Machine Learning Theory 2025 Lecture 3

Tim van Erven

Download these slides now from elo.mastermath.nl!

Focus on binary classification:

- Review
- Shattering and VC-dimension
- ► The Fundamental Theorem of PAC-Learning
- VC-dimension of Linear Predictors

(Agnostic) PAC Learning

 \mathcal{H} is agnostically PAC-learnable:

Exist learner (selecting
$$h_S \in \mathcal{H}$$
) that achieves, for finite $m_{\mathcal{H}}(\epsilon, \delta)$,
$$L_{\mathcal{D}}(h_S) \leq \inf_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon \qquad \text{with probability} \geq 1 - \delta,$$
 whenever $m \geq m_{\mathcal{H}}(\epsilon, \delta)$, for all $\mathcal{D}, \epsilon, \delta$.

(Agnostic) PAC Learning

 ${\cal H}$ is agnostically PAC-learnable:

Exist learner (selecting
$$h_S \in \mathcal{H}$$
) that achieves, for finite $m_{\mathcal{H}}(\epsilon, \delta)$,

$$L_{\mathcal{D}}(h_S) \leq \inf_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon$$
 with probability $\geq 1 - \delta$, whenever $m \geq m_{\mathcal{H}}(\epsilon, \delta)$,

for all $\mathcal{D}, \epsilon, \delta$.

 \mathcal{H} is **PAC-learnable** (only for binary classification):

Same, except only for $\mathcal D$ for which realizability holds w.r.t. $\mathcal H.$

- ▶ Realizability: exists classifier $h^* \in \mathcal{H}$ that is perfect for \mathcal{D}
- ▶ Implies that $\inf_{h \in \mathcal{H}} L_{\mathcal{D}}(h) = 0$

What We Know So Far About Learnability

Theorem (Finite Hypothesis Classes)

Suppose loss range is [0,1]. Finite hypothesis classes $\mathcal H$ are agnostically PAC-learnable with ERM.

What We Know So Far About Learnability

Theorem (Finite Hypothesis Classes)

Suppose loss range is [0,1]. Finite hypothesis classes \mathcal{H} are agnostically PAC-learnable with ERM.

Does not cover e.g. linear predictors $\mathcal{H} = \{h_{w,b}(X) = \operatorname{sign}(b + \langle w, X \rangle) \mid w \in \mathbb{R}^d, b \in \mathbb{R}\}$

What We Know So Far About Learnability

Theorem (Finite Hypothesis Classes)

Suppose loss range is [0,1]. Finite hypothesis classes $\mathcal H$ are agnostically PAC-learnable with ERM.

Does not cover e.g. linear predictors $\mathcal{H} = \{h_{w,b}(X) = \operatorname{sign}(b + \langle w, X \rangle) \mid w \in \mathbb{R}^d, b \in \mathbb{R}\}$

Let $\mathcal{H}_{\mathsf{all}} = \mathsf{all}$ (measurable) functions from \mathcal{X} to $\{-1, +1\}$

Theorem (No-Free-Lunch)

Consider binary classification. For any $\epsilon < 1/8$, $\delta < 1/7$, sample size $m \le |\mathcal{X}|/2$ is not enough to PAC-learn $\mathcal{H}_{\mathit{all}}$:

$$m_{\mathcal{H}_{\mathsf{all}}}(\epsilon,\delta) > rac{|\mathcal{X}|}{2}.$$

Rest of today's lecture: focus on binary classification!

Shattering and VC-Dimension

ightharpoonup VC-dimension of ${\mathcal H}$ characterizes if ${\mathcal H}$ is (agnostic) PAC-learnable!

Consequences of No-Free-Lunch

No-Free-Lunch Theorem has consequences even if $\mathcal{H} \neq \mathcal{H}_{all}$:

Definition (Restriction of \mathcal{H} to \mathcal{C})

For finite
$$C = \{x_1, \dots, x_k\} \subset \mathcal{X}$$
, let $\mathcal{H}_C = \{(h(x_1), \dots, h(x_k)) \mid h \in \mathcal{H}\}$.

▶ Obtain $\mathcal{H}_{\mathcal{C}}$ by evaluating hypotheses in \mathcal{H} only on inputs in \mathcal{C} .

Consequences of No-Free-Lunch

No-Free-Lunch Theorem has consequences even if $\mathcal{H} \neq \mathcal{H}_{all}$:

Definition (Restriction of \mathcal{H} to \mathcal{C})

For finite
$$C = \{x_1, \dots, x_k\} \subset \mathcal{X}$$
, let $\mathcal{H}_C = \{(h(x_1), \dots, h(x_k)) \mid h \in \mathcal{H}\}$.

lacktriangle Obtain $\mathcal{H}_{\mathcal{C}}$ by evaluating hypotheses in \mathcal{H} only on inputs in \mathcal{C} .

