Machine Learning Theory 2025
Lecture 11

Wouter M. Koolen

Download these slides now from elo.mastermath.nl!

» OCO with exp-concavity:
> Regression and Portfolio optimisation problem motivation.

Exp-concavity.

Online Newton Step algorithm.

Analysis

Application: Concentration Inequality (Bonus)
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https://elo.mastermath.nl

Recap
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Overview of Second Half of Course

Experts
AA, Hedge

(Strongly) Convex Losses
Online Gradient Descent (2x)

Exp-concave Losses
Online Newton Step

Online Convex Optimisation

Boosting
AdaBoost

Bandits
UCB, EXP3

Probabilistic Classes
Norm. Max. Likelihood

Material: course notes on MLT website.
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https://www.cwi.nl/~wmkoolen/MLT_2025/

Recap: Online Convex Optimisation

General yet simple sequential decision problem.
Fix a convex set U C R9.

Protocol

Fort=1,2,...

» Learner chooses a point w; € U.

» Adversary reveals convex loss function f; : U/ — R.
» Learner’s loss is fi(w;)
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Recap: Online Convex Optimisation

General yet simple sequential decision problem.
Fix a convex set U C R9.

Protocol

Fort=1,2,...

» Learner chooses a point w; € U.

» Adversary reveals convex loss function f; : U/ — R.
» Learner’s loss is fi(w;)

Objective:
Regret w.r.t. best point after T rounds:

T

t=1
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Recap: Results so far

We saw the Online Gradient Descent algorithm

w1 = MNy(we — 0 Vi (wy))

On OGD with n x \%T guarantees
Rr < GDVT.
On OGD with n; o % guarantees

Rr < O(InT)
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Where we are going today

Linear C Convex Stongly Convex Exp-concave
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Exp-concavity
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Exp-Concavity

Three popular losses

» Square loss for regression (y; € R)
u = ((u, ) *%)2
> Logistic loss for classification (y, € {£1})
w > In(14 e ve{we)
» Logarithmic loss for portfolio optimisation
u — —In{u, )

Convex but strongly convex. Q: Doomed to v/ T regret?
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Exp-Concavity

Normal convexity:
f(w) — f(u) < (w —u, Vi(w))
Strong convexity:

f(w) — F(u) < (w - u, Vi(w)) = 5w - ul

Definition
A function f : U — R is called exp-concave to degree o > 0 if
u — e~ () is concave.
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Characterisations of Exp-Concavity |

In one dimension U C R, a-exp-concavity of f is equivalent to

F"(u) = o(f'(u))®
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Characterisations of Exp-Concavity |

In one dimension U C R, a-exp-concavity of f is equivalent to

F"(u) = o(f'(u))®

This generalises:

Fact
A twice differentiable f is a-exp-concave at u € U C RY jff

V2f(u) = aVf(u)VF(u)T. (1)

10/25



Characterisations of Exp-Concavity Il

Corollary

If f is a-exp concave for o > 0 then

f(w) — f(u) < éln(l—i—a(w—u,Vf(w))) Yw,uel. (2)

Proof.

«a-exp concavity implies
e—af(u) _ e—af(w) < (u—w7 —ae —af Vf('w))

Multiply by e®f(*) add 1, take In and divide by o > 0. O
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Towards a quadratic upper bound

By Taylor expansion in x = 0, In(1+ x) &~ x — 3x°.

Flips from upper to lower bound at x = 0.
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Towards a quadratic upper bound

By Taylor expansion in x = 0, In(1+ x) &~ x — 3x°. 1

Flips from upper to lower bound at x = 0. 2

o
»
TN T T

In(1+x)
x-x2/4
I

Proposition

For |x| <1 we have
In(1+x) < x—3x2 (3)

Proof.

Let's look at the gap In(1+ x) — x 4+ x?/4. Its derivative, 7 — 1+ % is
zero when x = 0 or x = 1. The second derivative is ﬁ + % revealing
that x = 0 is a maximum and x = 1 is a minimum. At x = 0 the gap is
zero. So the gap is <0 for all x < 1. O

-
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Factor 2 alert!

