma_{i} a_{i}\right]
$$

Enlarging the Class:
$\mathcal{R}(\mathcal{A}) \leq \mathcal{R}(\mathcal{B}) \quad$ for $\mathcal{A} \subset \mathcal{B}$

Affine Transformations:
$\mathcal{R}\left(\left\{c \boldsymbol{a}+\boldsymbol{a}_{0}: \boldsymbol{a} \in \mathcal{A}\right\}\right)=|c| \mathcal{R}(\mathcal{A}) \quad$ for any $c \in \mathbb{R}, \boldsymbol{a}_{0} \in \mathbb{R}^{m}$

- E.g. $\mathcal{R}(1-\ell, \mathcal{H}, S)=|-1| \mathcal{R}(\ell, \mathcal{H}, S)=\mathcal{R}(\ell, \mathcal{H}, S)$

Rademacher Calculus 2

$$
\mathcal{R}(\mathcal{A})=\frac{1}{m} \underset{\sigma}{\mathbb{E}}\left[\sup _{a \in \mathcal{A}} \sum_{i=1}^{m} \sigma_{i} a_{i}\right]
$$

Enlarging the Class:
$\mathcal{R}(\mathcal{A}) \leq \mathcal{R}(\mathcal{B}) \quad$ for $\mathcal{A} \subset \mathcal{B}$

Affine Transformations:
$\mathcal{R}\left(\left\{c \boldsymbol{a}+\boldsymbol{a}_{0}: \boldsymbol{a} \in \mathcal{A}\right\}\right)=|c| \mathcal{R}(\mathcal{A}) \quad$ for any $c \in \mathbb{R}, \boldsymbol{a}_{0} \in \mathbb{R}^{m}$

- E.g. $\mathcal{R}(1-\ell, \mathcal{H}, S)=|-1| \mathcal{R}(\ell, \mathcal{H}, S)=\mathcal{R}(\ell, \mathcal{H}, S)$

Convex Hull:
$\mathcal{R}(\mathcal{A})=\mathcal{R}(\operatorname{conv}(\mathcal{A}))$

Rademacher Calculus 3: Advanced Properties

Contraction: Let $\phi \circ \mathcal{A}=\left\{\left(\phi_{1}\left(a_{1}\right), \ldots, \phi_{m}\left(a_{m}\right)\right): \boldsymbol{a} \in \mathcal{A}\right\}$.
If $\phi_{i}: \mathbb{R} \rightarrow \mathbb{R}$ is L-Lipschitz: $\left|\phi_{i}(\alpha)-\phi_{i}(\beta)\right| \leq L|\alpha-\beta|$, then:

$$
\mathcal{R}(\phi \circ \mathcal{A}) \leq L \mathcal{R}(\mathcal{A})
$$

Rademacher Calculus 3: Advanced Properties

Contraction: Let $\phi \circ \mathcal{A}=\left\{\left(\phi_{1}\left(a_{1}\right), \ldots, \phi_{m}\left(a_{m}\right)\right): \boldsymbol{a} \in \mathcal{A}\right\}$.
If $\phi_{i}: \mathbb{R} \rightarrow \mathbb{R}$ is L-Lipschitz: $\left|\phi_{i}(\alpha)-\phi_{i}(\beta)\right| \leq L|\alpha-\beta|$, then:

$$
\mathcal{R}(\phi \circ \mathcal{A}) \leq L \mathcal{R}(\mathcal{A})
$$

Example: Get rid of Lipschitz loss function using $\phi_{i}(z)=\left|Y_{i}-z\right|$:
$\mathcal{R}\left(\left\{\left(\left|Y_{1}-h\left(\boldsymbol{X}_{1}\right)\right|, \ldots,\left|Y_{m}-h\left(\boldsymbol{X}_{m}\right)\right|\right): h \in \mathcal{H}\right\}\right) \leq \mathcal{R}\left(\left\{\left(h\left(\boldsymbol{X}_{1}\right), \ldots, h\left(\boldsymbol{X}_{m}\right)\right): h \in \mathcal{H}\right\}\right)$

Rademacher Calculus 3: Advanced Properties

Contraction: Let $\phi \circ \mathcal{A}=\left\{\left(\phi_{1}\left(a_{1}\right), \ldots, \phi_{m}\left(a_{m}\right)\right): \boldsymbol{a} \in \mathcal{A}\right\}$.
If $\phi_{i}: \mathbb{R} \rightarrow \mathbb{R}$ is L-Lipschitz: $\left|\phi_{i}(\alpha)-\phi_{i}(\beta)\right| \leq L|\alpha-\beta|$, then:

