Machine Learning Theory 2025 Lecture 2

Tim van Erven

Download these slides from elo.mastermath.nl!

- Review
- (Agnostic) PAC learning
- Agnostic PAC-learnability for finite classes
- Uniform convergence
- ► No-Free-Lunch Theorem (without proof)

Formal Setup Review

$$S = \begin{pmatrix} Y_1 \\ X_1 \end{pmatrix}, \cdots, \begin{pmatrix} Y_m \\ X_m \end{pmatrix} \sim \mathcal{D}$$

Risk:
$$L_{\mathcal{D}}(h) = \mathbb{E}[\ell(h, X, Y)]$$
 for $(X, Y) \sim \mathcal{D}$

Empirical Risk:
$$L_S(h) = \frac{1}{m} \sum_{i=1}^{m} \ell(h, X_i, Y_i)$$
 for (X_i, Y_i) in S

Classification (0/1-loss counts mistakes):

$$\ell(h, X, Y) = \mathbf{1}\{h(X) \neq Y\} = \begin{cases} 0 & \text{if } h(X) = Y \\ 1 & \text{if } h(X) \neq Y \end{cases}$$

Regression (Squared Error):

$$\ell(h, \boldsymbol{X}, Y) = (Y - h(\boldsymbol{X}))^2$$

No Overfitting for (Multiclass) Classification

Realizability assumption: Exists perfect predictor $h^* \in \mathcal{H}$, i.e. $Pr(h^*(X) = Y) = 1$.

Theorem (First Example of PAC-Learning)

Assume $\mathcal H$ is finite, realizability holds. Choose any $\delta \in (0,1)$, $\epsilon > 0$. Then, for all $m \geq \frac{\ln(|\mathcal H|/\delta)}{\epsilon}$, ERM over $\mathcal H$ guarantees

$$L_{\mathcal{D}}(h_{\mathcal{S}}) \leq \epsilon$$
 with probability $\geq 1 - \delta$.

NB Lower bound on m does not depend on \mathcal{D} or on $h^*!$

PAC learning: probably approximately correct

(Agnostic) PAC Learning

- ► PAC learning (always for binary classification)
- ► Agnostic PAC learning for binary classification
- Agnostic PAC learning in general
- Improper Agnostic PAC learning in general

Definition: PAC Learning (Binary Classification)

A hypothesis class \mathcal{H} is PAC-learnable if there exist

- ▶ a function $m_{\mathcal{H}}: (0,1)^2 \to \mathbb{N}$
- ▶ and learning algorithm¹ that outputs $h_S \in \mathcal{H}$

- \triangleright distributions \mathcal{D} for which realizability holds w.r.t. \mathcal{H}
- ▶ and all $\epsilon, \delta \in (0,1)$

$$L_{\mathcal{D}}(h_{\mathcal{S}}) \leq \epsilon$$
 with probability $\geq 1 - \delta$, whenever $m \geq m_{\mathcal{H}}(\epsilon, \delta)$.

 $^{^1{\}rm The~algorithm's~choice}~h_{\cal S}$ is allowed to depend on ϵ and δ as well.

Definition: PAC Learning (Binary Classification)

A hypothesis class \mathcal{H} is PAC-learnable if there exist

- ▶ a function $m_{\mathcal{H}}: (0,1)^2 \to \mathbb{N}$
- ▶ and learning algorithm¹ that outputs $h_S \in \mathcal{H}$

such that for all

- \triangleright distributions \mathcal{D} for which **realizability** holds w.r.t. \mathcal{H}
- ▶ and all $\epsilon, \delta \in (0,1)$

$$L_{\mathcal{D}}(h_{\mathcal{S}}) \leq \epsilon$$
 with probability $\geq 1 - \delta$, whenever $m \geq m_{\mathcal{H}}(\epsilon, \delta)$.

Sample complexity:

The function $m_{\mathcal{H}}$ such that $m_{\mathcal{H}}(\epsilon, \delta)$ is smallest possible for all ϵ, δ

¹The algorithm's choice h_S is allowed to depend on ϵ and δ as well.

