Machine Learning Theory 2025
Lecture 14

Wouter M. Koolen

Download these slides now from elo.mastermath.nl!

» Two-player zero-sum games

» Nesterov Acceleration from game dynamics
Acceleration through Optimistic No-Regret Dynamics.
Wang and Abernethy.

Neural Information Processing Systems (2018).



https://elo.mastermath.nl

Two-Player Zero-Sum Games
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Subject

players. One trying to maximise, one trying to minimise.

What happens when they both behave optimally?
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Example two-player objective functions

indefinite quadratic bi-linear
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Games

Objective function
g(x.y)

convex in x, concave in y.
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Games

Objective function
g(x.y)

convex in x, concave in y.

The game is

V* = infsupg(x,y) = supinfg(x,y).

y
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X
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Games

Objective function
g(x.y)

convex in x, concave in y.
The game is

V* = infsupg(x,y) = supinfg(x,y).

An e-saddle point (k, y) satisfies

V¥ —e<infg(x,y7) < V" <supg(x,y) < V' +e
X y
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Games

Objective function
g(x.y)

convex in x, concave in y.
The game is

V* = infsupg(x,y) = supinfg(x,y).

An e-saddle point (k, y) satisfies

V¥ —e<infg(x,y7) < V" <supg(x,y) < V' +e
X y
Question: how to find e-saddle point?
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Motivation for Saddle Point Computation

» Analysing actual two-player situations
»> Economics

> Security
> ...

> Robust learning (Generative Adversarial Networks, . ..)
» Applications in offline optimisation

» Acceleration
» Constraints (Lagrange multipliers, “primal-dual”, ...)
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Algorithm

Idea: play regret minimisation algorithms for x and y.
» Players play y; and x;.
> Players see loss functions y — —g(x¢, y) and x — +g(x, y¢).

Output pair of average iterates: (% S x2S yt>.
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Saddle point

Assume the players have regret (bounds) R¥ and RY, i.e.

T T
Z+g(xt7yt)_infz+g(x7yt) S R>7<'
t=1 X =1
T T
Z_g(xtvyt)_infz_g(xhy) S R%/'

Y =1

~+
iy

Claim
or=137 dyr=137 yf RrERr _saddle point
Xr =% 1% and yr = + >, ;¥ form an ~—T-saddle point.
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Analysis

infsup g(x, y)
x y

supg(X7,y)
y

.
1
sup - ;g(xt, y)

1 R
y
T ;g(xh}/t) + T
T
1 X+ RY
f= _r T
inf — ;g(&yr) +—
X Ry
inf g(x, 7r) + ~ T+~ T
N T
X Ry
supinf g(x,y) + LT
y x T
v RY + Ry

T
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Nesterov Acceleration

10/23



Offline Optimisation

Starting point: optimisation problem inf, f(x).

Regret minimisation algorithm for ¢, = f gives O( T’1/2) suboptimality
for average iterate.

Can we do better?

Here we assume that f is L-smooth, i.e.
[VE(u) = V()| < Lfju—v|

(note: converse to strong convexity).
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Fenchel Game

Idea: form

gx,y) = (x,y)—f(y)

where £*(y) = sup,(x, y) — f(x) is the Fenchel conjugate.
Crux: saddle point for Fenchel game solves minimisation problem :

infsupg(x,y) = infsup(x,y) —f*(y) = inff**(x) = inff(x).
x oy x Yy x x
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Approximate Saddle point

Moreover, an approximate saddle point gives an approximate minimiser.
Recall that

V* = infsupg(x,y) = inff(x).
X y X
An e saddle point (X, y) for the Fenchel game satisfies

V¥ —e < infg(x,y) < V* < supg(x,y) < V*+e
X y

In particular

IN

f(x) = SLprg(Zy) ir;f f(x)+e
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Extra Assumption: Smoothness

Proposition
f is smooth < f* is strongly convex.

We see that the Fenchel game

g(x,y) = (x,y) —f*(y)

is strongly convex in y and linear in x.

Idea: exploit strong convexity in Fenchel game.
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Elements of the Approach

The approach combines 4 main ideas
1. Weighting a1, a2, ... on rounds
2. Order the players: inner player reacts to outer player action.
3. Apply Optimistic Follow-The-Leader for y player
4. Apply Online Gradient Descent for x player.
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Weighted rounds

In round t we assign losses scaled by a;

X = ag(x,yr)  and y = —arg(xe, y)-

We analyse the weighted average iterates

-
_ 1 _ 1
XT = A7T Zatxt yr = Ar ;at)’t
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Result for y player

Weighted Optimistic FTL plays

t—1
Yyt = argmin _atg(xt—l’ }/) + Z _asg(xsa .y)
y

s=1

Expanding the Fenchel game, this is

QXe—1 + Z =1 asXs

Ye = Vf()?t) where )?t =
At

Theorem

Optimistic FTL satisfies

T 2
o

SupZat (&(xt,y) — g%, y2)) < LZ A_t”Xt - Xt71||2-
=1t

Y ot=1
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Result for x player
Weighted plays

x =0 and X = Xt—1_'}/04tvxg(x’yt)'

Expanding the Fenchel Game, this is

Xt = Xt—1 — VOtYt

NB: lterate x; for round t defined in terms of outer player move y;

Theorem
Let ||x.|]| < D. Then OGD satisfies

T D2 L ,
Zat (8(xt yt) —g(x32)) < — — 2_||Xt = xe—1[|".
ol v v

=il

The reason we get negative regret is that x plays second, with
knowledge of y;.
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Combination

In total, we find

1 (D2 /a2 1 )
- _ . < = - 7t o _ .
f(xT) min f(x) < y ( + 2 <AtL 2’y> Ix: — xe—1]| )

We now tune a4,y to ensure ‘ L < 5-. We pick

1
ap =t and vy = i

for then ) )

o t 1

] = —— [ <2l = —.

A t(t+1)/2 — 2y
We conclude

8LD?

f(x1) — mXin f(x) < T
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Final Algorithm: Nesterov Acceleration

Initialise xp = 0.
Fort=1,..., T
> % = O‘tXt—l“l’%;;ll asxs
> vy = V(%)
> Xy = Xp1 — YOtYy

Output average iterate
1 T

-— QX

ym Z; Xt
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Conclusion of the Lecture

We saw
» Method to learn saddle point in two-player games

» Reduction of offline smooth convex optimisation to saddle point
problem

We obtained a hierarchy for offline optimisation
» Convex: T~ 1/2.
» Strongly convex: T1.

» Convex and smooth: T2,
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Conclusion of the Course

We saw
» Stochastic and game-theoretic frameworks for learning
» Ways to characterise the complexity of learning problems
» Algorithms and their analysis

Advanced topics that may interest you
» Reinforcement Learning
» Learning in (strategic) multi-agent problems
» Fairness, Accountability, Transparency
> Beyond convexity (NNs, tensor dec.)
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Conclusion

This concludes the lectures.
» It has been a pleasure
» Good luck for the exam

» If you have an idea that you want to work on . ..
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