Corollary (Difficult Subsets of \mathcal{H})

If exists finite $\mathcal{C} \subset \mathcal{X}$ s.t. $\mathcal{H}_{\mathcal{C}}$ contains all functions from \mathcal{C} to $\{-1,+1\}$, then sample size $m \leq |\mathcal{C}|/2$ is not enough to PAC-learn \mathcal{H} .

Proof: Restrict attention to \mathcal{D} supported on \mathcal{C} and apply no-free-lunch.

Shattering

 $\mathcal{H}_{\mathcal{C}}$: evaluate hypotheses in \mathcal{H} only on inputs in \mathcal{C}

Definition (Shattering)

 ${\mathcal H}$ shatters a finite set ${\mathcal C}\subset {\mathcal X}$ if ${\mathcal H}_{\mathcal C}=$ all functions from ${\mathcal C}$ to $\{-1,+1\}$, i.e. $|{\mathcal H}_{\mathcal C}|=2^{|{\mathcal C}|}$.

Shattering

 $\mathcal{H}_{\mathcal{C}}$: evaluate hypotheses in \mathcal{H} only on inputs in \mathcal{C}

Definition (Shattering)

 ${\mathcal H}$ shatters a finite set ${\mathcal C}\subset {\mathcal X}$ if ${\mathcal H}_{\mathcal C}=$ all functions from ${\mathcal C}$ to $\{-1,+1\}$, i.e. $|{\mathcal H}_{\mathcal C}|=2^{|{\mathcal C}|}$.

Example (Axis-aligned Rectangles)

$$\mathcal{H}^2_{\mathsf{rec}} = \{\mathit{h}_{(a_1,b_1,a_2,b_2)} \mid \mathit{a}_1 \leq \mathit{b}_1, \mathit{a}_2 \leq \mathit{b}_2\}$$
, where

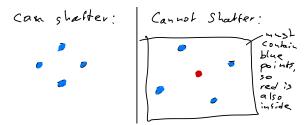
$$h_{(a_1,b_1,a_2,b_2)}(x_1,x_2) = \begin{cases} +1 & \text{if } a_1 \le x_1 \le b_1 \text{ and } a_2 \le x_2 \le b_2 \\ -1 & \text{otherwise} \end{cases}$$

Exists a C of size 4 that is shattered by \mathcal{H}^2_{rec} , but not of size 5.

Proof (Handwritten)

Need to show:

- 1. Exists \mathcal{C} of size 4 that is shattered
- 2. No \mathcal{C} of size 5 is shattered



Proof not size 5: if left-most, right-most, top-most and bottom-most point +1, then remaining point also +1

VC-Dimension

Definition (Shattering)

 \mathcal{H} shatters a finite set $\mathcal{C} \subset \mathcal{X}$ if $\mathcal{H}_{\mathcal{C}} =$ all functions.

Definition (Vapnik-Chervonenkis (VC) Dimension)

- ▶ $VCdim(\mathcal{H}) = maximum size$ of finite set $\mathcal{C} \subset \mathcal{X}$ shattered by \mathcal{H}
- ▶ $VCdim(\mathcal{H}) = \infty$ if there is no maximum

VC-Dimension

Definition (Shattering)

 \mathcal{H} shatters a finite set $\mathcal{C} \subset \mathcal{X}$ if $\mathcal{H}_{\mathcal{C}} =$ all functions.

Definition (Vapnik-Chervonenkis (VC) Dimension)

- ▶ $VCdim(\mathcal{H}) = maximum size$ of finite set $\mathcal{C} \subset \mathcal{X}$ shattered by \mathcal{H}
- ▶ $VCdim(\mathcal{H}) = \infty$ if there is no maximum

Corollary (Difficult Subsets of \mathcal{H})

If exists finite $\mathcal{C} \subset \mathcal{X}$ such that \mathcal{H} shatters \mathcal{C} , then sample size $m \leq |\mathcal{C}|/2$ is not enough to PAC-learn \mathcal{H} .

VC-Dimension

Definition (Shattering)

 \mathcal{H} shatters a finite set $\mathcal{C} \subset \mathcal{X}$ if $\mathcal{H}_{\mathcal{C}} = \text{all functions}$.

