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▶ Two-player zero-sum games

▶ Nesterov Acceleration from game dynamics
Acceleration through Optimistic No-Regret Dynamics.
Wang and Abernethy.
Neural Information Processing Systems (2018).
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Two-Player Zero-Sum Games
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Subject

Two players. One trying to maximise, one trying to minimise.

What happens when they both behave optimally?
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Example two-player objective functions

indefinite quadratic bi-linear
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Games

Objective function
g(x , y)

convex in x , concave in y .

The game value is

V ∗ = inf
x
sup
y

g(x , y) = sup
y

inf
x
g(x , y).

An ϵ-saddle point (x̄ , ȳ) satisfies

V ∗ − ϵ ≤ inf
x
g(x , ȳ) ≤ V ∗ ≤ sup

y
g(x̄ , y) ≤ V ∗ + ϵ.

Question: how to find ϵ-saddle point?
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Motivation for Saddle Point Computation

▶ Analysing actual two-player situations
▶ Economics
▶ Security
▶ . . .

▶ Robust learning (Generative Adversarial Networks, . . . )

▶ Applications in offline optimisation
▶ Acceleration
▶ Constraints (Lagrange multipliers, “primal-dual”, . . . )
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Algorithm

Idea: play regret minimisation algorithms for x and y .

▶ Players play yt and xt .

▶ Players see loss functions y 7→ −g(xt , y) and x 7→ +g(x , yt).

Output pair of average iterates:
(

1
T

∑T
t=1 xt ,

1
T

∑T
t=1 yt

)
.
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Saddle point

Assume the players have regret (bounds) Rx
T and Ry

T , i.e.

T∑
t=1

+g(xt , yt)− inf
x

T∑
t=1

+g(x , yt) ≤ Rx
T

T∑
t=1

−g(xt , yt)− inf
y

T∑
t=1

−g(xt , y) ≤ Ry
T

Claim
x̄T = 1

T

∑T
t=1 xt and ȳT = 1

T

∑T
t=1 yt form an

Rx
T+Ry

T

T -saddle point.
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Analysis

V ∗ = inf
x
sup
y

g(x , y)

≤ sup
y

g(x̄T , y)

≤ sup
y

1

T

T∑
t=1

g(xt , y)

≤ 1

T

T∑
t=1

g(xt , yt) +
Ry
T

T

≤ inf
x

1

T

T∑
t=1

g(x , yt) +
Rx
T + Ry

T

T

≤ inf
x
g(x , ȳT ) +

Rx
T + Ry

T

T

≤ sup
y

inf
x
g(x , y) +

Rx
T + Ry

T

T

= V ∗ +
Rx
T + Ry

T

T
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Nesterov Acceleration
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Offline Optimisation

Starting point: optimisation problem infx f (x).

Regret minimisation algorithm for ℓt = f gives O(T−1/2) suboptimality
for average iterate.

Can we do better?

Here we assume that f is L-smooth, i.e.

∥∇f (u)−∇f (v)∥ ≤ L∥u − v∥

(note: converse to strong convexity).
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Fenchel Game

Idea: form Fenchel game

g(x , y) = ⟨x , y⟩ − f ∗(y)

where f ∗(y) = supx⟨x , y⟩ − f (x) is the Fenchel conjugate.

Crux: saddle point for Fenchel game solves minimisation problem :

inf
x
sup
y

g(x , y) = inf
x
sup
y

⟨x , y⟩ − f ∗(y) = inf
x
f ∗∗(x) = inf

x
f (x).
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Approximate Saddle point

Moreover, an approximate saddle point gives an approximate minimiser.
Recall that

V ∗ = inf
x
sup
y

g(x , y) = inf
x
f (x).

An ϵ saddle point (x̄ , ȳ) for the Fenchel game satisfies

V ∗ − ϵ ≤ inf
x
g(x , ȳ) ≤ V ∗ ≤ sup

y
g(x̄ , y) ≤ V ∗ + ϵ

In particular
f (x̄) = sup

y
g(x̄ , y) ≤ inf

x
f (x) + ϵ.

