Machine Learning Theory 2025 Lecture 10

Wouter M. Koolen

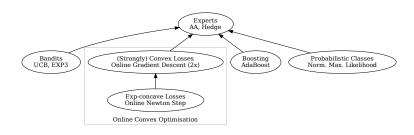
Download these slides now from elo.mastermath.nl!

Online Convex Optimisation

- Gradient Descent for Convex Losses
- Online to Batch Conversion
- Gradient Descent for Strongly Convex Losses

Recap

Overview of Second Half of Course



Material: course notes on MLT website.

Recap: Finite Classes

So far we have seen learning "finite sets": Our learning algorithms behave like the **best** among *K* strategies.

- ► K-Experts setting
 - ► Mix loss : Aggregating Algorithm
 - Dot loss: Hedge algorithm
- K-armed bandit settings
 - ► Adversarial bandit : EXP3
 - Stochastic bandit : UCB

Outlook: Beyond the Finite

What if we want to compete with infinite sets?

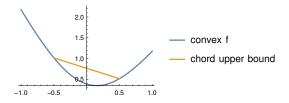
- ► Can we?
- ► How?

In each case, **lower bounds** grow with K: $\ln K$, $\sqrt{T \ln K}$, $\sqrt{TK \ln K}$, $K/\Delta \ln T$. So hopeless in the **unstructured** $K \to \infty$ case.

Today: compete with **continuous** sets of actions, parameterised such that the loss is a **convex** function of the action.

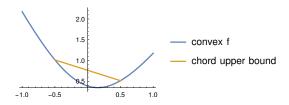
Convexity Review

Convex Functions I: definition



Fix a convex set $\mathcal{U} \subseteq \mathbb{R}^d$.

Convex Functions I: definition



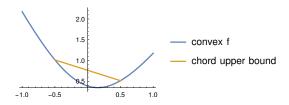
Fix a convex set $\mathcal{U} \subseteq \mathbb{R}^d$.

Definition

A function $f:\mathcal{U}\to\mathbb{R}$ is convex if for all $x,y\in\mathcal{U}$ and weights $\theta\in[0,1]$,

$$f(\theta x + (1-\theta)y) \leq \theta f(x) + (1-\theta)f(y).$$

Convex Functions I: definition



Fix a convex set $\mathcal{U} \subseteq \mathbb{R}^d$.

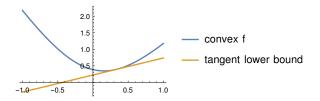
Definition

A function $f:\mathcal{U}\to\mathbb{R}$ is convex if for all $x,y\in\mathcal{U}$ and weights $\theta\in[0,1]$,

$$f(\theta x + (1-\theta)y) \leq \theta f(x) + (1-\theta)f(y).$$

Extends to arbitrary mixtures: $f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)]$ (Jensen).

Convex Functions II: tangent bound

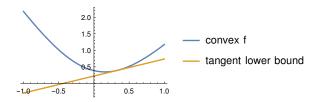


Fact

A differentiable function $f:\mathcal{U} \to \mathbb{R}$ is convex iff for all $x,y \in \mathcal{U}$

$$f(y) - f(x) \geq \langle y - x, \nabla f(x) \rangle$$

Convex Functions II: tangent bound



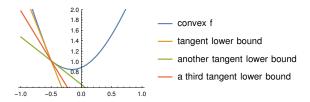
Fact

A differentiable function $f:\mathcal{U} \to \mathbb{R}$ is convex iff for all $m{x}, m{y} \in \mathcal{U}$

$$f(y) - f(x) \geq \langle y - x, \nabla f(x) \rangle$$

Symmetrically, $\langle y - x, \nabla f(y) \rangle \geq f(y) - f(x)$.

Convex Functions III: sub-gradient



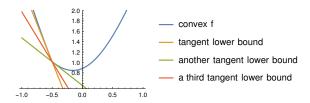
Fact (Sub-gradient)

For any convex $f: \mathcal{U} \to \mathbb{R}$, possibly non-differentiable, and point $x \in \mathcal{U}$, there always exists some vector $g \in \mathbb{R}^d$ such that for all $y \in \mathcal{U}$

$$f(y) - f(x) \ge \langle y - x, g \rangle$$

Any such vector g is called a sub-gradient (of f at x).

