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▶ Online to Batch Conversion

▶ Gradient Descent for Strongly Convex Losses

https://elo.mastermath.nl


Recap

2 / 30



Overview of Second Half of Course

Online Convex Optimisation

Experts
AA, Hedge

Bandits
UCB, EXP3

(Strongly) Convex Losses
Online Gradient Descent (2x)

Exp-concave Losses
Online Newton Step

Boosting
AdaBoost

Probabilistic Classes
Norm. Max. Likelihood

Material: course notes on MLT website.
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Recap: Finite Classes

So far we have seen learning “finite sets”:
Our learning algorithms behave like the best among K strategies.

▶ K -Experts setting
▶ Mix loss : Aggregating Algorithm
▶ Dot loss : Hedge algorithm

▶ K -armed bandit settings
▶ Adversarial bandit : EXP3
▶ Stochastic bandit : UCB

4 / 30



Outlook: Beyond the Finite

What if we want to compete with infinite sets?

▶ Can we?

▶ How?

In each case, lower bounds grow with K : lnK ,
√
T lnK ,

√
TK lnK ,

K/∆ lnT . So hopeless in the unstructured K → ∞ case.

Today: compete with continuous sets of actions, parameterised such
that the loss is a convex function of the action.
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Convexity Review
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Convex Functions I : definition
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1.0

1.5

2.0

convex f

chord upper bound

Fix a convex set U ⊆ Rd .

Definition

A function f : U → R is convex if for all x,y ∈ U and weights θ ∈ [0, 1],

f (θx+ (1− θ)y) ≤ θf (x) + (1− θ)f (y).

Extends to arbitrary mixtures: f (E[X ]) ≤ E[f (X )] (Jensen).
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Convex Functions II : tangent bound
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convex f

tangent lower bound

Fact
A differentiable function f : U → R is convex iff for all x,y ∈ U

f (y)− f (x) ≥ ⟨y − x,∇f (x)⟩

Symmetrically, ⟨y − x,∇f (y)⟩ ≥ f (y)− f (x).
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Convex Functions III : sub-gradient
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convex f

tangent lower bound

another tangent lower bound

a third tangent lower bound

Fact (Sub-gradient)
For any convex f : U → R, possibly non-differentiable, and point x ∈ U ,
there always exists some vector g ∈ Rd such that for all y ∈ U

f (y)− f (x) ≥ ⟨y − x, g⟩

Any such vector g is called a sub-gradient (of f at x).

The gradient of a differentiable function is a sub-gradient.

We will abuse notation and denote any sub-gradient by ∇f (x).
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Online Convex Optimisation
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Online Convex Optimisation

General yet simple sequential decision problem.

Fix a convex set U ⊆ Rd .

Protocol

For t = 1, 2, . . .

▶ Learner chooses a point wt ∈ U .
▶ Adversary reveals convex loss function ft : U → R.
▶ Learner’s loss is ft(wt)

Objective:
Regret w.r.t. best point after T rounds:

RT = max
u∈U

T∑
t=1

(
ft(wt)− ft(u)

)
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Example loss functions

Setting loss function ft(u)
Hedge setting u⊺ℓt
Point prediction ∥u− xt∥2
Regression (u⊺xt − yt)

2

Logistic regression ln
(
1 + e−ytu

⊺xt
)

Hinge loss max{0, 1− ytu
⊺xt}

Investment − ln(u⊺xt)
Offline optimisation f (u)

12 / 30



Online Gradient Descent (OGD)

Let U ⊆ Rd be a closed convex set containing 0.

Definition

Online Gradient Descent with learning rate η > 0 plays

w1 = 0 and wt+1 = ΠU (wt − η∇ft(wt))

where
ΠU (w) = argmin

u∈U
∥u−w∥

is the projection of w ∈ Rd onto U in Euclidean norm.
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Online Gradient Descent (OGD)
Assumption: Bounded Gradients and Domain
Let G and D bound the gradients and the domain, i.e.

∥∇ft(u)∥ ≤ G and ∥u∥ ≤ D for all u ∈ U .

Theorem (OGD regret bound)

Online Gradient Descent guarantees

RT = max
u∈U

T∑
t=1

(
ft(wt)− ft(u)

)
≤ 1

2η
D2 +

η

2
TG 2

Corollary

Tuning η = D
G
√
T

results in

RT ≤ DG
√
T
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Pythagorean Inequality

Lemma (Pythagorean Inequality)

Fix a closed convex set U ⊆ Rd . Let x ∈ U ,y ∈ Rd and

ŷ = ΠU (y) = argmin
u∈U

∥u− y∥2.

Then
∥x− ŷ∥2 + ∥ŷ − y∥2 ≤ ∥x− y∥2

NB: not to be confused with the triangle inequality

∥x− y∥ ≤ ∥x− ŷ∥+ ∥ŷ − y∥.

15 / 30



Proof of GD regret bound I

Fix any u ∈ U . By convexity,

ft(wt)− ft(u) ≤ ⟨wt − u,∇ft(wt)⟩.

By the OGD update rule

∥wt+1 − u∥2 = ∥ΠU (wt − η∇ft(wt))− u∥2

Pyth.Ineq.

≤ ∥wt − η∇ft(wt)− u∥2

= ∥wt − u∥2 − 2η⟨wt − u,∇ft(wt)⟩+ η2∥∇ft(wt)∥2.

