
Machine Learning Theory 2025
Lecture 7

Tim van Erven

▶ Complexity of classification vs regression

▶ Neural networks

▶ Bias-variance trade-off and double descent

▶ Towards an explanation

Binary Classification

▶ Sample complexity of agnostic PAC-learnability determined by
VC-dimension:

mH(ϵ, δ) ≈ VCdim(H) + ln(1/δ)

ϵ2

▶ For some (not all!) hypothesis classes, VCdim(H) = nr. of
parameters:
▶ Linear predictors: H = {hw(X) = sign(⟨w,X⟩) : w ∈ Rd}
▶ Axis-aligned rectangles
▶ ...

2 / 1

Regression

HB
1 = {hw(X) = ⟨w,X⟩ : w ∈ Rd , ∥w∥1 ≤ B}.

Theorem (Lasso Estimator)

Consider linear regression with ℓ(h,X,Y) = 1
2 (Y − ⟨w,X⟩)2 for

X ∈ [−1,+1]d , Y ∈ [−1,+1].
Then HB

1 is agnostically PAC-learnable by ERM with sample complexity

m(ϵ, δ) ≤ cB
ln(2d) + ln(2/δ)

ϵ2

for some constant cB > 0 that depends only on B.

General pattern for regression tasks:

▶ Complexity of hypothesis class depends on bound B on norm
∥w∥ of parameters

▶ (and sometimes weakly on number of parameters d)

3 / 1

Difference between
Linear Regression and Linear Classification

Linear Classification:
▶ Not Lipschitz in w: tiny change in w can flip prediction hw(X)

▶ Measure of complexity: number of parameters d

Linear Regression:

▶ Lipschitz in w: tiny change in w implies tiny change in hw(X)

▶ Main measure of complexity: norm constraint B

4 / 1

Deep Learning / Neural Networks

5 / 1

(Deep) Neural Networks

Cat?

Dog?

Machine translation

Speech recognition Self-driving cars

Class of non-convex functions parametrized by matrices
w = (A1, . . . ,Am):

Fully connected network: H = {hw(X) = AmσAm−1 · · ·σA1X : w ∈},

with activation function σ(z) applied component-wise to vectors. E.g.

▶ Rectified linear unit (ReLU): σ(z) = max{0, z}
▶ Sigmoid: σ(z) = 1/(1 + e−z)

6 / 1

(Deep) Neural Networks

Cat?

Dog?

A1 A2

Machine translation

Speech recognition Self-driving cars

Class of non-convex functions parametrized by matrices
w = (A1, . . . ,Am):

Fully connected network: H = {hw(X) = AmσAm−1 · · ·σA1X : w ∈ W},

with activation function σ(z) applied component-wise to vectors. E.g.

▶ Rectified linear unit (ReLU): σ(z) = max{0, z}
▶ Sigmoid: σ(z) = 1/(1 + e−z)

6 / 1

(Deep) Neural Networks

Cat?

Dog?

A1 A2

Machine translation

Speech recognition Self-driving cars

Class of non-convex functions parametrized by matrices
w = (A1, . . . ,Am) ∈ Rd :

Fully connected network: H = {hw(X) = AmσAm−1 · · ·σA1X : w ∈ Rd},

with activation function σ(z) applied component-wise to vectors. E.g.

▶ Rectified linear unit (ReLU): σ(z) = max{0, z}
▶ Sigmoid: σ(z) = 1/(1 + e−z)

6 / 1

(Deep) Neural Networks

Cat?

Dog?

A1 A2

VC-dimension dependence
on nr. of parameters d :

ReLU: Θ̃(d) [Bartlett et al., 2017]

Sigmoid: Θ(d2) [Anthony and Bartlett, 1999]

Conclusion: need sample size
m ≫ nr. of parameters to learn

Class of non-convex functions parametrized by matrices
w = (A1, . . . ,Am) ∈ Rd :

Fully connected network: H = {hw(X) = AmσAm−1 · · ·σA1X : w ∈ Rd},

with activation function σ(z) applied component-wise to vectors. E.g.

