Machine Learning Theory 2024 Lecture 7

Tim van Erven

- ► Complexity of classification vs regression
- Neural networks
- ▶ Bias-variance trade-off and double descent
- ► Towards an explanation

Binary Classification

Sample complexity of agnostic PAC-learnability determined by VC-dimension:

$$m_{\mathcal{H}}(\epsilon,\delta) pprox rac{\mathsf{VCdim}(\mathcal{H}) + \mathsf{ln}(1/\delta)}{\epsilon^2}$$

- ► For some (not all!) hypothesis classes, VCdim(H) = nr. of parameters:
 - ▶ Linear predictors: $\mathcal{H} = \{h_w(X) = \text{sign}(\langle w, X \rangle) : w \in \mathbb{R}^d\}$
 - Axis-aligned rectangles
 - **.**..

Regression

$$\mathcal{H}_1^B = \{h_{\boldsymbol{w}}(\boldsymbol{X}) = \langle \boldsymbol{w}, \boldsymbol{X} \rangle : \boldsymbol{w} \in \mathbb{R}^d, \|\boldsymbol{w}\|_1 \leq B\}.$$

Theorem (Lasso Estimator)

Consider linear regression with $\ell(h, X, Y) = \frac{1}{2}(Y - \langle w, X \rangle)^2$ for $X \in [-1, +1]^d$, $Y \in [-1, +1]$.

Then $\mathcal{H}_1^{\mathcal{B}}$ is agnostically PAC-learnable by ERM with sample complexity

$$m(\epsilon, \delta) \le c_B \frac{\ln(2d) + \ln(2/\delta)}{\epsilon^2}$$

for some constant $c_B > 0$ that depends only on B.

General pattern for regression tasks:

- ► Complexity of hypothesis class depends on bound B on norm $\|w\|$ of parameters
- (and sometimes weakly on number of parameters d)

Difference between Linear Regression and Linear Classification

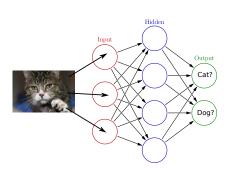
Linear Classification:

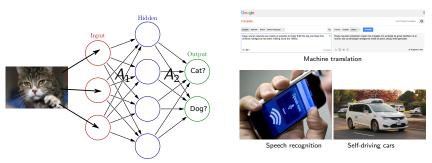
- **Not Lipschitz in** w: tiny change in w can flip prediction $h_w(X)$
- ► Measure of complexity: **number of parameters** *d*

Linear Regression:

- **Lipschitz in** w: tiny change in w implies tiny change in $h_w(X)$
- ► Main measure of complexity: **norm constraint** *B*

Deep Learning / Neural Networks



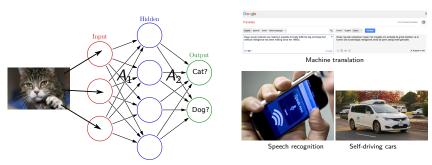


Class of non-convex functions parametrized by matrices $w = (A_1, ..., A_m)$:

Fully connected network:
$$\mathcal{H} = \{h_w(X) = A_m \sigma A_{m-1} \cdots \sigma A_1 X : w \in \mathcal{W}\},$$

with activation function $\sigma(z)$ applied component-wise to vectors. E.g.

- ▶ Rectified linear unit (ReLU): $\sigma(z) = \max\{0, z\}$
- ► Sigmoid: $\sigma(z) = 1/(1 + e^{-z})$

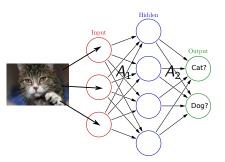


Class of non-convex functions parametrized by matrices $w = (A_1, ..., A_m) \in \mathbb{R}^d$:

Fully connected network:
$$\mathcal{H} = \{h_{w}(X) = A_{m}\sigma A_{m-1} \cdots \sigma A_{1}X : w \in \mathbb{R}^{d}\},$$

with activation function $\sigma(z)$ applied component-wise to vectors. E.g.

- ▶ Rectified linear unit (ReLU): $\sigma(z) = \max\{0, z\}$
- ► Sigmoid: $\sigma(z) = 1/(1 + e^{-z})$



VC-dimension dependence on nr. of parameters *d*:

ReLU: $\tilde{\Theta}(d)$ [Bartlett et al., 2017] Sigmoid: $\Theta(d^2)$ [Anthony and Bartlett, 1999]

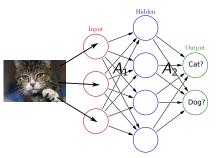
Conclusion: need sample size $m \gg nr$. of parameters to learn

Class of non-convex functions parametrized by matrices $w = (A_1, \ldots, A_m) \in \mathbb{R}^d$:

Fully connected network:
$$\mathcal{H} = \{h_w(X) = A_m \sigma A_{m-1} \cdots \sigma A_1 X : w \in \mathbb{R}^d\},$$

with activation function $\sigma(z)$ applied component-wise to vectors. E.g.

