Machine Learning Theory 2025
Lecture 10

Wouter M. Koolen

Download these slides now from elo.mastermath.nl!

Online Convex Optimisation

» Gradient Descent for Convex Losses

» Online to Batch Conversion ‘
» Gradient Descent for Strongly Convex Losses

https://elo.mastermath.nl

Recap

2/30

Overview of Second Half of Course

Experts
AA, Hedge

(Strongly) Convex Losses
Online Gradient Descent (2x)

Exp-concave Losses
Online Newton Step

Online Convex Optimisation

Boosting
AdaBoost

Bandits
UCB, EXP3

Probabilistic Classes
Norm. Max. Likelihood

Material: course notes on MLT website.

3/30

https://www.cwi.nl/~wmkoolen/MLT_2025/

Recap: Finite Classes

So far we have seen learning “finite sets”:
Our learning algorithms behave like the best among K strategies.
» K-Experts setting
> Mix loss : Aggregating Algorithm
» Dot loss : Hedge algorithm
» K-armed bandit settings

» Adversarial bandit : EXP3
» Stochastic bandit : UCB

4/30

Outlook: Beyond the Finite

What if we want to compete with sets?
» Can we?
> How?

In each case, lower bounds grow with K: InK, VTInK, VTKInK,
K/AIn T. So hopeless in the K — oo case.

Today: compete with sets of actions, parameterised such
that the loss is a convex function of the action.

5/30

Convexity Review

6/30

Convex Functions | : definition

15 —— convex f

1.0 —— chord upper bound

-1.0 -0.5 0.5 1.0

Fix a convex set I C RY.

7/30

Convex Functions | : definition

15 —— convex f

1.0 —— chord upper bound

-1.0 -0.5 0.5 1.0

Fix a convex set I C RY.

Definition
A function f : U — R is convex if for all &,y € U and weights 6 € [0, 1],

f(0x + (1 —0)y) < 0f(x)+ (1 —0)f(y).

7/30

Convex Functions | : definition

—— convex f

// —— chord upper bound

-1.0 -0.5 0.5 1.0

Fix a convex set I C RY.

Definition
A function f : U — R is convex if for all &,y € U and weights 6 € [0, 1],

f(0x + (1 —0)y) < 0f(x)+ (1 —0)f(y).

Extends to arbitrary mixtures: f(E[X]) < E[f(X)] (Jensen).

7/30

Convex Functions |l : tangent bound

15
— convex f

1.0
—— tangent lower bound

-1.0 -0.5 0.5 1.0

Fact
A differentiable function f : U — R is convex iff for all x,y € U

fly) - flx) = (y—z, Vi(z))

8/30

Convex Functions |l : tangent bound

—— convex f
1.0
tangent lower bound

-1.0 -0.5 E 0.5 1.0

Fact
A differentiable function f : U — R is convex iff for all xz,y € U

fly) - flx) = (y—z, Vi(z))

Symmetrically, (y —x, Vf(y)) > f(y) — f(x).

8/30

Convex Functions |1l : sub-gradient

—— convex f
tangent lower bound
—— another tangent lower bound

—— a third tangent lower bound

Fact (Sub-gradient)
For any convex f : U — R, possibly non-differentiable, and point x € U,
there always exists some vector g € RY such that for all y € U

fly)—f(x) > (y —x,g)

Any such vector g is called a (of f at x).

9/30

Convex Functions |1l : sub-gradient

—— convex f
tangent lower bound
—— another tangent lower bound

—— a third tangent lower bound

Fact (Sub-gradient)
For any convex f : U — R, possibly non-differentiable, and point x € U,
there always exists some vector g € RY such that for all y € U

fly)—f(x) > (y —x,g)

Any such vector g is called a (of f at x).

The gradient of a differentiable function is a sub-gradient.

9/30

Convex Functions |1l : sub-gradient

—— convex f
tangent lower bound
another tangent lower bound

—— a third tangent lower bound

Fact (Sub-gradient)

For any convex f : U — R, possibly non-differentiable, and point x € U,
there always exists some vector g € RY such that for all y € U

fly) —f(z) = (y — =, 9)
Any such vector g is called a (of f at x).
The gradient of a differentiable function is a sub-gradient.

We will abuse notation and denote sub-gradient by Vf(x).

9/30

Online Convex Optimisation

10/30

Online Convex Optimisation

General yet simple sequential decision problem.
Fix a convex set U C R9.

Protocol

Fort=1,2,...

» Learner chooses a point w; € U.