Definition (Vapnik-Chervonenkis (VC) Dimension)

- ▶ $VCdim(\mathcal{H}) = maximum size$ of finite set $\mathcal{C} \subset \mathcal{X}$ shattered by \mathcal{H}
- ▶ $VCdim(\mathcal{H}) = \infty$ if there is no maximum

Corollary (Difficult Subsets of \mathcal{H})

If exists finite $\mathcal{C} \subset \mathcal{X}$ such that \mathcal{H} shatters \mathcal{C} , then sample size $m \leq |\mathcal{C}|/2$ is not enough to PAC-learn \mathcal{H} .

- ▶ Sample size $m \leq VCdim(\mathcal{H})/2$ is not enough to PAC-learn \mathcal{H} .
- ▶ If $VCdim(\mathcal{H}) = \infty$, then \mathcal{H} is not PAC-learnable.

Definition (Vapnik-Chervonenkis (VC) Dimension)

- ▶ $VCdim(\mathcal{H}) = maximum size$ of finite set $\mathcal{C} \subset \mathcal{X}$ shattered by \mathcal{H}
- ▶ $VCdim(\mathcal{H}) = \infty$ if there is no maximum

Example (Axis-Aligned Rectangles) $VCdim(\mathcal{H}^2_{rect}) = 4$

Definition (Vapnik-Chervonenkis (VC) Dimension)

- ▶ $VCdim(\mathcal{H}) = maximum size$ of finite set $\mathcal{C} \subset \mathcal{X}$ shattered by \mathcal{H}
- ▶ $VCdim(\mathcal{H}) = \infty$ if there is no maximum

Example (Axis-Aligned Rectangles)

 $VCdim(\mathcal{H}^2_{rect}) = 4$

Example (Finite Hypothesis Classes)

 $VCdim(\mathcal{H}) \leq \ldots$?

Definition (Vapnik-Chervonenkis (VC) Dimension)

- ▶ $VCdim(\mathcal{H}) = maximum size$ of finite set $\mathcal{C} \subset \mathcal{X}$ shattered by \mathcal{H}
- ▶ $VCdim(\mathcal{H}) = \infty$ if there is no maximum

```
Example (Axis-Aligned Rectangles)

VCdim(\mathcal{H}^2_{rect}) = 4
```

Example (Finite Hypothesis Classes) $VCdim(\mathcal{H}) \leq log_2(|\mathcal{H}|)$

Definition (Vapnik-Chervonenkis (VC) Dimension)

- ▶ $VCdim(\mathcal{H}) = maximum size$ of finite set $\mathcal{C} \subset \mathcal{X}$ shattered by \mathcal{H}
- ▶ $VCdim(\mathcal{H}) = \infty$ if there is no maximum

$$\mathsf{VCdim}(\mathcal{H}^2_{\mathsf{rect}}) = 4$$

$$\mathsf{VCdim}(\mathcal{H}) \leq \log_2(|\mathcal{H}|)$$

Example (Step Functions)

$$\mathcal{H} = \{h_a \mid a \in \mathbb{R}\} \text{ where } h_a(x) = egin{cases} -1 & \text{if } x \leq a \\ +1 & \text{if } x > a \end{cases}$$

$$VCdim(\mathcal{H}) = \dots$$
?

Definition (Vapnik-Chervonenkis (VC) Dimension)

- ▶ $VCdim(\mathcal{H}) = maximum size$ of finite set $\mathcal{C} \subset \mathcal{X}$ shattered by \mathcal{H}
- ▶ $VCdim(\mathcal{H}) = \infty$ if there is no maximum

$$\mathsf{VCdim}(\mathcal{H}^2_{\mathsf{rect}}) = 4$$

$$\mathsf{VCdim}(\mathcal{H}) \leq \log_2(|\mathcal{H}|)$$

Example (Step Functions)

$$\mathcal{H} = \{h_a \mid a \in \mathbb{R}\} \text{ where } h_a(x) = egin{cases} -1 & \text{if } x \leq a \\ +1 & \text{if } x > a \end{cases}$$

$$\mathsf{VCdim}(\mathcal{H}) = 1$$

The Fundamental Theorem of PAC-Learning

$\mathsf{Theorem}$

For binary classification, the following are equivalent:

- 1. \mathcal{H} has the uniform convergence property.
- 2. Any **ERM** rule is a successful agnostic PAC-learner for H.
- 3. \mathcal{H} is agnostic PAC-learnable.
- 4. \mathcal{H} is PAC-learnable.
- 5. Any ERM rule is a successful PAC-learner for H.
- 6. \mathcal{H} has finite VC-dimension.