- ▶ Rectified linear unit (ReLU): $\sigma(z) = \max\{0, z\}$
- ► Sigmoid: $\sigma(z) = 1/(1 + e^{-z})$



VC-dimension dependence on nr. of parameters d:

ReLU: $\tilde{\Theta}(d)$ [Bartlett et al., 2017] Sigmoid: $\Theta(d^2)$ [Anthony and Bartlett, 1999]

Conclusion: need sample size $m \gg nr$. of parameters to learn

Class of non-convex functions parametrized by matrices $\boldsymbol{w} = (A_1, \dots, A_m) \in \mathbb{R}^d$:

Fully q

A First Glimpse of a Mystery:

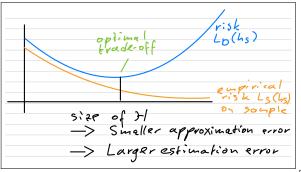
In theory: need sample size $m \gg nr$. parameters d with a

▶ In practise: sample size $m \ll \text{nr. parameters } d$

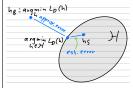
 $: \boldsymbol{w} \in \mathbb{R}^d \},$

Bias-Variance Trade-off and the Double Descent Phenomenon

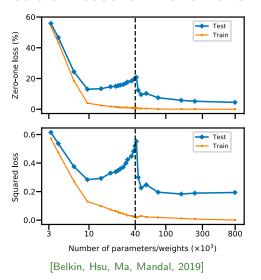
Classical Bias-Variance Trade-off



- Approximation error (bias): $\inf_{h \in \mathcal{H}} L_{\mathcal{D}}(h) \inf_{h} L_{\mathcal{D}}(h)$
- Estimation error (variance): $L_{\mathcal{D}}(h_S) \inf_{h \in \mathcal{H}} L_{\mathcal{D}}(h)$

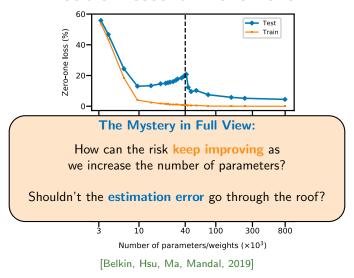


Double Descent Phenomenon



- Varying the number of hidden units in a two-layer neural network
- Classification: MNIST hand-written digits data with 10 classes

Double Descent Phenomenon

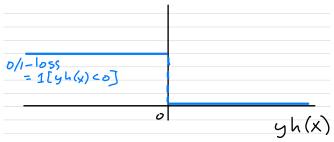


- Varying the number of hidden units in a two-layer neural network
- ► Classification: MNIST hand-written digits data with 10 classes

Towards an Explanation

- 1. Large margins turn classification into regression
- 2. Explaining double descent

Classifiers as Real-valued Functions



NB Real-valued classifiers. E.g. $h_{m{w}}(m{X}) = \langle m{w}, m{X} \rangle$. Prediction is $\operatorname{sign}(h(m{X}))$

- ▶ Margin = Yh(X), where $Y \in \{-1, +1\}$
- ► Larger margin > 0: more confident correct classification

Classifiers as Real-valued Functions

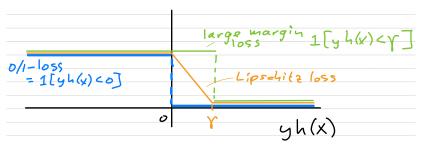
NB Real-valued classifiers. E.g. $h_{m{w}}(m{X}) = \langle m{w}, m{X}
angle.$ Prediction is $\operatorname{sign}(h(m{X}))$

- ▶ Margin = Yh(X), where $Y \in \{-1, +1\}$
- ► Larger margin > 0: more confident correct classification
- ► Common loss functions encourage finding large margin solutions:

$$\mbox{logistic loss: } \ln(1+e^{-Yh(X)})$$
 squared loss for classification: $(Y-h(X))^2=(1-Yh(X))^2$

Large Margins 1

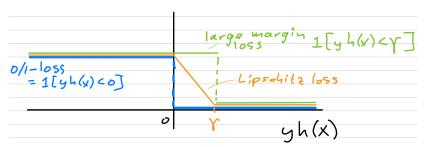
[Anthony and Bartlett, 1999]



 $0/1\text{-loss} \leq \gamma\text{-Lipschitz loss} \leq \gamma\text{-large margin loss}$