Some sources use a
lul <D Yuel,
while other sources use a diameter bound
lu —w| <D Yu,w e lU.
By the triangle inequality, the diameter is at most twice the radius.

Following the previous lecture, these will use D to bound the
of U, while some other sources uses D for diameter. Be warned.
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Quadratic upper bound

Lemma

Let f : U — R be a-exp-concave with bounded gradient |Vf(u)|| < G
and radius ||u|| < D for allw € U. Then for all v < L min {a, 545},

flw) — f(u) < (w—u, VF(w)) — %(w —u, Vf(w)?. (4

tangent quadratic bonus
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Quadratic upper bound

Lemma

Let f : U — R be a-exp-concave with bounded gradient |Vf(u)|| < G
and radius ||u|| < D for all w € U. Then for all v < 2 min {ca, 525},

f(w) = f(u) < (w—u,Vi(w) - 2w—u,Vi(w)?®. ()

tangent quadratic bonus

Proof.
(1) implies exp-concavity for degrees < a.. Applying (2) to 2y < « and
then applying (3) using [27(w — u, Vf(w))| < W <1 give

flw) — flu) < % In (1 + 2v(w — u, Vf(w)))
< 5 (90w —w VFw)) ~ }@y(w - w V()
= (w—u, Vf(w)) — %<w —u, Vf(w))? 4

This will be the starting point of the algorithm design.
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Online Newton Step
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ONS algorithm

Let 4 C RY be a closed convex set containing 0.

The Online Newton Step (ONS) algorithm maintains an xr el
and a positive definite d x d matrix A;_; > 0.

16/25



ONS algorithm

Let 4 C RY be a closed convex set containing 0.

The Online Newton Step (ONS) algorithm maintains an xr el
and a positive definite d x d matrix A;_; > 0.

Definition (Online Newton Step)
ONS with inverse learning rate ¢ > 0 starts from

xry = 0l and Ag = el.

After receiving the gradient V; := Vf;(x;), it updates as
— A; 1 -1 — T
Tepr = [ |z — ijt Vi and A = A1+ V]

where
I'Iﬁf(u) =argmin (x — u)TA(z — u)
xeU

is the projection onto U in the norm ||| 4 .

Note the mixed timing: A; and x;,; are both based on t gradients.
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ONS result

For losses satisfying (4), ONS guarantees

Y o d TG?
Rr < LeD?+ Zin(14+—).
=g +27n<+ed
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ONS result

Theorem
For losses satisfying (4), ONS guarantees

Y o d TG?
Rr < LeD?+ Zin(14+—).
=g +27n<+ed

Corollary

Tuning € = ﬁ (which is optimal for T — o) gives

2MN2 2
Ry < L (14m(1e 70 —o(%nT).
2y d? gl
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ONS result

Theorem

. 1 - 1
I-;or oz—exp—aincave losses, using v = 3 min {«, 555}, so
max {1,2GD}, ONS guarantees

Z:
Rr < maxdlocpbd(14m (14
I 1642
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ONS analysis |

We look at the distance of the iterates to optimality, in H:n||34t =zTAx

2
|Ze41 _w*HAt

Pyth. Th 2

1
Ty — 7At_lvt —z*
Y

Ay

expand sq uarj

* 2 * 1 -
T — T ||ilt—;<zct—m ,Vt>—|—?V1At 1V,

* * 2 * 1 —
= Jlwe — x|, + (xe— 2", Vi) - Slme-at Vo 4 S VIALY

where the last line uses A; = A, 1 + V,V].