Convex Functions III: sub-gradient



Fact (Sub-gradient)

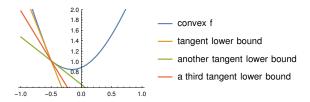
For any convex $f: \mathcal{U} \to \mathbb{R}$, possibly non-differentiable, and point $x \in \mathcal{U}$, there always exists some vector $g \in \mathbb{R}^d$ such that for all $y \in \mathcal{U}$

$$f(y) - f(x) \ge \langle y - x, g \rangle$$

Any such vector g is called a sub-gradient (of f at x).

The gradient of a differentiable function is a sub-gradient.

Convex Functions III: sub-gradient



Fact (Sub-gradient)

For any convex $f: \mathcal{U} \to \mathbb{R}$, possibly non-differentiable, and point $x \in \mathcal{U}$, there always exists some vector $g \in \mathbb{R}^d$ such that for all $y \in \mathcal{U}$

$$f(y) - f(x) \ge \langle y - x, g \rangle$$

Any such vector g is called a sub-gradient (of f at x).

The gradient of a differentiable function is a sub-gradient.

We will abuse notation and denote any sub-gradient by $\nabla f(x)$.

Online Convex Optimisation

Online Convex Optimisation

General yet simple sequential decision problem.

Fix a convex set $\mathcal{U} \subseteq \mathbb{R}^d$.

Protocol

For t = 1, 2, ...

- ▶ Learner chooses a point $w_t \in \mathcal{U}$.
- ▶ Adversary reveals convex loss function $f_t : \mathcal{U} \to \mathbb{R}$.
- ightharpoonup Learner's loss is $f_t(w_t)$

Online Convex Optimisation

General yet simple sequential decision problem.

Fix a convex set $\mathcal{U} \subseteq \mathbb{R}^d$.

Protocol

For t = 1, 2, ...

- ightharpoonup Learner chooses a point $w_t \in \mathcal{U}$.
- ▶ Adversary reveals convex loss function $f_t : \mathcal{U} \to \mathbb{R}$.
- ightharpoonup Learner's loss is $f_t(w_t)$

Objective:

Regret w.r.t. best point after T rounds:

$$R_T = \max_{u \in \mathcal{U}} \sum_{t=1}^T (f_t(w_t) - f_t(u))$$

Example loss functions

oss function $f_t(oldsymbol{u})$
$ u^{\intercal}\ell_t $
$\left\ oldsymbol{u}-oldsymbol{x}_{t} ight\ ^{2}$
$(u^\intercal x_t - y_t)^2$
n $\left(1+e^{-y_toldsymbol{u}^\intercaloldsymbol{x}_t} ight)$
$\max\{0, 1 - y_t oldsymbol{u}^\intercal oldsymbol{x}_t\}$
– $In(oldsymbol{u}^\intercal oldsymbol{x}_t)$
f(u)

Let $\mathcal{U} \subseteq \mathbb{R}^d$ be a closed convex set containing $\mathbf{0}$.

Definition

Online Gradient Descent with learning rate $\eta > 0$ plays

$$oldsymbol{w}_1 = oldsymbol{0}$$
 and $oldsymbol{w}_{t+1} \ = \ \Pi_{\mathcal{U}} \left(oldsymbol{w}_t - \eta
abla f_t(oldsymbol{w}_t)
ight)$

where

$$\Pi_{\mathcal{U}}(w) = \underset{u \in \mathcal{U}}{\operatorname{arg \, min}} \|u - w\|$$

is the projection of $w \in \mathbb{R}^d$ onto \mathcal{U} in Euclidean norm.

Assumption: Bounded Gradients and Domain

Let G and D bound the gradients and the domain, i.e.

$$\|\nabla f_t(u)\| \leq G$$
 and $\|u\| \leq D$ for all $u \in \mathcal{U}$.