$$
\mathcal{R}(\phi \circ \mathcal{A}) \leq L \mathcal{R}(\mathcal{A})
$$

Example: Get rid of Lipschitz loss function using $\phi_{i}(z)=\left|Y_{i}-z\right|$:
$\mathcal{R}\left(\left\{\left(\left|Y_{1}-h\left(\boldsymbol{X}_{1}\right)\right|, \ldots,\left|Y_{m}-h\left(\boldsymbol{X}_{m}\right)\right|\right): h \in \mathcal{H}\right\}\right) \leq \mathcal{R}\left(\left\{\left(h\left(\boldsymbol{X}_{1}\right), \ldots, h\left(\boldsymbol{X}_{m}\right)\right): h \in \mathcal{H}\right\}\right)$
Massart's Lemma:
Suppose $|\mathcal{A}|=N$ is finite. Then $\mathcal{R}(\mathcal{A}) \leq \max _{\boldsymbol{a} \in \mathcal{A}}\|\boldsymbol{a}\| \frac{\sqrt{2 \ln N}}{m}$.
Corollary: If $a \in[-1,+1]^{m}$ for all $a \in \mathcal{A}$, then $\mathcal{R}(\mathcal{A}) \leq \sqrt{\frac{2 \ln N}{m}}$.
E.g. $\mathcal{R}\left(\left\{\left(\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right),\left(\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right)\right\}\right) \leq \sqrt{\frac{2 \ln 2}{m}}$, as used in desymmetrization proof

Rademacher Calculus 3: Advanced Properties

Contraction: Let $\phi \circ \mathcal{A}=\left\{\left(\phi_{1}\left(a_{1}\right), \ldots, \phi_{m}\left(a_{m}\right)\right): \boldsymbol{a} \in \mathcal{A}\right\}$.
If $\phi_{i}: \mathbb{R} \rightarrow \mathbb{R}$ is L-Lipschitz: $\left|\phi_{i}(\alpha)-\phi_{i}(\beta)\right| \leq L|\alpha-\beta|$, then:

$$
\mathcal{R}(\phi \circ \mathcal{A}) \leq L \mathcal{R}(\mathcal{A})
$$

Example: Get rid of Lipschitz loss function using $\phi_{i}(z)=\left|Y_{i}-z\right|$:
$\mathcal{R}\left(\left\{\left(\left|Y_{1}-h\left(\boldsymbol{X}_{1}\right)\right|, \ldots,\left|Y_{m}-h\left(\boldsymbol{X}_{m}\right)\right|\right): h \in \mathcal{H}\right\}\right) \leq \mathcal{R}\left(\left\{\left(h\left(\boldsymbol{X}_{1}\right), \ldots, h\left(\boldsymbol{X}_{m}\right)\right): h \in \mathcal{H}\right\}\right)$
Massart's Lemma:
Suppose $|\mathcal{A}|=N$ is finite. Then $\mathcal{R}(\mathcal{A}) \leq \max _{\boldsymbol{a} \in \mathcal{A}}\|\boldsymbol{a}\| \frac{\sqrt{2 \ln N}}{m}$.
Corollary: If $a \in[-1,+1]^{m}$ for all $a \in \mathcal{A}$, then $\mathcal{R}(\mathcal{A}) \leq \sqrt{\frac{2 \ln N}{m}}$.
E.g. $\mathcal{R}\left(\left\{\left(\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right),\left(\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right)\right\}\right) \leq \sqrt{\frac{2 \ln 2}{m}}$, as used in desymmetrization proof

Remark: For binary classification we proved that: $\mathcal{R}(\ell, \mathcal{H}, S)=\mathcal{R}\left(\ell, \mathcal{H}_{S}, S\right) \leq \sqrt{\frac{2 \ln \left|\mathcal{H}_{S}\right|}{m}}$. General proof goes along the same lines.

Example: Bounded Regression with Lasso

$$
\mathcal{H}_{1}^{B}=\left\{h_{\boldsymbol{w}}(\boldsymbol{X})=\langle\boldsymbol{w}, \boldsymbol{X}\rangle: \boldsymbol{w} \in \mathbb{R}^{d},\|\boldsymbol{w}\|_{1} \leq B\right\}
$$

Theorem (Lasso Estimator)

Consider linear regression with $\ell(h, \boldsymbol{X}, Y)=\frac{1}{2}(Y-\langle\boldsymbol{w}, \boldsymbol{X}\rangle)^{2}$ for $\boldsymbol{X} \in[-1,+1]^{d}, Y \in[-1,+1]$.
Then \mathcal{H}_{1}^{B} is agnostically PAC-learnable by ERM with sample complexity

$$
m(\epsilon, \delta) \leq c_{B} \frac{\ln (2 d)+\ln (4 / \delta)}{\epsilon^{2}}
$$

for some constant $C_{B}>0$ that depends only on B.

Example: Bounded Regression with Lasso

$$
\mathcal{H}_{1}^{B}=\left\{h_{\boldsymbol{w}}(\boldsymbol{X})=\langle\boldsymbol{w}, \boldsymbol{X}\rangle: \boldsymbol{w} \in \mathbb{R}^{d},\|\boldsymbol{w}\|_{1} \leq B\right\} .
$$

Theorem (Lasso Estimator)

Consider linear regression with $\ell(h, \boldsymbol{X}, Y)=\frac{1}{2}(Y-\langle\boldsymbol{w}, \boldsymbol{X}\rangle)^{2}$ for $\boldsymbol{X} \in[-1,+1]^{d}, Y \in[-1,+1]$.
Then \mathcal{H}_{1}^{B} is agnostically PAC-learnable by ERM with sample complexity

$$
m(\epsilon, \delta) \leq c_{B} \frac{\ln (2 d)+\ln (4 / \delta)}{\epsilon^{2}}
$$

for some constant $c_{B}>0$ that depends only on B.