Large Margins 1

 $[{\sf Anthony} \ {\sf and} \ {\sf Bartlett}, \ 1999]$



 $0/1\text{-loss} \leq \gamma\text{-Lipschitz loss} \leq \gamma\text{-large margin loss}$

$$egin{align*} L_{\mathcal{D}}^{0/1}(h_S) & \leq L_{\mathcal{D}}^{\mathsf{Lipschitz}}(h_S) \ & \leq L_{S}^{\mathsf{Lipschitz}}(h_S) + 2 \, \mathbb{E}[\mathcal{R}(\ell^{\mathsf{Lipschitz}},\mathcal{H},S)] + \sqrt{rac{\mathsf{ln}(4/\delta)}{2m}} \quad \mathsf{w.p.} \geq 1 - \delta \ & \leq L_{S}^{\mathsf{large margin}}(h_S) + 2 \, \mathbb{E}[\mathcal{R}(\ell^{\mathsf{Lipschitz}},\mathcal{H},S)] + \sqrt{rac{\mathsf{ln}(4/\delta)}{2m}} \ & \end{aligned}$$

Theorem

Let $h_S \in \mathcal{H}$ be the output of a learning algorithm. Then, with probability at least $1 - \delta$,

$$L_{\mathcal{D}}^{0/1}(h_S) \leq L_S^{\gamma\text{-large margin}}(h_S) + 2 \operatorname{\mathbb{E}}[\mathcal{R}(\ell^{\gamma\text{-Lipschitz}},\mathcal{H},S)] + \sqrt{\frac{\ln(4/\delta)}{2m}}.$$

Large Margins 2

Theorem

Let $h_S \in \mathcal{H}$ be the output of a learning algorithm. Then, with probability at least $1 - \delta$,

$$L_{\mathcal{D}}^{0/1}(h_S) \leq L_S^{\gamma\text{-large margin}}(h_S) + 2 \operatorname{\mathbb{E}}[\mathcal{R}(\ell^{\gamma\text{-Lipschitz}},\mathcal{H},S)] + \sqrt{\frac{\ln(4/\delta)}{2m}}.$$

1. If h_S has margin $\geq \gamma$ on (most of) S, then $L_S^{\gamma-\text{large margin}}(h_S)$ is small

Theorem

Let $h_S \in \mathcal{H}$ be the output of a learning algorithm. Then, with probability at least $1 - \delta$,

$$L_{\mathcal{D}}^{0/1}(h_S) \leq L_S^{\gamma\text{-large margin}}(h_S) + 2 \operatorname{\mathbb{E}}[\mathcal{R}(\ell^{\gamma\text{-Lipschitz}},\mathcal{H},S)] + \sqrt{\frac{\ln(4/\delta)}{2m}}.$$

- 1. If h_S has margin $\geq \gamma$ on (most of) S, then $L_S^{\gamma-\text{large margin}}(h_S)$ is small
- 2. Lipschitz loss is $\frac{1}{\gamma}$ -Lipschitz, so can apply contraction lemma:

$$\mathcal{R}(\ell^{\mathsf{Lipschitz}},\mathcal{H},\mathcal{S}) \leq \frac{1}{\gamma} \mathcal{R}\Big(\big\{(h(m{X}_1),\ldots,h(m{X}_m)):h\in\mathcal{H}\big\}\Big)$$

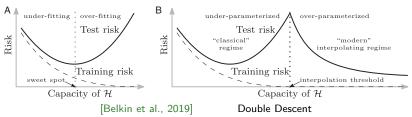
- So small changes in h imply small changes in loss
- ► We have turned the classification problem into a regression task!
- ▶ Complexity of \mathcal{H} can be controlled by some norm on h.

Towards an Explanation

- 1. Large margins turn classification into regression
- 2. Explaining double descent

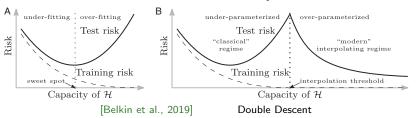
A Potential Explanation

[Belkin, Hsu, Ma, Mandal, 2019]



A Potential Explanation

[Belkin, Hsu, Ma, Mandal, 2019]



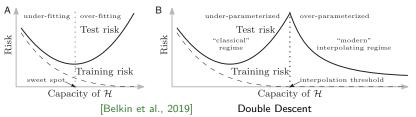
Proposed explanation: suppose learning alg roughly behaves as

among ERM solutions
$$h_S \in \arg\min_{h \in \mathcal{H}} L_S(h)$$
 choose solution with smallest norm $||h_S||_{??}$

Below int. threshold: ERM unique \rightarrow classical bias-variance trade-off Above int. threshold: larger $\mathcal{H} \rightarrow$ more ERM solutions \rightarrow smaller $\|h_S\|_{??}$

A Potential Explanation

[Belkin, Hsu, Ma, Mandal, 2019]