The Fundamental Theorem of PAC-Learning

$\mathsf{Theorem}$

For binary classification, the following are equivalent:

- 1. \mathcal{H} has the uniform convergence property.
- 2. Any **ERM** rule is a successful agnostic PAC-learner for H.
- 3. \mathcal{H} is agnostic PAC-learnable.
- 4. \mathcal{H} is PAC-learnable.
- 5. Any ERM rule is a successful PAC-learner for H.
- 6. \mathcal{H} has finite VC-dimension.

Main Points:

- ▶ PAC-learnability and agnostic PAC-learnability are equivalent
- ▶ VC-dimension characterizes both!

The Fundamental Theorem of PAC-Learning

$\mathsf{Theorem}$

For binary classification, the following are equivalent:

- 1. \mathcal{H} has the uniform convergence property.
- 2. Any **ERM** rule is a successful agnostic PAC-learner for H.
- 3. \mathcal{H} is agnostic PAC-learnable.
- 4. \mathcal{H} is PAC-learnable.
- 5. Any ERM rule is a successful PAC-learner for H.
- 6. \mathcal{H} has finite VC-dimension.

Main Points:

- PAC-learnability and agnostic PAC-learnability are equivalent
- VC-dimension characterizes both!

Other Observations:

- Finite VC-dimension is equivalent to uniform convergence
- ERM always works for (agnostic) PAC-learning

VC-Dimension of Linear Predictors (Halfspaces)

$$\mathcal{H}_{\mathsf{lin}}^d = \{h_{m{w},b} \mid m{w} \in \mathbb{R}^d, b \in \mathbb{R}\},$$
 where $h_{m{w},b}(m{X}) = egin{cases} +1 & \mathsf{if} \ b + \langle m{w}, m{X}
angle \geq 0 \ -1 & \mathsf{otherwise} \end{cases}$ for $m{X} \in \mathbb{R}^d$

Theorem

$$VCdim(\mathcal{H}^d_{lin}) = d + 1$$

► For many (but not all!) hypothesis classes VC-dimension equals number of parameters

VC-dim for x told hub(x) = { +1 if b + (w,x) 7,0 H= 3 hw.b: WER, DER3 To show: exists CCRd of size (()=d+1

I VC-di~ > d+1

be arbitrary.

that is shalleved by H. Take c= 20, e1, ..., e13.

Let 90, 91, ..., 91 € 3-1, +13

Now take $b = \frac{y_0}{2}$, $0 = (y_1, ..., y_d)$ Then $b + (w_1, o) = \frac{y_0}{2}$ { correct $b + (w_1, e_1) = \frac{y_0}{2} + y_1$ } sign.

II. UC-dim < d+2:

To show: If c < Rd of size | C|=d+2,
they c is not shadtered by H.

exist labels y_1, \dots, y_{d+2} that

cannot be realized by any

hub

Let C= Sx,,..., Xd+z } be be arbitrary. C_1 = { x; e < : y; = -1} C+1 = 3x1 e C = 4; =+1) C; classified correctly (linearity) all points in convex hall assiqued class j contradiction for p concex hulls of C, and C1.

Can me always find C, and C+1 for which convex halls intersect? yes P

Radon's Theorem: Any C= 3x1, ..., xd+23 < Rd

can be partitioned into two (disjoint)

aubsets C_, and C+, whose convex halls

indersect. not all zero

Proof: Let az,..., ad+2 (be a solution to

$$\sum_{i=1}^{d+2} a_i x_i = 0 , \sum_{i=1}^{d+2} a_i = 0$$

$$= \sum_{i=1}^{d+2} a_i x_i = 0$$

Let C_1= {x; : a; <0 } C+1= 3 xi : a; >0 }

Then both source halls contain where $P = \sum_{x_i \in C_{+1}} \frac{\alpha_i}{A} x_i = \sum_{x_j \in C_{-1}} \frac{-\alpha_j}{A} x_j \qquad A = \sum_{x_i \in C_{+1}} \alpha_i = \sum_{x_j \in C_{-1}} \frac{\alpha_j}{A} x_j \qquad A = \sum_{x_i \in C_{+1}} \alpha_i = \sum_{x_j \in C_{-1}} \frac{\alpha_j}{A} x_j \qquad A = \sum_{x_i \in C_{+1}} \alpha_i = \sum_{x_j \in C_{-1}} \frac{\alpha_j}{A} x_j \qquad A = \sum_{x_i \in C_{+1}} \alpha_i = \sum_{x_i \in C_{+1}} \frac{\alpha_i}{A} x_i = \sum_{x_i \in C_{+$