Machine Learning Theory 2024
Lecture 7

Tim van Erven

» Complexity of classification vs regression
» Neural networks

» Bias-variance trade-off and double descent
» Towards an explanation



Binary Classification

> Sample complexity of agnostic PAC-learnability

VCdim(#) + In(1/6)

m;.[(e,é) ~ p

> For some (not all!) hypothesis classes, VCdim(#) = nr. of
parameters:
> Linear predictors: H = {hy(X) = sign((w, X)) : w € R}
> Axis-aligned rectangles
>
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Regression
HE = {hy(X) = (w, X) : w € RY, |w]|; < B}.

Theorem (Lasso Estimator)

Consider linear regression with £(h, X, Y) = 3(Y — (w, X))? for

X € [-1,+1]9, Y € [-1,+1].

Then HE is agnostically PAC-learnable by ERM with sample complexity
+In(2/9)

m(e, 0) < cp 2

for some constant cg > 0 that depends only on B.

General pattern for regression tasks:

> of hypothesis class on norm
||lw]|| of parameters

> (and sometimes weakly on number of parameters d)
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Difference between
Linear Regression and Linear Classification

Linear Classification:
» Not Lipschitz in w: tiny change in w can flip prediction hy,(X)
» Measure of complexity: number of parameters d

Linear Regression:
» Lipschitz in w: tiny change in w implies tiny change in hy,(X)
» Main measure of complexity: norm constraint B
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Deep Learning / Neural Networks
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(Deep) Neural Networks

eee
Hidden

—— N |
Input B

%@§
2 Q/;Q

b 7 @
Q Speech recognition Self-driving cars

6/19



(Deep) Neural Networks

Hidden

Input
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AN ’ & = '>
Q Speech recognition Self-driving cars
Class of functions parametrized by matrices
w = (A1,...,An):

Fully connected network: H={hw(X)=AncAm_1--cdAX :weW},

with activation function o(z) applied component-wise to vectors. E.g.
» Rectified linear unit (ReLU): o(z) = max{0, z}
» Sigmoid: o(z) =1/(1+ e~ ?)
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Class of functions parametrized by matrices
_ d.
w = (A,...,An) € R%:

Fully connected network: H="{hw(X)=AnoAn_1--0cA1 X :wE }Rd},

with activation function o(z) applied component-wise to vectors. E.g.
» Rectified linear unit (ReLU): o(z) = max{0, z}
» Sigmoid: o(z) =1/(1+ e~ ?)
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(Deep) Neural Networks

Hidden . .
VC-dimension dependence

on nr. of parameters d:

Input

Output

ReLU: é(d) [Bartlett et al., 2017]

//Q\

Z// & Sigmoid: @(dz) [Anthony and Bartlett, 1099]
K

z . .
x //' Conclusion: need sample size
O

to learn

Class of functions parametrized by matrices
w=(A,...,An) € R%:

Fully connected network: H="{hw(X)=AnoAn_1--0cA1 X :wE Rd},

with activation function o(z) applied component-wise to vectors. E.g.
» Rectified linear unit (ReLU): o(z) = max{0, z}
» Sigmoid: o(z) =1/(1+ e~ ?)
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(Deep) Neural Networks

Hidden

VC-dimension dependence
on nr. of parameters d:

ReLU . @(d) [Bartlett et al., 2017]
Sigmoid: @(dz) [Anthony and Bartlett, 1999]

Conclusion: need sample size

to learn
Class of functions parametrized by matrices
w = (A17~-~7Am) GRdZ
: d
Fully A First Glimpse of a Mystery: rw € R,
with a| » In theory: need sample size m > nr. parameters d E.g.

> R{ P In practise: sample size m < nr. parameters d

> S| moTa—o(Z ] — £/ (f 1 © T
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Bias-Variance Trade-off and
the Double Descent Phenomenon
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Classical Bias-Variance Trade-off

risk
Lp(hs)

sYae of X
—>  Suneller a&rfrax.‘w.a_h'pm e ror

_> L%Vj-?r &sl-:wm.h‘au errov

. . . by 2 avgmin Lp (k)
> Approximation error (bias): S

infheH LD(h) — infh LD(h)
> Estimation error (variance):
LD(hs) - infheH Lp(h)
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Double Descent Phenomenon
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[Belkin, Hsu, Ma, Mandal, 2019]

w=

» Varying the number of hidden units in a two-layer neural network
» Classification: MNIST hand-written digits data with 10 classes
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Double Descent Phenomenon

Zero-one loss (%)

I

The Mystery in Full View:

How can the risk as
we increase the number of parameters?