No Overfitting for (Multiclass) Classification

Theorem (First Example of PAC-Learning)

Assume \mathcal{H} is finite, realizability holds. Choose any $\delta \in (0,1)$, $\epsilon > 0$. Then, for all $m \geq \frac{\ln(|\mathcal{H}|/\delta)}{\epsilon}$, ERM over \mathcal{H} guarantees

$$L_{\mathcal{D}}(h_{\mathcal{S}}) \leq \epsilon$$

with probability at least $1 - \delta$.

For binary classification this is equivalent to:

Theorem

Every finite hypothesis class ${\cal H}$ is PAC-learnable with sample complexity

$$m_{\mathcal{H}}(\epsilon, \delta) \leq \left\lceil \frac{\ln(|\mathcal{H}|/\delta)}{\epsilon}
ight
ceil$$

Definition: PAC Learning (Binary Classification)

A hypothesis class \mathcal{H} is PAC-learnable if there exist

- ▶ a function $m_{\mathcal{H}}:(0,1)^2\to\mathbb{N}$
- ▶ and learning algorithm that outputs $h_S \in \mathcal{H}$

- \triangleright distributions \mathcal{D} for which realizability holds w.r.t. \mathcal{H}
- ightharpoonup and all $\epsilon, \delta \in (0,1)$

$$L_{\mathcal{D}}(h_{\mathcal{S}}) \leq \epsilon$$
 with probability $\geq 1 - \delta$, whenever $m \geq m_{\mathcal{H}}(\epsilon, \delta)$.

Definition: Agnostic PAC Learning (Binary Classification)

A hypothesis class \mathcal{H} is **Agnostic PAC-learnable** if there exist

- ▶ a function $m_{\mathcal{H}}: (0,1)^2 \to \mathbb{N}$
- ▶ and learning algorithm that outputs $h_S \in \mathcal{H}$

- \blacktriangleright distributions \mathcal{D} for which realizability holds w.r.t. \mathcal{H}
- ▶ and all $\epsilon, \delta \in (0,1)$

$$L_{\mathcal{D}}(h_S) \leq \inf_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon$$
 with probability $\geq 1 - \delta$, whenever $m \geq m_{\mathcal{H}}(\epsilon, \delta)$.

Definition: Agnostic PAC Learning (Binary Classification) (In General)

A hypothesis class \mathcal{H} is **Agnostic PAC-learnable** if there exist

- ▶ a function $m_{\mathcal{H}}:(0,1)^2\to\mathbb{N}$
- ▶ and learning algorithm that outputs $h_S \in \mathcal{H}$

- \blacktriangleright distributions \mathcal{D} for which realizability holds w.r.t. \mathcal{H}
- ▶ and all $\epsilon, \delta \in (0,1)$

$$L_{\mathcal{D}}(h_S) \leq \inf_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon$$
 with probability $\geq 1 - \delta$, whenever $m \geq m_{\mathcal{H}}(\epsilon, \delta)$.

Definition: Agnostic PAC Learning (In General)

A hypothesis class \mathcal{H} is Agnostic PAC-learnable if there exist

- ▶ a function $m_{\mathcal{H}}:(0,1)^2\to\mathbb{N}$
- ▶ and learning algorithm that outputs $h_S \in \mathcal{H}$

- ightharpoonup distributions \mathcal{D}
- ▶ and all $\epsilon, \delta \in (0,1)$

$$L_{\mathcal{D}}(h_{\mathcal{S}}) \leq \inf_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon$$
 with probability $\geq 1 - \delta$, whenever $m \geq m_{\mathcal{H}}(\epsilon, \delta)$.

Definition: Improper Agnostic PAC Learning (In General)

A hypothesis class $\mathcal H$ is Improperly Agnostic PAC-learnable if there exist

- ▶ a function $m_{\mathcal{H}}:(0,1)^2\to\mathbb{N}$
- ▶ and learning algorithm that outputs $h_S \in \mathcal{H}$

- ▶ distributions *D*
- ▶ and all $\epsilon, \delta \in (0,1)$

$$L_{\mathcal{D}}(h_S) \leq \inf_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon$$
 with probability $\geq 1 - \delta$, whenever $m \geq m_{\mathcal{H}}(\epsilon, \delta)$.