▶ Rectified linear unit (ReLU): σ(z) = max{0, z}
▶ Sigmoid: σ(z) = 1/(1 + e−z)

6 / 1

(Deep) Neural Networks

Cat?

Dog?

A1 A2

VC-dimension dependence
on nr. of parameters d :

ReLU: Θ̃(d) [Bartlett et al., 2017]

Sigmoid: Θ(d2) [Anthony and Bartlett, 1999]

Conclusion: need sample size
m ≫ nr. of parameters to learn

Class of non-convex functions parametrized by matrices
w = (A1, . . . ,Am) ∈ Rd :

Fully connected network: H = {hw(X) = AmσAm−1 · · ·σA1X : w ∈ Rd},

with activation function σ(z) applied component-wise to vectors. E.g.

▶ Rectified linear unit (ReLU): σ(z) = max{0, z}
▶ Sigmoid: σ(z) = 1/(1 + e−z)

A First Glimpse of a Mystery:

▶ In theory: need sample size m ≫ nr. parameters d

▶ In practise: sample size m ≪ nr. parameters d

6 / 1

Bias-Variance Trade-off and
the Double Descent Phenomenon

7 / 1

Classical Bias-Variance Trade-off

risk
optimal Lochs)
trade- off

empirical
risk ↳ Chs)

size of H
O' sample

Smaller approximation error

Larger estimation error

▶ Approximation error (bias):
infh∈H LD(h)− infh LD(h)

▶ Estimation error (variance):
LD(hS)− infh∈H LD(h)

h B
-

- avg.gr
in ↳ Ch)

•

approx
- er
+
Or

"11:44am
. " Is H
est . error

8 / 1

Double Descent Phenomenon

Fig. 3. Double-descent risk curve for a fully connected neural network
on MNIST. Shown are training and test risks of a network with a single
layer of H hidden units, learned on a subset of MNIST (n = 4 · 103, d = 784,
K = 10 classes). The number of parameters is (d + 1) · H + (H + 1) · K. The
interpolation threshold (black dashed line) is observed at n · K.

The computational complexity of ERM with neural networks
makes the double-descent risk curve difficult to observe. Indeed,
in the classical underparameterized regime (N ⌧n), the non-
convexity of the ERM optimization problem causes the behavior
of local search-based heuristics, like SGD, to be highly sensi-
tive to their initialization. Thus, if only suboptimal solutions are
found for the ERM optimization problems, increasing the size
of a neural network architecture may not always lead to a corre-
sponding decrease in the training risk. This suboptimal behavior
can lead to high variability in both the training and test risks that
masks the double-descent curve.

It is common to use neural networks with an extremely large
number of parameters (22). But to achieve interpolation for a
single output (regression or 2-class classification) one expects to
need at least as many parameters as there are data points. More-
over, if the prediction problem has more than one output (as in
multiclass classification), then the number of parameters needed
should be multiplied by the number of outputs. This is indeed
the case empirically for neural networks shown in Fig. 3. Thus,
for instance, datasets as large as ImageNet (23), which has ⇠106

examples and ⇠103 classes, may require networks with ⇠109

parameters to achieve interpolation; this is larger than many
neural network models for ImageNet (22). In such cases, the clas-
sical regime of the U-shaped risk curve is more appropriate to
understand generalization. For smaller datasets, these large neu-
ral networks would be firmly in the overparameterized regime,
and simply training to obtain zero training risk often results in
good test performance (5).

Additional results with neural networks are given in SI
Appendix.

Decision Trees and Ensemble Methods
Does the double-descent risk curve manifest with other pre-
diction methods besides neural networks? We give empirical
evidence that the families of functions explored by boosting with
decision trees and random forests also show similar generaliza-
tion behavior to that of neural nets, both before and after the
interpolation threshold.