Shouldn’t the estimation error go through the roof?

T T T T T T
3 10 40 100 300 800
Number of parameters/weights (x103)

[Belkin, Hsu, Ma, Mandal, 2019]

» Varying the number of hidden units in a two-layer neural network
» Classification: MNIST hand-written digits data with 10 classes
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Towards an Explanation

1. Large margins turn classification into regression

2. Explaining double descent
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Classifiers as Real-valued Functions

o/1-loss
= 1lyb&) o]

¢ yh(X)

NB Real-valued classifiers. E.g. h,(X) = (w, X).
Prediction is sign(h(X))

» Margin = Yh(X), where Y € {-1,+1}

> Larger margin > 0: more confident correct classification
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Classifiers as Real-valued Functions

o/1-loss
:1[9L&)¢q}

o
yh(X)
NB Real-valued classifiers. E.g. h,(X) = (w, X).
Prediction is sign(h(X))

» Margin = Yh(X), where Y € {-1,+1}
> Larger margin > 0: more confident correct classification
» Common loss functions encourage finding large margin solutions:
logistic loss: In(1+ e~ V(X))
squared loss for classification: (Y — h(X))? = (1 — Yh(X))?
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Large Margins 1  [Anthony and Bartlett, 1999]

I«V.?\"D u;vau’j"’\ l[“.j L.()()éY’j

o/i-loss

‘1[9"‘&)(03 Lips<hita [oSs

W= = —

T yh (X)

0/1-loss < ~-Lipschitz loss < v-large margin loss
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Large Margins ]_ [Anthony and Bartlett, 1999]

190,037 1 [y hbrey ]

o/i-loss .l
|
|

= 1[91«&)(03

? yh (X)

0/1-loss < ~-Lipschitz loss < v-large margin loss

L%l(hs) < LgpSChitZ(hs)
. . In(4
< L;'pSCh'tZ(hs) + 2E[R(fLIPSChItZ,’H, S)] + % w.p. > 1—9
. . In(4
S Llsarge margln(hs) + 21[4:[7?,(€L|psch|tz7 H, S)] + n(2n/75)
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Large Margins 2 [Anthony and Bartlett, 1999]

Theorem

Let hs € H be the output of a learning algorithm. Then, with probability
at least 1 — 6,

. A In(4/5
L%/l(hs) < Lg—large margln(hs) + 2E[R(€'y—l_lpschltz77_[’ S)] + n(2n/7 )
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Large Margins 2 [Anthony and Bartlett, 1999]

Theorem
Let hs € H be the output of a learning algorithm. Then, with probability
at least 1 — 6,

. A In(4/5
L'([J)/l(hs) < Lg—large margln(hs) + 2E[R(€'y—l_lpschltz77_[’ S)] + n(2n/7 )

1. If hs has margin ~ - on (most of) S, then L2 ™8 (h¢) is small
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Large Margins 2 [Anthony and Bartlett, 1999]

Theorem

Let hs € H be the output of a learning algorithm. Then, with probability
at least 1 — 6,

0/1( ) < L’y large margln(hs) + 2E[R([y Lipschitz H S)] ln(24n/76) .

1. If hs has on (most of) S, then L7 ™8 (h4) is small

2. Lipschitz loss is %—Lipschitz, so can apply

Lipschitz 1 .
R H,S) < ;R({(h(Xl), o h(Xm)) :he 7—[})

» So small changes in h imply small changes in loss
» We have turned the classification problem into a regression task!
»> Complexity of H can be controlled by some norm on h.
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Towards an Explanation

1. Large margins turn classification into regression
2. Explaining double descent
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A Potential Explanation

[Belkin, Hsu, Ma, Mandal, 2019]

A e . B ) )

under-fitting | over-fitting under-parameterized over-parameterized

. Test risk Test risk
=4 . =4 “classical”
@ @
~ /~
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regime

“modern”
interpolating regime

> < Training risk ~ Training risk:
sweet spot\: -—_ S~ -‘/intcrpolation threshold
Capacity of H

\C;p;c}ty ofH
[Belkin et al., 2019] Double Descent
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A Potential Explanation

[Belkin, Hsu, Ma, Mandal, 2019]
under-fitting . over-fitting under-parameterized over-parameterized
. Test risk Test risk
=4 . =4 “classical”
@ @
~ /~
N