Agnostic PAC-Learnability for Finite Classes via Uniform Convergence

Agnostic PAC-Learnability for Finite Classes

Theorem (Bounded Loss, Finite Class)

Suppose $\ell: \mathcal{H} \times \mathcal{X} \times \mathcal{Y} \to [0,1]$. Then every finite hypothesis class \mathcal{H} is agnostically PAC-learnable with sample complexity

$$m_{\mathcal{H}}(\epsilon, \delta) \leq \left\lceil \frac{2\ln(2|\mathcal{H}|/\delta)}{\epsilon^2}
ight
ceil$$

Agnostic PAC-Learnability for Finite Classes

Theorem (Bounded Loss, Finite Class)

Suppose $\ell: \mathcal{H} \times \mathcal{X} \times \mathcal{Y} \to [0,1]$. Then every finite hypothesis class \mathcal{H} is agnostically PAC-learnable with sample complexity

$$m_{\mathcal{H}}(\epsilon,\delta) \leq \left\lceil rac{2\ln(2|\mathcal{H}|/\delta)}{\epsilon^2}
ight
ceil$$

and learning algorithm ERM.

• Worse dependence on ϵ compared to $m_{\mathcal{H}}(\epsilon, \delta) \leq \left\lceil \frac{\ln(|\mathcal{H}|/\delta)}{\epsilon} \right\rceil$ for PAC-learnability

Agnostic PAC-Learnability for Finite Classes

Theorem (Bounded Loss, Finite Class)

Suppose $\ell: \mathcal{H} \times \mathcal{X} \times \mathcal{Y} \to [0,1]$. Then every finite hypothesis class \mathcal{H} is agnostically PAC-learnable with sample complexity

$$m_{\mathcal{H}}(\epsilon,\delta) \leq \left\lceil rac{2\ln(2|\mathcal{H}|/\delta)}{\epsilon^2}
ight
ceil$$

- ▶ Worse dependence on ϵ compared to $m_{\mathcal{H}}(\epsilon, \delta) \leq \left\lceil \frac{\ln(|\mathcal{H}|/\delta)}{\epsilon} \right\rceil$ for PAC-learnability
- Losses with different range [a, b] can be reduced to [0, 1] range by subtracting a and dividing by (b a).

Technical Tool: Uniform Convergence

A hypothesis class ${\cal H}$ has the uniform convergence property if there exists

▶ a function $m_{\mathcal{H}}^{\mathbf{UC}}: (0,1)^2 \to \mathbb{N}$

- ▶ distributions *D*
- ▶ and all $\epsilon, \delta \in (0,1)$

$$\sup_{h\in\mathcal{H}}|L_{\mathcal{D}}(h)-L_{\mathcal{S}}(h)|\leq\epsilon\qquad\text{with probability}\geq1-\delta,$$
 whenever $m\geq m_{\mathcal{H}}^{\mathrm{UC}}(\epsilon,\delta).$

Uniform Convergence → **Agnostic PAC-Learnability**

Uniform convergence implies agnostic PAC-learnability:

Lemma

If ${\cal H}$ has the uniform convergence property, then it is agnostic PAC-learnable with

$$m_{\mathcal{H}}(\epsilon, \delta) \leq m_{\mathcal{H}}^{UC}(\frac{\epsilon}{2}, \delta)$$

Uniform Convergence \rightarrow **Agnostic PAC-Learnability**

Uniform convergence implies agnostic PAC-learnability:

Lemma

If ${\cal H}$ has the uniform convergence property, then it is agnostic PAC-learnable with

$$m_{\mathcal{H}}(\epsilon,\delta) \leq m_{\mathcal{H}}^{UC}(\frac{\epsilon}{2},\delta)$$

- \triangleright We will prove uniform convergence for finite \mathcal{H} and loss range [0,1]
- ► Then the desired agnostic PAC-learnability follows

Proof (Handwritten)

To show, for h_S ERM hypothesis:

$$L_{\mathcal{D}}(h_{\mathcal{S}}) \leq \inf_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon$$
 with probability $\geq 1 - \delta$, whenever $m \geq m_{\mathcal{H}}^{\mathrm{UC}}\left(rac{\epsilon}{2}, \delta
ight)$.