Assumption: Bounded Gradients and Domain

Let G and D bound the gradients and the domain, i.e.

$$\|\nabla f_t(u)\| \leq G$$
 and $\|u\| \leq D$ for all $u \in \mathcal{U}$.

Theorem (OGD regret bound)

Online Gradient Descent guarantees

$$R_T = \max_{\boldsymbol{u} \in \mathcal{U}} \sum_{t=1}^T (f_t(\boldsymbol{w}_t) - f_t(\boldsymbol{u})) \leq \frac{1}{2\eta} D^2 + \frac{\eta}{2} TG^2$$

Assumption: Bounded Gradients and Domain

Let G and D bound the gradients and the domain, i.e.

$$\|\nabla f_t(u)\| < G$$
 and $\|u\| < D$ for all $u \in \mathcal{U}$.

Theorem (OGD regret bound)

Online Gradient Descent guarantees

$$R_T = \max_{\boldsymbol{u} \in \mathcal{U}} \sum_{t=1}^T (f_t(\boldsymbol{w}_t) - f_t(\boldsymbol{u})) \leq \frac{1}{2\eta} D^2 + \frac{\eta}{2} TG^2$$

Corollary

Tuning $\eta = \frac{D}{G\sqrt{T}}$ results in

$$R_T \leq DG\sqrt{T}$$

Pythagorean Inequality

Lemma (Pythagorean Inequality)

Fix a closed convex set $\mathcal{U} \subseteq \mathbb{R}^d$. Let $x \in \mathcal{U}, y \in \mathbb{R}^d$ and

$$\hat{y} = \Pi_{\mathcal{U}}(y) = \underset{u \in \mathcal{U}}{\operatorname{arg \, min}} \|u - y\|^2.$$

Then

$$\left\|oldsymbol{x}-\hat{oldsymbol{y}}
ight\|^2+\left\|\hat{oldsymbol{y}}-oldsymbol{y}
ight\|^2 \ \le \ \left\|oldsymbol{x}-oldsymbol{y}
ight\|^2$$

NB: not to be confused with the triangle inequality

$$\|x - y\| \le \|x - \hat{y}\| + \|\hat{y} - y\|.$$

Proof of GD regret bound I

Fix any $u \in \mathcal{U}$. By convexity,

$$f_t(\boldsymbol{w}_t) - f_t(\boldsymbol{u}) \leq \langle \boldsymbol{w}_t - \boldsymbol{u}, \nabla f_t(\boldsymbol{w}_t) \rangle.$$

By the OGD update rule

$$egin{aligned} \left\|oldsymbol{w}_{t+1} - oldsymbol{u}
ight\|^2 &= \left\|\Pi_{\mathcal{U}}\left(oldsymbol{w}_t - \eta
abla f_t(oldsymbol{w}_t) - oldsymbol{u}
ight\|^2 \ &\leq \left\|oldsymbol{w}_t - \eta
abla f_t(oldsymbol{w}_t) - oldsymbol{u}
ight\|^2 \ &= \left\|oldsymbol{w}_t - oldsymbol{u}
ight\|^2 - 2\eta \langle oldsymbol{w}_t - oldsymbol{u},
abla f_t(oldsymbol{w}_t)
angle + \eta^2 \|
abla f_t(oldsymbol{w}_t)\|^2. \end{aligned}$$

We can chain these two inequalities into

$$egin{aligned} f_t(oldsymbol{w}_t) - f_t(oldsymbol{u}) & \leq & \langle oldsymbol{w}_t - oldsymbol{u},
abla f_t(oldsymbol{w}_t)
angle \ & \leq & rac{\left\|oldsymbol{w}_t - oldsymbol{u}
ight\|^2 - \left\|oldsymbol{w}_{t+1} - oldsymbol{u}
ight\|^2}{2\eta} + rac{\eta}{2} \|
abla f_t(oldsymbol{w}_t)\|^2. \end{aligned}$$