~

regime
~ Training risk
2t s t
sweet spot_

“modern”
interpolating regime

~ Training risk:
Capacity of H T

« _interpolation threshold

E];p;city ofH
[Belkin et al., 2019] Double Descent

Proposed explanation: suppose learning alg roughly behaves as
among

hs € arg min Ls(h)
heH
choose solution with

[[hsllz2
Below int. threshold: ERM unique — classical bias-variance trade-off

Above int. threshold: larger H — more ERM solutions — smaller || hs||+7
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A Potential Explanation

[Belkin, Hsu, Ma, Mandal, 2019]
under-fitting . over-fitting under-parameterized over-parameterized
. Test risk Test risk
=4 . =4 “classical”
@ @
~ /~
N

regime

“modern”
interpolating regime

> o Training risk
sweet spot_ T« —

- Training risk
Capacity of H T

— « _interpolation threshold

E];p;city ofH
[Belkin et al., 2019] Double Descent
Proposed explanation: suppose learning alg roughly behaves as
among hs € arg min Ls(h)
heH
choose solution with lhs |22
Below int. threshold: ERM unique — classical bias-variance trade-off
Above int. threshold: larger H — more ERM solutions — smaller || hs||+7
> [ for e.g. logistic or squared loss (encouraging large margin)

» Different norm depending on manifestation of double descent
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Double Descent for Neural Networks Again
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[Belkin, Hsu, Ma, Mandal, 2019]

> Classification: CIFAR-10 32x32 images from 10 classes, e.g.
airplanes, cats, dogs
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Double Descent for Neural Networks Again
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[Belkin, Hsu, Ma, Mandal, 2019]
> Classification: CIFAR-10 32x32 images from 10 classes, e.g.
airplanes, cats, dogs
Which norm || hs||22?
Implicitly

» Exist proposals in the literature to characterize norm.
E.g. using neural tangent kernel [Jacot, Gabriel, Hongler, 2018]

16/19



Double Descent: Not Just for Neural Networks
[Belkin et al., 2019] reproduce double descent phenomenon on e.g. MNIST:

Zero-one loss

Squared loss
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Random Fourier features: linear model over N randomly generated
basis functions that approximate a certain (reproducing kernel) Hilbert

Number of Random Fourier Features (x10%) (N)

space as N — oo
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Double Descent: Not Just for Neural Networks

[Belkin et al., 2019] reproduce double descent phenomenon on e.g. MNIST:
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Model parameters: NiT2 / Niree

Random forests: ensembles of decision trees

» Complexity controlled by number of leaves per tree and by number
of trees
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Recent Alternative Explanation [curh, Jeffares, v.d. Schaar, 2023]:

Need More Careful Parameter Counting
In all non-deep learning experiments by [Belkin et al., 2019]:
» Below interpolation threshold m: increase model complexity along
dimension 1
» Above interpolation threshold m: increase model complexity along
dimension 2
Examples:
» Random forests: [Belkin et al., 2019] increase depth of single tree up
to m (complexity dimension 1). Then average additional trees
above m (complexity dimension 2).
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Model parameters: NT% / Niree
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Recent Alternative Explanation [curth, Jeffares, v.d. Schaar, 2023):
Need More Careful Parameter Counting

In all non-deep learning experiments by [Belkin et al., 2019]:

» Below interpolation threshold m: increase model complexity along
dimension 1

> Above interpolation threshold m: increase model complexity along
dimension 2

Examples:
» Random forests: [Belkin et al., 2019] increase depth of single tree up
tom . Then average additional trees
above m

» N Random Fourier features: equivalent to least squares on basis
with dimension min(m, ), obtained by unsupervised dimensionality
reduction. [Curth, Jeffares, v.d. Schaar, 2023]

> Nr. of least squares parameters is min(m, N)

> Quality of dimensionality reduction improves with m
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Recent Alternative Explanation [Curth, Jeffares, v.d. Schaar, 2023].

Need More Careful Parameter Counting

In all non-deep learning experiments by [Belkin et al., 2019]:

» Below interpolation threshold m: increase model complexity along
dimension 1

» Above interpolation threshold m: increase model complexity along
dimension 2

Double descent

COMV‘

U-curve
8
g L-curve
43}

Double descent happens because experiments
stitch together two independent U-curves!
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Conclusion

Exciting new attempts to understand the
observed in deep learning, random Fourier features,
random forests, etc.

Crucial to understand true model complexity rather than counting
parameters.

Analysis involves tools like Rademacher complexity that you have
learned in this course.

Whether proposed explanations can be fully formalized for deep
learning remains to be seen...

In any case, the role of optimization algorithms in determining
effective model complexity provides a for
understanding the classical bias-variance trade-off!
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