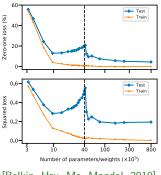
Proposed explanation: suppose learning alg roughly behaves as

among ERM solutions
$$h_S \in \arg\min_{h \in \mathcal{H}} L_S(h)$$
 choose solution with smallest norm $||h_S||_{??}$

Below int. threshold: ERM unique \rightarrow classical bias-variance trade-off Above int. threshold: larger $\mathcal{H} \rightarrow$ more ERM solutions \rightarrow smaller $\|h_S\|_{??}$

- $ightharpoonup L_S$ for e.g. logistic or squared loss (encouraging large margin)
- Different norm depending on manifestation of double descent

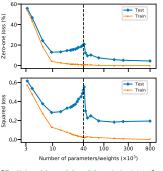
Double Descent for Neural Networks Again



[Belkin, Hsu, Ma, Mandal, 2019]

 Classification: CIFAR-10 32x32 images from 10 classes, e.g. airplanes, cats, dogs

Double Descent for Neural Networks Again



[Belkin, Hsu, Ma, Mandal, 2019]

 Classification: CIFAR-10 32x32 images from 10 classes, e.g. airplanes, cats, dogs

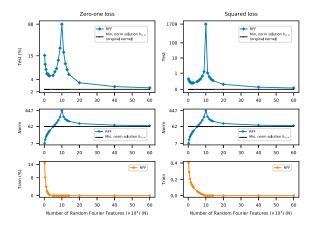
Which norm $||h_S||_{??}$?

Implicitly induced by optimization algorithm!

Exist proposals in the literature to characterize norm.
 E.g. using neural tangent kernel [Jacot, Gabriel, Hongler, 2018]

Double Descent: Not Just for Neural Networks

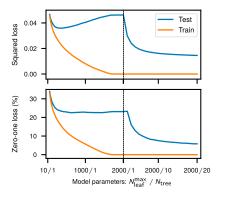
[Belkin et al., 2019] reproduce double descent phenomenon on e.g. MNIST:



Random Fourier features: linear model over N randomly generated basis functions that approximate a certain (reproducing kernel) Hilbert space as $N \to \infty$

Double Descent: Not Just for Neural Networks

[Belkin et al., 2019] reproduce double descent phenomenon on e.g. MNIST:



Random forests: ensembles of decision trees

 Complexity controlled by number of leaves per tree and by number of trees

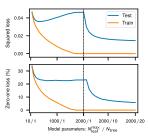
Recent Alternative Explanation [Curth, Jeffares, v.d. Schaar, 2023]: Need More Careful Parameter Counting

In all non-deep learning experiments by [Belkin et al., 2019]:

- ▶ Below interpolation threshold *m*: increase model complexity along dimension 1
- Above interpolation threshold m: increase model complexity along dimension 2

Examples:

▶ Random forests: [Belkin et al., 2019] increase depth of single tree up to *m* (complexity dimension 1). Then average additional trees above *m* (complexity dimension 2).



Recent Alternative Explanation [Curth, Jeffares, v.d. Schaar, 2023]: Need More Careful Parameter Counting

In all non-deep learning experiments by [Belkin et al., 2019]:

- Below interpolation threshold m: increase model complexity along dimension 1
- Above interpolation threshold m: increase model complexity along dimension 2

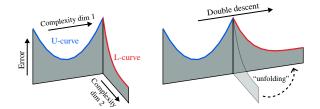
Examples:

- ▶ Random forests: [Belkin et al., 2019] increase depth of single tree up to *m* (complexity dimension 1). Then average additional trees above *m* (complexity dimension 2).
- ▶ N Random Fourier features: equivalent to least squares on basis with dimension min(m, N), obtained by unsupervised dimensionality reduction. [Curth, Jeffares, v.d. Schaar, 2023]
 - Nr. of least squares parameters is min(m, N) (complexity dimension 1).
 - Quality of dimensionality reduction improves with m (complexity dimension 2).

Recent Alternative Explanation [Curth, Jeffares, v.d. Schaar, 2023]: Need More Careful Parameter Counting

In all non-deep learning experiments by [Belkin et al., 2019]:

- Below interpolation threshold m: increase model complexity along dimension 1
- Above interpolation threshold m: increase model complexity along dimension 2



Double descent happens because experiments stitch together two independent U-curves!

Conclusion

- Exciting new attempts to understand the double descent phenomenon observed in deep learning, random Fourier features, random forests, etc.
- Crucial to understand true model complexity rather than counting parameters.
- Analysis involves tools like Rademacher complexity that you have learned in this course.
- ► Whether proposed explanations can be fully formalized for deep learning remains to be seen...
- ▶ In any case, the role of optimization algorithms in determining effective model complexity provides a fascinating new frontier for understanding the classical bias-variance trade-off!