We can chain these two inequalities into

ft(wt)− ft(u) ≤ ⟨wt − u,∇ft(wt)⟩

≤ ∥wt − u∥2 − ∥wt+1 − u∥2

2η
+

η

2
∥∇ft(wt)∥2.
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Proof of GD regret bound II

Summing over T rounds, we find

T∑
t=1

(
ft(wt)− ft(u)

)
≤

T∑
t=1

∥wt − u∥2 − ∥wt+1 − u∥2

2η︸ ︷︷ ︸
telescopes

+
η

2

T∑
t=1

∥∇ft(wt)∥2

≤ ∥u∥2 −������
∥wT+1 − u∥2

2η
+

η

2

T∑
t=1

∥∇ft(wt)∥2

≤ D2

2η
+

η

2
TG 2.
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Conclusion of Convex Losses part

We developed Online Gradient Descent.

OGD behaves almost as well as the best point in the continuous domain,
as measured by a sum of adversarially chosen convex loss functions.

Observations:

▶ GD
√
T regret

▶ Efficient: run time is O(d) per round, plus
▶ one gradient evaluation
▶ one projection onto the domain
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Online to Batch Conversion
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Online to Batch Conversion

We revisit statistical learning, with loss functions abstracting examples:

Goal: obtain an estimator ŵT with small expected excess risk.

E
f1,...,fT

[
E
f
[f (ŵT )− f (u∗)]

]
≤ small

where the training set f1, . . . , fT and the test sample f are drawn i.i.d.
and u∗ optimises the risk u 7→ Ef [f (u)].

How to design ŵT ?
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Online to Batch Conversion

Idea: use online learning algorithm. Given training sample f1, . . . , fT , the
algorithm picks w1, . . . ,wT . Let us define the average iterate estimator

ŵT =
1

T

T∑
t=1

wt .

Theorem

An online regret bound RT ≤ B(T ) implies

E
iid f1, . . . , fT , f

[f (ŵT )− f (u∗)] ≤ B(T )

T
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Online to Batch Proof

E
iid f1, . . . , fT , f

[f (ŵT )− f (u∗)]

≤ E
iid f1, . . . , fT , f

[
1

T

T∑
t=1

(f (wt)− f (u∗))

]

= E
iid f1, . . . , fT

[
1

T

T∑
t=1

(ft(wt)− ft(u
∗))

]
≤ B(T )

T

The first step is convexity of f . The last step uses that f and ft have the
same distribution (and wt is not a function of ft).

We can use online learning methods for statistical learning.
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Online Strongly Convex Optimisation
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Structure

What if we know more about my setting than convexity of the loss
function? Can we learn faster?
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Strongly Convex Case

-1.0 -0.5 0.5 1.0

0.5

1.0

1.5

strongly convex f

tangent lower bound

improved quadratic lower bound

Definition

A function f : U → R is strongly convex to degree α ≥ 0 if

f (u)− f (w) ≥ ⟨u−w,∇f (w)⟩+ α

2
∥u−w∥2

Example: f (w) = 1
2∥w − xt∥2 is strongly convex with α = 1.

Idea: could this extra knowledge help in the regret rate?
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Online Gradient Descent
with time-varying learning rate

Definition (OGD with time-varying learning rate)

w1 = 0 and wt+1 = ΠU (wt − ηt∇ft(wt))

Theorem

For α-strongly convex loss functions, OGD with learning rate ηt =
1
αt

ensures

RT ≤ G 2

2α
(1 + lnT ) .
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Proof I

Exactly as for the convex case, the update rule ensures

∥wt+1 − u∥2 = ∥ΠU (wt − ηt∇ft(wt))− u∥2

Pyth.Ineq.

≤ ∥wt − ηt∇ft(wt)− u∥2

= ∥wt − u∥2 − 2ηt⟨wt − u,∇ft(wt)⟩+ η2t ∥∇ft(wt)∥2

Combination with strong convexity gives

ft(wt)− ft(u)

≤ ⟨wt − u,∇ft(wt)⟩ −
α

2
∥wt − u∥2

≤ ∥wt − u∥2 − ∥wt+1 − u∥2 + η2t ∥∇ft(wt)∥2

2ηt
− α

2
∥wt − u∥2

= ∥wt − u∥2
(

1

2ηt
− α

2

)
− ∥wt+1 − u∥2

2ηt
+

ηt∥∇ft(wt)∥2

2
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Proof II

Summing over rounds gives

T∑
t=1

(
ft(wt)− ft(u)

)
≤

T∑
t=1

(
∥wt − u∥2

(
1

2ηt
− α

2

)
− ∥wt+1 − u∥2

2ηt
+

ηt∥∇ft(wt)∥2

2

)

= ∥w1 − u∥2
(

1

2η1
− α

2

)
+

T∑
t=2

∥wt − u∥2
(

1

2ηt
− α

2
− 1

2ηt−1

)

− ∥wT+1 − u∥2

2ηT
+

T∑
t=1

ηt∥∇ft(wt)∥2

2

Key idea for telescoping is to cancel coefficient on ∥wt − u∥2 in the sum:

1

2ηt
− α

2
− 1

2ηt−1
= 0.

28 / 30



Proof III

This yields recurrence

ηt =
1

1
ηt−1

+ α

Cancelling the coefficient on ∥w1 − u∥2 gives starting point η1 = 1
α .

This leads to overall solution ηt =
1
αt . Plugging that in, we find

T∑
t=1

(
ft(wt)− ft(u)

)
≤

T∑
t=1

∥∇ft(wt)∥2

2αt
≤ G 2

2α
(1 + lnT ) .
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Conclusion

Tools for learning in convex settings.

▶ Guaranteed robustness against adversarial losses

▶ Efficient

▶ Building block for
▶ Learning in non-convex settings (AdaGrad for DNN)
▶ Learning in games
▶ Non-convex games (GANs)
▶ . . .
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