Possible \mathcal{D} :

Example: Bounded Regression with Lasso

$$
\mathcal{H}_{1}^{B}=\left\{h_{\boldsymbol{w}}(\boldsymbol{X})=\langle\boldsymbol{w}, \boldsymbol{X}\rangle: \boldsymbol{w} \in \mathbb{R}^{d},\|\boldsymbol{w}\|_{1} \leq B\right\}
$$

Theorem (Lasso Estimator)

Consider linear regression with $\ell(h, \boldsymbol{X}, Y)=\frac{1}{2}(Y-\langle\boldsymbol{w}, \boldsymbol{X}\rangle)^{2}$ for $\boldsymbol{X} \in[-1,+1]^{d}, Y \in[-1,+1]$.
Then \mathcal{H}_{1}^{B} is agnostically PAC-learnable by ERM with sample complexity

$$
m(\epsilon, \delta) \leq c_{B} \frac{\ln (2 d)+\ln (4 / \delta)}{\epsilon^{2}}
$$

for some constant $c_{B}>0$ that depends only on B.

Possible \mathcal{D} :

NB Do not assume that $Y=h(\boldsymbol{X})+$ noise for any $h \in \mathcal{H}$!

Example: Bounded Regression with Lasso

$$
\mathcal{H}_{1}^{B}=\left\{h_{w}(\boldsymbol{X})=\langle\boldsymbol{w}, \boldsymbol{X}\rangle: \boldsymbol{w} \in \mathbb{R}^{d},\|\boldsymbol{w}\|_{1} \leq B\right\} .
$$

Theorem (Lasso Estimator)

Consider linear regression with $\ell(h, \boldsymbol{X}, Y)=\frac{1}{2}(Y-\langle\boldsymbol{w}, \boldsymbol{X}\rangle)^{2}$ for $\boldsymbol{X} \in[-1,+1]^{d}, Y \in[-1,+1]$.
Then \mathcal{H}_{1}^{B} is agnostically PAC-learnable by ERM with sample complexity

$$
m(\epsilon, \delta) \leq c_{B} \frac{\ln (2 d)+\ln (4 / \delta)}{\epsilon^{2}}
$$

for some constant $c_{B}>0$ that depends only on B.

Possible \mathcal{D} :

Proof: Homework

- Hint: apply all the tools from this lecture.

NB Do not assume that $Y=h(\boldsymbol{X})+$ noise for any $h \in \mathcal{H}$!

Beyond PAC-Learning

PAC-Learning Guarantees are Very Strong

Requires learning with the same sample complexity $m(\epsilon, \delta)$ for

- all distributions \mathcal{D}, and
- all hypotheses $h \in \mathcal{H}$.

PAC-Learning Guarantees are Very Strong

Requires learning with the same sample complexity $m(\epsilon, \delta)$ for

- all distributions \mathcal{D}, and
- all hypotheses $h \in \mathcal{H}$.

Distributions:

- Distributions still restricted via $(\mathcal{X}, \mathcal{Y})$, e.g. bounded regression
- Uniform convergence not possible in unbounded regression...
- ... unless we restrict class of possible distributions

PAC-Learning Guarantees are Very Strong

Requires learning with the same sample complexity $m(\epsilon, \delta)$ for

- all distributions \mathcal{D}, and
- all hypotheses $h \in \mathcal{H}$.

Hypotheses:

Complex function h

Simple function h

- Non-uniform learnability: allow sample complexity $m^{\text {NUL }}(\epsilon, \delta, h)$ to depend on (complexity of) h

Non-uniform Learning

\mathcal{H} is agnostically PAC-learnable:

Exists learner (selecting $h_{S} \in \mathcal{H}$) that achieves, for finite $m_{\mathcal{H}}(\epsilon, \delta)$,

$$
\begin{gathered}
L_{\mathcal{D}}\left(h_{S}\right) \leq \inf _{h \in \mathcal{H}} L_{\mathcal{D}}(h)+\epsilon \quad \text { with probability } \geq 1-\delta, \\
\text { whenever } m \geq m_{\mathcal{H}}(\epsilon, \delta)
\end{gathered}
$$

$$
\text { for all } \mathcal{D}, \epsilon, \delta \text {. }
$$

Non-uniform Learning

\mathcal{H} is non-uniform learnable:

Exists learner (selecting $h_{S} \in \mathcal{H}$) that achieves, for all $h \in \mathcal{H}$, finite $m_{\mathcal{H}}(\epsilon, \delta, h)$,

$$
\begin{gathered}
L_{\mathcal{D}}\left(h_{S}\right) \leq-L_{\mathcal{D}}(h)+\epsilon \quad \text { with probability } \geq 1-\delta, \\
\text { whenever } m \geq m_{\mathcal{H}}(\epsilon, \delta, h)
\end{gathered}
$$

for all $\mathcal{D}, \epsilon, \delta$.