AdaBoost and random forests have recently been investigated
in the interpolation regime by ref. 24 for classification. In par-

ticular, they give empirical evidence that, when AdaBoost and
random forests are used with maximally large (interpolating)
decision trees, the flexibility of the fitting methods yields interpo-
lating predictors that are more robust to noise in the training data
than the predictors produced by rigid, noninterpolating meth-
ods (e.g., AdaBoost or random forests with shallow trees). This
in turn is said to yield better generalization. The averaging of
the (near) interpolating trees ensures that the resulting function
is substantially smoother than any individual tree, which aligns
with an inductive bias that is compatible with many real-world
problems.

We can understand these flexible fitting methods in the con-
text of the double-descent risk curve. Observe that the size of a
decision tree (controlled by the number of leaves) is a natural
way to parameterize the function class capacity: Trees with only
2 leaves correspond to 2-piecewise constant functions with an
axis-aligned boundary, while trees with n leaves can interpolate n
training examples. It is a classical observation that the U-shaped
bias–variance trade-off curve manifests in many problems when
the class capacity is considered this way (2). (The interpolation
threshold may be reached with fewer than n leaves in many cases,
but n is clearly an upper bound.) To further enlarge the function
class, we consider ensembles (averages) of several interpolating
trees.

⇤
So, beyond the interpolation threshold, we use the num-

ber of such trees to index the class capacity. When we view the
risk curve as a function of class capacity defined in this hybrid
fashion, we see the double-descent curve appear just as with
neural networks (Fig. 4 and SI Appendix). We observe a sim-
ilar phenomenon using L2 boosting (26, 27), another popular
ensemble method; the results are reported in SI Appendix.

Concluding Thoughts
The double-descent risk curve introduced in this paper recon-
ciles the U-shaped curve predicted by the bias–variance trade-off
and the observed behavior of rich models used in modern
machine-learning practice. The posited mechanism that under-
lies its emergence is based on common inductive biases and
hence can explain its appearance (and, we argue, ubiquity) in
machine-learning applications.

We conclude with some final remarks.

Historical Absence. The double-descent behavior may have been
historically overlooked on account of several cultural and prac-
tical barriers. Observing the double-descent curve requires a
parametric family of spaces with functions of arbitrary complex-
ity. The linear settings studied extensively in classical statistics
usually assume a small, fixed set of features and hence fixed
fitting capacity. Richer families of function classes are typically
used in the context of nonparametric statistics, where smoothing
and regularization are almost always used (28). Regularization,
of all forms, can both prevent interpolation and change the effec-
tive capacity of the function class, thus attenuating or masking
the interpolation peak.

The RFF model is a popular and flexible parametric family.
However, these models were originally proposed as a computa-
tionally favorable alternative to kernel machines. This compu-
tational advantage over traditional kernel methods holds only
for N ⌧n , and hence models at or beyond the interpolation
threshold are typically not considered.

The situation with general multilayer neural networks is
slightly different and more involved. Due to the nonconvex-
ity of the ERM optimization problem, solutions in the classical
underparameterized regime are highly sensitive to initialization.

*These trees are trained in the way proposed in random forest except without bootstrap
resampling. This is similar to the PERT method of ref. 25.

15852 | www.pnas.org/cgi/doi/10.1073/pnas.1903070116 Belkin et al.

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

M
ar

ch
 1

9,
 2

02
1

[Belkin, Hsu, Ma, Mandal, 2019]

▶ Varying the number of hidden units in a two-layer neural network
▶ Classification: MNIST hand-written digits data with 10 classes

9 / 1

Double Descent Phenomenon

Fig. 3. Double-descent risk curve for a fully connected neural network
on MNIST. Shown are training and test risks of a network with a single
layer of H hidden units, learned on a subset of MNIST (n = 4 · 103, d = 784,
K = 10 classes). The number of parameters is (d + 1) · H + (H + 1) · K. The
interpolation threshold (black dashed line) is observed at n · K.