13 / 23



Extra Assumption: Smoothness

Proposition

f is smooth ⇔ f ∗ is strongly convex.

We see that the Fenchel game

g(x , y) = ⟨x , y⟩ − f ∗(y)

is strongly convex in y and linear in x .

Idea: exploit strong convexity in Fenchel game.
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Elements of the Approach

The approach combines 4 main ideas

1. Weighting α1, α2, . . . on rounds

2. Order the players: inner player reacts to outer player action.

3. Apply Optimistic Follow-The-Leader for y player

4. Apply Online Gradient Descent for x player.
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Weighted rounds

In round t we assign losses scaled by αt

x 7→ αtg(x , yt) and y 7→ −αtg(xt , y).

We analyse the weighted average iterates

x̄T =
1

AT

T∑
t=1

αtxt ȳT =
1

AT

T∑
t=1

αtyt

where At =
∑t

s=1 αs .
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Result for y player

Weighted Optimistic FTL plays

yt = argmin
y

−αtg(xt−1, y) +
t−1∑
s=1

−αsg(xs , y)

Expanding the Fenchel game, this is

yt = ∇f (x̃t) where x̃t =
αtxt−1 +

∑t−1
s=1 αsxs

At

Theorem

Optimistic FTL satisfies

sup
y

T∑
t=1

αt (g(xt , y)− g(xt , yt)) ≤ L
T∑
t=1

α2
t

At
∥xt − xt−1∥2.
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Result for x player
Weighted Online Gradient Descent plays

x0 = 0 and xt = xt−1 − γαt∇xg(x , yt).

Expanding the Fenchel Game, this is

xt = xt−1 − γαtyt

NB: Iterate xt for round t defined in terms of outer player move yt

Theorem

Let ∥x∗∥ ≤ D. Then OGD satisfies

T∑
t=1

αt (g(xt , yt)− g(x∗, yt)) ≤ D2

γ
−

T∑
t=1

1

2γ
∥xt − xt−1∥2.

The reason we get negative regret is that x plays second, with
knowledge of yt .

18 / 23



Combination

In total, we find

f (x̄T )−min
x

f (x) ≤ 1

AT

(
D2

γ
+

T∑
t=1

(
α2
t

At
L− 1

2γ

)
∥xt − xt−1∥2

)
.

We now tune αt , γ to ensure
α2

t

At
L ≤ 1

2γ . We pick

αt = t and γ =
1

4L
,

for then
α2
t

At
L =

t2

t(t + 1)/2
L ≤ 2L =

1

2γ
.

We conclude

f (x̄T )−min
x

f (x) ≤ 8LD2

T 2
.
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Final Algorithm: Nesterov Acceleration

Initialise x0 = 0.
For t = 1, . . . ,T

▶ x̃t =
αtxt−1+

∑t−1
s=1 αsxs

At

▶ yt = ∇f (x̃t)

▶ xt = xt−1 − γαtyt

Output average iterate

1

AT

T∑
t=1

αtxt
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Conclusion of the Lecture

We saw

▶ Method to learn saddle point in two-player games

▶ Reduction of offline smooth convex optimisation to saddle point
problem

We obtained a hierarchy for offline optimisation

▶ Convex: T−1/2.

▶ Strongly convex: T−1.

▶ Convex and smooth: T−2.
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Conclusion of the Course

We saw

▶ Stochastic and game-theoretic frameworks for learning

▶ Ways to characterise the complexity of learning problems

▶ Algorithms and their analysis

Advanced topics that may interest you

▶ Reinforcement Learning

▶ Learning in (strategic) multi-agent problems

▶ Fairness, Accountability, Transparency

▶ Beyond convexity (NNs, tensor dec.)
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Conclusion

This concludes the lectures.

▶ It has been a pleasure

▶ Good luck for the exam

▶ If you have an idea that you want to work on . . .
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