Assuming uniform convergence, applied for $\epsilon/2$:

$$\sup_{h \in \mathcal{H}} |L_{\mathcal{D}}(h) - L_{\mathcal{S}}(h)| \leq \tfrac{\epsilon}{2} \qquad \text{with probability} \geq 1 - \delta,$$
 whenever $m \geq m_{\mathcal{H}}^{\mathrm{UC}}\left(\tfrac{\epsilon}{2}, \delta\right)$.

Proof: On the event that $|L_{\mathcal{D}}(h) - L_{\mathcal{S}}(h)| \leq \frac{\epsilon}{2}$ for all $h \in \mathcal{H}$, we have for all $h' \in \mathcal{H}$.

$$L_{\mathcal{D}}(h_S) \leq L_S(h_S) + \frac{\epsilon}{2} \leq L_S(h') + \frac{\epsilon}{2} \leq L_D(h') + \epsilon.$$

Then take the infimum over h'.

Uniform Convergence for Finite Classes

Lemma (Bounded Loss, Finite Class)

Suppose $\ell: \mathcal{H} \times \mathcal{X} \times \mathcal{Y} \to [0,1]$. Then every finite hypothesis class \mathcal{H} has the uniform convergence property with

$$m_{\mathcal{H}}^{UC}(\epsilon,\delta) \leq \left\lceil rac{\mathsf{ln}(2|\mathcal{H}|/\delta)}{2\epsilon^2}
ight
ceil.$$

To show:

$$\Prig(\sup_{h\in\mathcal{H}}|L_{\mathcal{D}}(h)-L_{\mathcal{S}}(h)|\leq\epsilonig)\geq 1-\delta$$
 whenever $m\geq rac{\ln(2|\mathcal{H}|/\delta)}{2\epsilon^2}$

Proof (Handwritten)

$$\begin{split} \Pr\big(\sup_{h\in\mathcal{H}}|L_{\mathcal{D}}(h)-L_{\mathcal{S}}(h)| \leq \epsilon\big) &\overset{?}{\geq} 1-\delta \\ \Pr\big(\sup_{h\in\mathcal{H}}|L_{\mathcal{D}}(h)-L_{\mathcal{S}}(h)| > \epsilon\big) &\overset{?}{\leq} \delta \end{split}$$

$$\Pr\big(\text{exists } h\in\mathcal{H}: |L_{\mathcal{D}}(h)-L_{\mathcal{S}}(h)| > \epsilon\big) &\overset{?}{\leq} \delta \end{split}$$

Part I (union bound):

$$\Pr\left(\text{exists }h\in\mathcal{H}:|L_{\mathcal{D}}(h)-L_{\mathcal{S}}(h)|>\epsilon\right)\leq\sum_{h\in\mathcal{H}}\Pr\left(|L_{\mathcal{D}}(h)-L_{\mathcal{S}}(h)|>\epsilon\right)$$

Part II (Hoeffding's inequality): Let $Z_i = \ell(h, X_i, Y_i) \in [0, 1]$.

$$\Pr\left(|L_{\mathcal{D}}(h) - L_{\mathcal{S}}(h)| > \epsilon\right) = \Pr\left(\left|\frac{1}{m}\sum_{i=1}^{m}Z_{i} - \mathbb{E}[Z]\right| > \epsilon\right) \stackrel{Hoeffding}{\leq} 2e^{-2m\epsilon^{2}}$$

Proof Continued (Handwritten)

Part I+II:

$$\begin{aligned} \Pr\left(\text{exists } h \in \mathcal{H} : |L_{\mathcal{D}}(h) - L_{\mathcal{S}}(h)| > \epsilon\right) &\leq \sum_{h \in \mathcal{H}} \Pr\left(|L_{\mathcal{D}}(h) - L_{\mathcal{S}}(h)| > \epsilon\right) \\ &\leq |\mathcal{H}| 2e^{-2m\epsilon^2} \overset{?}{\leq} \delta \end{aligned}$$