The computational complexity of ERM with neural networks
makes the double-descent risk curve difficult to observe. Indeed,
in the classical underparameterized regime (N ⌧n), the non-
convexity of the ERM optimization problem causes the behavior
of local search-based heuristics, like SGD, to be highly sensi-
tive to their initialization. Thus, if only suboptimal solutions are
found for the ERM optimization problems, increasing the size
of a neural network architecture may not always lead to a corre-
sponding decrease in the training risk. This suboptimal behavior
can lead to high variability in both the training and test risks that
masks the double-descent curve.

It is common to use neural networks with an extremely large
number of parameters (22). But to achieve interpolation for a
single output (regression or 2-class classification) one expects to
need at least as many parameters as there are data points. More-
over, if the prediction problem has more than one output (as in
multiclass classification), then the number of parameters needed
should be multiplied by the number of outputs. This is indeed
the case empirically for neural networks shown in Fig. 3. Thus,
for instance, datasets as large as ImageNet (23), which has ⇠106

examples and ⇠103 classes, may require networks with ⇠109

parameters to achieve interpolation; this is larger than many
neural network models for ImageNet (22). In such cases, the clas-
sical regime of the U-shaped risk curve is more appropriate to
understand generalization. For smaller datasets, these large neu-
ral networks would be firmly in the overparameterized regime,
and simply training to obtain zero training risk often results in
good test performance (5).

Additional results with neural networks are given in SI
Appendix.

Decision Trees and Ensemble Methods
Does the double-descent risk curve manifest with other pre-
diction methods besides neural networks? We give empirical
evidence that the families of functions explored by boosting with
decision trees and random forests also show similar generaliza-
tion behavior to that of neural nets, both before and after the
interpolation threshold.

AdaBoost and random forests have recently been investigated
in the interpolation regime by ref. 24 for classification. In par-

ticular, they give empirical evidence that, when AdaBoost and
random forests are used with maximally large (interpolating)
decision trees, the flexibility of the fitting methods yields interpo-
lating predictors that are more robust to noise in the training data
than the predictors produced by rigid, noninterpolating meth-
ods (e.g., AdaBoost or random forests with shallow trees). This
in turn is said to yield better generalization. The averaging of
the (near) interpolating trees ensures that the resulting function
is substantially smoother than any individual tree, which aligns
with an inductive bias that is compatible with many real-world
problems.

We can understand these flexible fitting methods in the con-
text of the double-descent risk curve. Observe that the size of a
decision tree (controlled by the number of leaves) is a natural
way to parameterize the function class capacity: Trees with only
2 leaves correspond to 2-piecewise constant functions with an
axis-aligned boundary, while trees with n leaves can interpolate n
training examples. It is a classical observation that the U-shaped
bias–variance trade-off curve manifests in many problems when
the class capacity is considered this way (2). (The interpolation
threshold may be reached with fewer than n leaves in many cases,
but n is clearly an upper bound.) To further enlarge the function
class, we consider ensembles (averages) of several interpolating
trees.

⇤
So, beyond the interpolation threshold, we use the num-

ber of such trees to index the class capacity. When we view the
risk curve as a function of class capacity defined in this hybrid
fashion, we see the double-descent curve appear just as with
neural networks (Fig. 4 and SI Appendix). We observe a sim-
ilar phenomenon using L2 boosting (26, 27), another popular
ensemble method; the results are reported in SI Appendix.

Concluding Thoughts
The double-descent risk curve introduced in this paper recon-
ciles the U-shaped curve predicted by the bias–variance trade-off
and the observed behavior of rich models used in modern
machine-learning practice. The posited mechanism that under-
lies its emergence is based on common inductive biases and
hence can explain its appearance (and, we argue, ubiquity) in
machine-learning applications.

We conclude with some final remarks.

Historical Absence. The double-descent behavior may have been
historically overlooked on account of several cultural and prac-
tical barriers. Observing the double-descent curve requires a
parametric family of spaces with functions of arbitrary complex-
ity. The linear settings studied extensively in classical statistics
usually assume a small, fixed set of features and hence fixed
fitting capacity. Richer families of function classes are typically
used in the context of nonparametric statistics, where smoothing
and regularization are almost always used (28). Regularization,
of all forms, can both prevent interpolation and change the effec-
tive capacity of the function class, thus attenuating or masking
the interpolation peak.