» Adversary reveals convex loss function f; : U/ — R.
» Learner’s loss is fi(w;)

11/30

Online Convex Optimisation

General yet simple sequential decision problem.
Fix a convex set U C R9.

Protocol

Fort=1,2,...

» Learner chooses a point w; € U.

» Adversary reveals convex loss function f; : U/ — R.
» Learner’s loss is fi(w;)

Objective:
Regret w.r.t. best point after T rounds:

.
Rr = max 3" ((wd) - f(uw)

11/30

Example loss functions

Setting

loss function f;(u)

Hedge setting
Point prediction
Regression

Logistic regression
Hinge loss
Investment

Offline optimisation

uvl;

[[w— -"Ut||2

(uTx, —)/t)2
In(1+ e*Yf“T””f)
max{0,1 — yyuTx,}
—In(uTx;)

f(u)

12/30

Online Gradient Descent (OGD)

Let 2/ C RY be a closed convex set containing 0.

Definition
Online Gradient Descent with learning rate n > 0 plays

w; =0 and w1 = My (wy — Vi (w;))

where
My(w) = argmin ||u — w||
ueU

is the projection of w € RY onto U in Euclidean norm.

13/30

Online Gradient Descent (OGD)

Assumption: Bounded Gradients and Domain
Let G and D bound the gradients and the domain, i.e.

IVi(u)| <G and |ul| <D foralluel.

14/30

Online Gradient Descent (OGD)

Assumption: Bounded Gradients and Domain
Let G and D bound the gradients and the domain, i.e.

IVi(u)| <G and |ul| <D foralluel.

Theorem (OGD regret bound)
Online Gradient Descent guarantees

T

Rr = maxy (fi(we) ~ fi(u)) < -

D2+ 1762
— 2 2

14/30

Online Gradient Descent (OGD)

Assumption: Bounded Gradients and Domain
Let G and D bound the gradients and the domain, i.e.

IVi(u)| <G and |ul| <D foralluel.

Theorem (OGD regret bound)

Online Gradient Descent guarantees

Rr = max} (f(w,) - f(u)) < =

D2+ 1762
— 2 2

Corollary

Tuning n = # results in

Ry < DGVT

14/30

Pythagorean Inequality

Lemma (Pythagorean Inequality)

Fix a closed convex setUd CRY. Let x € U,y € RY and
. . 2
9 = Mu(y) = argmin |lu—y".
ueU

Then
A2 A 2 2
le =gl + g —-ylI° < llz—yl

NB: not to be confused with the triangle inequality

e —yll < llz -3l + g — vl

15/30

Proof of GD regret bound |

Fix any u € U. By convexity,
fi(we) — fi(u) < (w —u, Vi(wy)).
By the OGD update rule

lwess —wl® = My (we = Vhi(w)) - ul

Pyth.Ineq.

< we — nV(wy) — ul®
= |lw, — ul® = 2n(we — u, VE(we)) + 77| Vi (we)|.

We can chain these two inequalities into

fr(we) — fi(u) < (w; —u, Vi (w,))
|lwe — u|? — [Jwerr — ulf
2n

IN

+ 2|V we) .

16/30

Proof of GD regret bound Il

Summing over T rounds, we find

.
> (fe(we) — £i(w))
t=1

IN

-
ZHwt U|| [wes1 u|| gzwff w,)|

t=1 2n

telescopes

IN
E
\
S
\
£
+
NS
I Mﬂ
<
3
&

AN
|
+
I
a
N}

17/30

Conclusion of Convex Losses part

We developed Online Gradient Descent.

OGD behaves almost as well as the in the continuous domain,
as measured by a sum of adversarially chosen convex loss functions.

Observations:
> GDVT regret

» Efficient: run time is O(d) per round, plus

> one gradient evaluation
> one projection onto the domain

18/30

Online to Batch Conversion

19/30

Online to Batch Conversion

We revisit statistical learning, with loss functions abstracting examples:

Goal: obtain an estimator w1 with small expected excess risk.

N . -
ﬁ,PfT I,[::[f(wT) f(u™)]| < small

where the fi, ..., fr and the test sample f are drawn i.i.d.

and u* optimises the risk u — E¢[f(u)].

How to design w1?