Yes, for
$$m \geq \frac{\ln \frac{2|\mathcal{H}|}{\delta}}{2\epsilon^2}$$

Putting Everything Together

Theorem (Bounded Loss, Finite Class)

Suppose $\ell: \mathcal{H} \times \mathcal{X} \times \mathcal{Y} \to [0,1]$. Then every finite hypothesis class \mathcal{H} has the uniform convergence property with

$$m_{\mathcal{H}}^{UC}(\epsilon,\delta) \leq \left\lceil \frac{\ln(2|\mathcal{H}|/\delta)}{2\epsilon^2}
ight
ceil,$$

and is therefore agnostically PAC-learnable with sample complexity

$$m_{\mathcal{H}}(\epsilon, \delta) \leq m_{\mathcal{H}}^{UC}\left(\frac{\epsilon}{2}, \delta\right) \leq \left\lceil \frac{2\ln(2|\mathcal{H}|/\delta)}{\epsilon^2}
ight
ceil$$

No-Free-Lunch Theorem

Is there a learner that works on all learning tasks? No!

Theorem (No-Free-Lunch)

Let A be any learning algorithm for binary classification. If $m \le |\mathcal{X}|/2$, then there exists a distribution \mathcal{D} such that

- 1. There exists a perfect predictor f with $L_{\mathcal{D}}(f) = 0$.
- 2. $\Pr\left(L_{\mathcal{D}}(A(S)) \geq 1/8\right) \geq 1/7 \text{ for } S \sim \mathcal{D}^m.$

Is there a learner that works on all learning tasks? No!

Theorem (No-Free-Lunch)

Let A be any learning algorithm for binary classification. If $m \leq |\mathcal{X}|/2$, then there exists a distribution \mathcal{D} such that

- 1. There exists a perfect predictor f with $L_{\mathcal{D}}(f) = 0$.
- 2. $\Pr\left(L_{\mathcal{D}}(A(S)) \geq 1/8\right) \geq 1/7 \text{ for } S \sim \mathcal{D}^m.$

Interpretation:

- $ightharpoonup \mathcal{H}_{\mathsf{all}} = \mathsf{all} \mathsf{ functions from } \mathcal{X} \mathsf{ to } \{-1, +1\}$
- $ightharpoonup m_{\mathcal{H}_{all}}(\epsilon,\delta) > |\mathcal{X}|/2$ for any $\epsilon < 1/8$, $\delta < 1/7$

Is there a learner that works on all learning tasks? No!

Theorem (No-Free-Lunch)

Let A be any learning algorithm for binary classification. If $m \leq |\mathcal{X}|/2$, then there exists a distribution \mathcal{D} such that

- 1. There exists a perfect predictor f with $L_{\mathcal{D}}(f) = 0$.
- 2. $\Pr\left(L_{\mathcal{D}}(A(S)) \geq 1/8\right) \geq 1/7 \text{ for } S \sim \mathcal{D}^m.$

Interpretation:

- $ightharpoonup \mathcal{H}_{\mathsf{all}} = \mathsf{all}$ functions from \mathcal{X} to $\{-1, +1\}$
- $ightharpoonup m_{\mathcal{H}_{\text{all}}}(\epsilon,\delta) > |\mathcal{X}|/2 \text{ for any } \epsilon < 1/8, \ \delta < 1/7$

Corollary

Suppose $|\mathcal{X}| = \infty$. Then \mathcal{H}_{all} is not PAC-learnable.

Is there a learner that works on all learning tasks? No!

Theorem (No-Free-Lunch)

Let A be any learning algorithm for binary classification. If $m \leq |\mathcal{X}|/2$, then there exists a distribution \mathcal{D} such that

- 1. There exists a perfect predictor f with $L_{\mathcal{D}}(f) = 0$.
- 2. $\Pr\left(L_{\mathcal{D}}(A(S)) \geq 1/8\right) \geq 1/7 \text{ for } S \sim \mathcal{D}^m.$

Proof Intuition:

- ▶ Suppose \mathcal{D} is uniform on 2m points in \mathcal{X} , and Y = f(X) for some unknown function f.
- From S we only know f(X) for m observed points.
- ▶ Without any assumptions about *f* , learner cannot do better than random guessing on *m* unobserved points.