The RFF model is a popular and flexible parametric family.
However, these models were originally proposed as a computa-
tionally favorable alternative to kernel machines. This compu-
tational advantage over traditional kernel methods holds only
for N ⌧n , and hence models at or beyond the interpolation
threshold are typically not considered.

The situation with general multilayer neural networks is
slightly different and more involved. Due to the nonconvex-
ity of the ERM optimization problem, solutions in the classical
underparameterized regime are highly sensitive to initialization.

*These trees are trained in the way proposed in random forest except without bootstrap
resampling. This is similar to the PERT method of ref. 25.

15852 | www.pnas.org/cgi/doi/10.1073/pnas.1903070116 Belkin et al.

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

M
ar

ch
 1

9,
 2

02
1

[Belkin, Hsu, Ma, Mandal, 2019]

▶ Varying the number of hidden units in a two-layer neural network
▶ Classification: MNIST hand-written digits data with 10 classes

The Mystery in Full View:

How can the risk keep improving as
we increase the number of parameters?

Shouldn’t the estimation error go through the roof?

9 / 1

Towards an Explanation

1. Large margins turn classification into regression

2. Explaining double descent

10 / 1

Classifiers as Real-valued Functions

ohI
'

syucx, co] !
°

y h (x)
NB Real-valued classifiers. E.g. hw(X) = ⟨w,X⟩.

Prediction is sign(h(X))

▶ Margin = Yh(X), where Y ∈ {−1,+1}
▶ Larger margin > 0: more confident correct classification

▶ Common loss functions encourage finding large margin solutions:

logistic loss: ln(1 + e−Yh(X))

squared loss for classification: (Y − h(X))2 = (1− Yh(X))2

11 / 1

Classifiers as Real-valued Functions

ohI
'

syucx, co] !
°

y h (x)
NB Real-valued classifiers. E.g. hw(X) = ⟨w,X⟩.

Prediction is sign(h(X))

▶ Margin = Yh(X), where Y ∈ {−1,+1}
▶ Larger margin > 0: more confident correct classification

▶ Common loss functions encourage finding large margin solutions:

logistic loss: ln(1 + e−Yh(X))

squared loss for classification: (Y − h(X))2 = (1− Yh(X))2

11 / 1

Large Margins 1

[Anthony and Bartlett, 1999]

iargeosmsargihifyhlxkjr]
0/1 - loss I

=I[yhlx) co] 1 Lipschitz loss
I
1

I

° I
yhlx)

0/1-loss ≤ γ-Lipschitz loss ≤ γ-large margin loss

L
0/1
D (hS) ≤ LLipschitzD (hS)

≤ LLipschitzS (hS) + 2E[R(ℓLipschitz,H,S)] +

√
ln(4/δ)

2m
w.p. ≥ 1− δ

≤ Llarge margin
S (hS) + 2E[R(ℓLipschitz,H,S)] +

√
ln(4/δ)

2m

12 / 1

Large Margins 1

[Anthony and Bartlett, 1999]

iargeosmsargihifyhlxkjr]
0/1 - loss I

=I[yhlx) co] 1 Lipschitz loss
I
1

I

° I
yhlx)

0/1-loss ≤ γ-Lipschitz loss ≤ γ-large margin loss

L
0/1
D (hS) ≤ LLipschitzD (hS)

≤ LLipschitzS (hS) + 2E[R(ℓLipschitz,H,S)] +

√
ln(4/δ)

2m
w.p. ≥ 1− δ

≤ Llarge margin
S (hS) + 2E[R(ℓLipschitz,H,S)] +

√
ln(4/δ)

2m

12 / 1

Large Margins 2

[Anthony and Bartlett, 1999]

Theorem

Let hS ∈ H be the output of a learning algorithm. Then, with probability
at least 1− δ,

L
0/1
D (hS) ≤ Lγ-large margin

S (hS) + 2E[R(ℓγ-Lipschitz,H,S)] +

√
ln(4/δ)

2m
.