Proof of GD regret bound II

Summing over T rounds, we find

$$\begin{split} \sum_{t=1}^{T} \left(f_{t}(w_{t}) - f_{t}(u) \right) & \leq \underbrace{\sum_{t=1}^{T} \frac{\|w_{t} - u\|^{2} - \|w_{t+1} - u\|^{2}}{2\eta}}_{\text{telescopes}} + \frac{\eta}{2} \sum_{t=1}^{T} \|\nabla f_{t}(w_{t})\|^{2} \\ & \leq \underbrace{\frac{\|u\|^{2} - \|w_{\mathcal{F}+1} - u\|^{2}}{2\eta}}_{\leq \frac{D^{2}}{2\eta} + \frac{\eta}{2} TG^{2}. \end{split}$$

Conclusion of Convex Losses part

We developed Online Gradient Descent.

OGD behaves almost as well as the **best point** in the continuous domain, as measured by a sum of **adversarially** chosen convex loss functions.

Observations:

- $ightharpoonup GD\sqrt{T}$ regret
- ▶ Efficient: run time is O(d) per round, plus
 - one gradient evaluation
 - one projection onto the domain

We revisit statistical learning, with loss functions abstracting examples:

Goal: obtain an estimator \hat{w}_T with small expected excess risk.

$$\underset{f_1,...,f_T}{\mathbb{E}} \left[\underset{f}{\mathbb{E}} \left[f(\hat{\boldsymbol{w}}_T) - f(\boldsymbol{u}^*) \right] \right] \leq \text{small}$$

where the training set f_1, \ldots, f_T and the test sample f are drawn i.i.d. and u^* optimises the risk $u \mapsto \mathbb{E}_f[f(u)]$.

How to design $\hat{w}_{\mathcal{T}}$?

Idea: use online learning algorithm. Given training sample f_1, \ldots, f_T , the algorithm picks w_1, \ldots, w_T . Let us define the average iterate estimator

$$\hat{\boldsymbol{w}}_{\mathcal{T}} = \frac{1}{\mathcal{T}} \sum_{t=1}^{\mathcal{T}} \boldsymbol{w}_{t}.$$

Idea: use online learning algorithm. Given training sample f_1, \ldots, f_T , the algorithm picks w_1, \ldots, w_T . Let us define the average iterate estimator

$$\hat{\boldsymbol{w}}_T = \frac{1}{T} \sum_{t=1}^T \boldsymbol{w}_t.$$

$\mathsf{Theorem}$

An online regret bound $R_T \leq B(T)$ implies

$$\mathbb{E}_{iid f_1, \ldots, f_T, f} [f(\hat{\boldsymbol{w}}_T) - f(\boldsymbol{u}^*)] \leq \frac{B(T)}{T}$$

Online to Batch Proof

$$\mathbb{E}_{\text{iid } f_1, \dots, f_T, f} \left[f\left(\hat{\boldsymbol{w}}_T\right) - f(\boldsymbol{u}^*) \right]$$

$$\leq \mathbb{E}_{\text{iid } f_1, \dots, f_T, f} \left[\frac{1}{T} \sum_{t=1}^T \left(f(\boldsymbol{w}_t) - f(\boldsymbol{u}^*) \right) \right]$$

$$= \mathbb{E}_{\text{iid } f_1, \dots, f_T} \left[\frac{1}{T} \sum_{t=1}^T \left(f_t(\boldsymbol{w}_t) - f_t(\boldsymbol{u}^*) \right) \right] \leq \frac{B(T)}{T}$$

The first step is convexity of f. The last step uses that f and f_t have the same distribution (and w_t is not a function of f_t).

Online to Batch Proof

$$\mathbb{E}_{\text{iid } f_1, \dots, f_T, f} \left[f\left(\hat{w}_T\right) - f(u^*) \right]$$

$$\leq \mathbb{E}_{\text{iid } f_1, \dots, f_T, f} \left[\frac{1}{T} \sum_{t=1}^T \left(f(w_t) - f(u^*) \right) \right]$$

$$= \mathbb{E}_{\text{iid } f_1, \dots, f_T} \left[\frac{1}{T} \sum_{t=1}^T \left(f_t(w_t) - f_t(u^*) \right) \right] \leq \frac{B(T)}{T}$$

The first step is convexity of f. The last step uses that f and f_t have the same distribution (and w_t is not a function of f_t).