20/30

Online to Batch Conversion

Idea: use online learning algorithm. Given training sample fi, ..., fr, the
algorithm picks wy, ..., wt. Let us define the average iterate estimator

21/30

Online to Batch Conversion

Idea: use online learning algorithm. Given training sample fi, ..., fr, the
algorithm picks wy, ..., wt. Let us define the average iterate estimator

An online regret bound Ry < B(T) implies

br) - f(u*)] < —~2
iidﬁ,‘E‘,fT,f[f(wT) f(u)] < T

21/30

Online to Batch Proof

iid i, E oo f [f (r) = F(u")]

.
~ iid fl,.E fr,f 7222 wt _f())]

: B(T)
- iidfl,...,fT Z:: fewe) = filu))] s

The first step is convexity of f. The last step uses that f and f; have the
same distribution (and w; is not a function of).

22/30

Online to Batch Proof

iid i, E oo f [f (r) = F(u")]

.
~ iid fl,.E fr,f 7222 wt _f())]

: B(T)
- iidfl,...,fT Z:: fewe) = filu))] s

The first step is convexity of f. The last step uses that f and f; have the
same distribution (and w; is not a function of).

We can use online learning methods for statistical learning.

22/30

Online Strongly Convex Optimisation

23/30

Structure

What if we know more about my setting than convexity of the loss
function? Can we learn faster?

24/30

Strongly Convex Case

15

10 —— strongly convex f

—— tangent lower bound

—— improved quadratic lower bound

Definition

LN
o
|
I
3
e
13
o

A function f : U — R is strongly convex to degree o > 0 if

f(u) = f(w) > (u—w,VF(w))+ 5 u—wl|®

25 /30

Strongly Convex Case

15

10 —— strongly convex f

—— tangent lower bound

—— improved quadratic lower bound

Definition

LN
o
|
I
3
e
13
o

A function f : U — R is strongly convex to degree o > 0 if

fw) = F(w) 2 (u—w, V) + 5w - wl’

Example: f(w) = 3|lw — x.|? is strongly convex with o = 1.

25 /30

Strongly Convex Case

—— strongly convex f
tangent lower bound

—— improved quadratic lower bound

A function f : U — R is strongly convex to degree o > 0 if

fw) = F(w) 2 (u—w, V) + 5w - wl’

Example: f(w) = 3|lw — x.|? is strongly convex with o = 1.

Idea: could this extra knowledge help in the regret rate?

25 /30

Online Gradient Descent
with time-varying learning rate

Definition (OGD with time-varying learning rate)

w; = 0 and wiy = My (we —n:Vh(w;))

26/30

Online Gradient Descent
with time-varying learning rate

Definition (OGD with time-varying learning rate)

w; = 0 and wiy = My (we —n:Vh(w;))

Theorem

|

For a-strongly convex loss functions, OGD with learning rate 1, =
ensures

at
2
Rr < —

a(l—HnT).

26/30

Proof |

Exactly as for the convex case, the update rule ensures

lwesr — uH2 = My (we — e Vir(we)) — u||2
Pyth.Ineq.

<we — eV h(w,) — ul?
= [lwe — u| — 20 (w — u, Vhi(wy)) + 12| Vi (w,)|?

Combination with strong convexity gives
fi(we) — fi(u)
@
< (wr —u, Vii(we)) — Sllwe — ul?

2 2 2
[we — u|” — lweps — ul” + 92| VE(w)|

2 2
— —jwr—u
2 t

N 21,
2 2
_ ||wt . ’LL||2 1 . g _ ||wt+1 - u” + 77t||Vft(wt)||
2, 2 2n; 2

27/30

Proof I

Summing over rounds gives

T

> (fe(we) — fi(w))
t=1
T 2 2
1« [werr —ull” | nel[VA (we)||
< —ulP =) =
< 32 (1w (5 - 5) - g

.
Jon—wl? (5 = 5) + Lo =l (5= 5 - 5
2m 2 o 20 2 2mpq

2 T 2
Nwres —u 4 Z e[|V (we) |
20t t=1 2

Key idea for telescoping is to cancel coefficient on ||w; — w||* in the sum:

1 le’ 1

277t 2 211

28/30

Proof Il

This yields recurrence
1

MNe = —31
Ne—1 +a

Cancelling the coefficient on |Jw; — u||* gives starting point 71 = L
This leads to overall solution n; = .. Plugging that in, we find

.,
fi(G2
3 (f(we) ~ filw) Z”vf“’f < 2 (1+IT).

2«
t=1

29/30

Conclusion

Tools for learning in convex settings.
» Guaranteed robustness against adversarial losses
> Efficient

» Building block for

» Learning in non-convex settings (AdaGrad for DNN)
» Learning in games

> Non-convex games (GANs)

>

30/30

	Recap
	Convexity Review
	Online Convex Optimisation
	Online to Batch Conversion
	Online Strongly Convex Optimisation