Reorganising gives an upper bound on the right-hand-side of (4)
<$t - $*7vt> - % <$t - iL'*,Vt>2

2 |12 %12 1 -~
< 2 (”-’Bt —x ||At,1 —||®te1 — ”A:> 4 Zv‘trAt 1vt'
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ONS analysis Il

As Indet is concave and its derivative is the matrix inverse,

Tangent

VIA'V, = tr((A; — Ar1)A;') < Indet A; — Indet A,

Combination with (4) and telescoping over rounds gives

.
1

3" (@) — filz) < % ¥ %, + 5. (Indet A7 —Indet o).

t=1
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ONS analysis Il

Recall that the is the sum of the eigenvalues, while the
log-determinant is the sum of the logarithms of the eigenvalues.

As tr (V.VT) = [ Ve|* < G2, we have tr (A7) < de + TG2. By
concavity of the logarithm

2
Indet A7 < dIn (e—i—TCCI;).

Finally using ||z*||> < D? and Indet Ag = d In¢, we conclude

v o, d TG?
Rr < 2eD?+ L1+ 2.
T= 3¢ +27"<+ed
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Application (not for exam)
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Concentration from Online Learning
For i.i.d. zero-mean Z; € [—1,+1] and A; predictable (function of Z; -+ Z;_1),

1=E []I[(1+Atzt)

t=1

— F [e— ZZ:1 = '"(1+)\rzt):|

23/25



Concentration from Online Learning
For i.i.d. zero-mean Z; € [—1,+1] and A; predictable (function of Z; -+ Z;_1),

- F [e_ > - |n(1+)\t2t):|

1=FE []I[(1+Atzt)

t=1

So by Markov, for each ¢ € (0,1),

T
§>P (e, S — (142 Ze) > %) =P (Z —In(1+X:Z:) <In 5)
t=1
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Concentration from Online Learning
For i.i.d. zero-mean Z; € [—1,+1] and A; predictable (function of Z; -+ Z;_1),

- F [e_ > - |n(1+)\tzt)}

1=FE []I[(lJrAtzt)

t=1

So by Markov, for each ¢ € (0,1),

T
§>P (e, S — (142 Ze) > %) =P (Z —In(1+X:Z:) <In 5)

t=1
Letting A; be ONS iterates on 1d loss functions A — — In(1 + \Z;) gives

i —In(1+ XeZ:) < m)in ZT: —In(1+XZ)+0(InT)

t=1 t=1
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Concentration from Online Learning
For i.i.d. zero-mean Z; € [—1,+1] and A; predictable (function of Z; -+ Z;_1),

- F [e_ > - |n(1+)\tzt)}

1=FE []I[(1+Atzt)

t=1

So by Markov, for each ¢ € (0,1),

T
§>P (e, S — (142 Ze) > %) =P <Z —In(1+X:Z:) <In 5)

t=1
Letting A; be ONS iterates on 1d loss functions A — — In(1 + \Z;) gives

XT: —In(1+ XeZ:) < m)in ZT: —In(1+XZ)+0(InT)

t=1 t=1

Further,

(=L, z)

T T
m|n Z In(1+Xz;) < m|n Z ( AZ: + %()\th) = =
t=1 t=1 thl Zt
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Concentration from Online Learning
For i.i.d. zero-mean Z; € [—1,+1] and A; predictable (function of Z; -+ Z;_1),

- F [e_ > - |n(1+)\tzt)}

1=FE []I[(1+Atzt)

t=1

So by Markov, for each ¢ € (0,1),

T
§>P (e, S — (142 Ze) > %) =P <Z —In(1+X:Z:) <In 5)

t=1
Letting A; be ONS iterates on 1d loss functions A — — In(1 + \Z;) gives

XT: —In(1+ XeZ:) < m)in ZT: —In(1+XZ)+0(InT)

t=1 t=1

Further,

: : : (L2
min " —In(1+AZ) < mmZ( AZo+ H0Z)) = =t
t=1 t=1 Zt:lzt

All in all,
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Conclusion
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Conclusion

Many practical losses are exp-concave. Assumption convexity
and strong convexity.

Learning algorithm ONS accumulates gradient directions into matrix.
O(dIn T) regret bound.

Unprojected update takes O(d?) time, projection often O(d3).
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