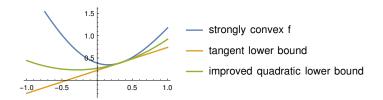
We can use online learning methods for statistical learning.

Online Strongly Convex Optimisation

Structure

What if we know more about my setting than convexity of the loss function? Can we learn faster?

Strongly Convex Case

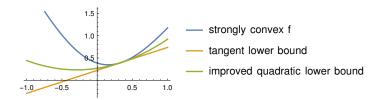


Definition

A function $f: \mathcal{U} \to \mathbb{R}$ is *strongly convex* to degree $\alpha \geq 0$ if

$$f(\boldsymbol{u}) - f(\boldsymbol{w}) \geq \langle \boldsymbol{u} - \boldsymbol{w}, \nabla f(\boldsymbol{w}) \rangle + \frac{\alpha}{2} \|\boldsymbol{u} - \boldsymbol{w}\|^2$$

Strongly Convex Case



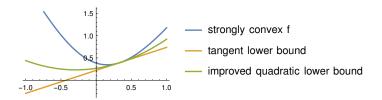
Definition

A function $f: \mathcal{U} \to \mathbb{R}$ is *strongly convex* to degree $\alpha \geq 0$ if

$$f(u) - f(w) \geq \langle u - w, \nabla f(w) \rangle + \frac{\alpha}{2} ||u - w||^2$$

Example: $f(w) = \frac{1}{2}||w - x_t||^2$ is strongly convex with $\alpha = 1$.

Strongly Convex Case



Definition

A function $f: \mathcal{U} \to \mathbb{R}$ is *strongly convex* to degree $\alpha \geq 0$ if

$$f(u) - f(w) \geq \langle u - w, \nabla f(w) \rangle + \frac{\alpha}{2} ||u - w||^2$$

Example: $f(w) = \frac{1}{2}||w - x_t||^2$ is strongly convex with $\alpha = 1$.

Idea: could this extra knowledge help in the regret rate?

Online Gradient Descent with time-varying learning rate

Definition (OGD with time-varying learning rate)

$$w_1 = 0$$
 and $w_{t+1} = \Pi_{\mathcal{U}}(w_t - \eta_t \nabla f_t(w_t))$

Online Gradient Descent with time-varying learning rate

Definition (OGD with time-varying learning rate)

$$w_1 = 0$$
 and $w_{t+1} = \Pi_{\mathcal{U}}(w_t - \eta_t \nabla f_t(w_t))$

Theorem

For $\alpha\text{-strongly convex loss functions, OGD with learning rate }\eta_t = \frac{1}{\alpha t}$ ensures

$$R_T \leq \frac{G^2}{2\alpha} (1 + \ln T).$$

Proof I

Exactly as for the convex case, the update rule ensures

$$\begin{split} \left\| \boldsymbol{w}_{t+1} - \boldsymbol{u} \right\|^2 &= \left\| \Pi_{\mathcal{U}} \left(\boldsymbol{w}_t - \eta_t \nabla f_t(\boldsymbol{w}_t) \right) - \boldsymbol{u} \right\|^2 \\ &\leq \left\| \boldsymbol{w}_t - \eta_t \nabla f_t(\boldsymbol{w}_t) - \boldsymbol{u} \right\|^2 \\ &= \left\| \boldsymbol{w}_t - \boldsymbol{u} \right\|^2 - 2\eta_t \langle \boldsymbol{w}_t - \boldsymbol{u}, \nabla f_t(\boldsymbol{w}_t) \rangle + \eta_t^2 \| \nabla f_t(\boldsymbol{w}_t) \|^2 \end{split}$$

Combination with strong convexity gives

$$\begin{split} & f_{t}(\boldsymbol{w}_{t}) - f_{t}(\boldsymbol{u}) \\ & \leq \langle \boldsymbol{w}_{t} - \boldsymbol{u}, \nabla f_{t}(\boldsymbol{w}_{t}) \rangle - \frac{\alpha}{2} \|\boldsymbol{w}_{t} - \boldsymbol{u}\|^{2} \\ & \leq \frac{\|\boldsymbol{w}_{t} - \boldsymbol{u}\|^{2} - \|\boldsymbol{w}_{t+1} - \boldsymbol{u}\|^{2} + \eta_{t}^{2} \|\nabla f_{t}(\boldsymbol{w}_{t})\|^{2}}{2\eta_{t}} - \frac{\alpha}{2} \|\boldsymbol{w}_{t} - \boldsymbol{u}\|^{2} \\ & = \|\boldsymbol{w}_{t} - \boldsymbol{u}\|^{2} \left(\frac{1}{2\eta_{t}} - \frac{\alpha}{2}\right) - \frac{\|\boldsymbol{w}_{t+1} - \boldsymbol{u}\|^{2}}{2\eta_{t}} + \frac{\eta_{t} \|\nabla f_{t}(\boldsymbol{w}_{t})\|^{2}}{2} \end{split}$$

Proof II

Summing over rounds gives

$$\begin{split} &\sum_{t=1}^{T} \left(f_{t}(\boldsymbol{w}_{t}) - f_{t}(\boldsymbol{u}) \right) \\ &\leq \sum_{t=1}^{T} \left(\|\boldsymbol{w}_{t} - \boldsymbol{u}\|^{2} \left(\frac{1}{2\eta_{t}} - \frac{\alpha}{2} \right) - \frac{\|\boldsymbol{w}_{t+1} - \boldsymbol{u}\|^{2}}{2\eta_{t}} + \frac{\eta_{t} \|\nabla f_{t}(\boldsymbol{w}_{t})\|^{2}}{2} \right) \\ &= \|\boldsymbol{w}_{1} - \boldsymbol{u}\|^{2} \left(\frac{1}{2\eta_{1}} - \frac{\alpha}{2} \right) + \sum_{t=2}^{T} \|\boldsymbol{w}_{t} - \boldsymbol{u}\|^{2} \left(\frac{1}{2\eta_{t}} - \frac{\alpha}{2} - \frac{1}{2\eta_{t-1}} \right) \\ &- \frac{\|\boldsymbol{w}_{T+1} - \boldsymbol{u}\|^{2}}{2\eta_{T}} + \sum_{t=1}^{T} \frac{\eta_{t} \|\nabla f_{t}(\boldsymbol{w}_{t})\|^{2}}{2} \end{split}$$

Key idea for telescoping is to cancel coefficient on $\|w_t - u\|^2$ in the sum:

$$\frac{1}{2\eta_t} - \frac{\alpha}{2} - \frac{1}{2\eta_{t-1}} = 0.$$

Proof III

This yields recurrence

$$\eta_t = \frac{1}{\frac{1}{\eta_{t-1}} + \alpha}$$

Cancelling the coefficient on $\|w_1 - u\|^2$ gives starting point $\eta_1 = \frac{1}{\alpha}$. This leads to overall solution $\eta_t = \frac{1}{\alpha t}$. Plugging that in, we find

$$\sum_{t=1}^{T} \big(f_t(\boldsymbol{w}_t) - f_t(\boldsymbol{u})\big) \; \leq \; \sum_{t=1}^{T} \frac{\left\|\nabla f_t(\boldsymbol{w}_t)\right\|^2}{2\alpha t} \; \leq \; \frac{G^2}{2\alpha} \left(1 + \ln \, T\right).$$

Conclusion

Tools for learning in convex settings.

- Guaranteed robustness against adversarial losses
- Efficient
- Building block for
 - Learning in non-convex settings (AdaGrad for DNN)
 - Learning in games
 - ► Non-convex games (GANs)