1. If hS has margin ≥ γ on (most of) S , then Lγ-large margin
S (hS) is small

2. Lipschitz loss is 1
γ -Lipschitz, so can apply contraction lemma:

R(ℓLipschitz,H,S) ≤ 1

γ
R
({

(h(X1), . . . , h(Xm)) : h ∈ H
})

▶ So small changes in h imply small changes in loss
▶ We have turned the classification problem into a regression task!
▶ Complexity of H can be controlled by some norm on h.

13 / 1

Large Margins 2

[Anthony and Bartlett, 1999]

Theorem

Let hS ∈ H be the output of a learning algorithm. Then, with probability
at least 1− δ,

L
0/1
D (hS) ≤ Lγ-large margin

S (hS) + 2E[R(ℓγ-Lipschitz,H,S)] +

√
ln(4/δ)

2m
.

1. If hS has margin ≥ γ on (most of) S , then Lγ-large margin
S (hS) is small

2. Lipschitz loss is 1
γ -Lipschitz, so can apply contraction lemma:

R(ℓLipschitz,H,S) ≤ 1

γ
R
({

(h(X1), . . . , h(Xm)) : h ∈ H
})

▶ So small changes in h imply small changes in loss
▶ We have turned the classification problem into a regression task!
▶ Complexity of H can be controlled by some norm on h.

13 / 1

Large Margins 2

[Anthony and Bartlett, 1999]

Theorem

Let hS ∈ H be the output of a learning algorithm. Then, with probability
at least 1− δ,

L
0/1
D (hS) ≤ Lγ-large margin

S (hS) + 2E[R(ℓγ-Lipschitz,H,S)] +

√
ln(4/δ)

2m
.

1. If hS has margin ≥ γ on (most of) S , then Lγ-large margin
S (hS) is small

2. Lipschitz loss is 1
γ -Lipschitz, so can apply contraction lemma:

R(ℓLipschitz,H,S) ≤ 1

γ
R
({

(h(X1), . . . , h(Xm)) : h ∈ H
})

▶ So small changes in h imply small changes in loss
▶ We have turned the classification problem into a regression task!
▶ Complexity of H can be controlled by some norm on h.

13 / 1

Towards an Explanation

1. Large margins turn classification into regression

2. Explaining double descent

14 / 1

A Potential Explanation

[Belkin, Hsu, Ma, Mandal, 2019]

A B

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias–variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.

networks and kernel machines trained to interpolate the training
data obtain near-optimal test results even when the training data
are corrupted with high levels of noise (5, 6).

The main finding of this work is a pattern in how perfor-
mance on unseen data depends on model capacity and the
mechanism underlying its emergence. This dependence, empir-
ically witnessed with important model classes including neural
networks and a range of datasets, is summarized in the “double-
descent” risk curve shown in Fig. 1B. The curve subsumes the
classical U-shaped risk curve from Fig. 1A by extending it beyond
the point of interpolation.

When function class capacity is below the “interpolation
threshold,” learned predictors exhibit the classical U-shaped
curve from Fig. 1A. (In this paper, function class capacity is iden-
tified with the number of parameters needed to specify a function
within the class.) The bottom of the U is achieved at the sweet
spot which balances the fit to the training data and the suscepti-
bility to overfitting: To the left of the sweet spot, predictors are
underfitted, and immediately to the right, predictors are overfit-
ted. When we increase the function class capacity high enough
(e.g., by increasing the number of features or the size of the neu-
ral network architecture), the learned predictors achieve (near)
perfect fits to the training data—i.e., interpolation. Although
the learned predictors obtained at the interpolation threshold
typically have high risk, we show that increasing the function
class capacity beyond this point leads to decreasing risk, typically
going below the risk achieved at the sweet spot in the “classical”
regime.

All of the learned predictors to the right of the interpolation
threshold fit the training data perfectly and have zero empiri-
cal risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer
is that the capacity of the function class does not necessarily
reflect how well the predictor matches the inductive bias appro-
priate for the problem at hand. For the learning problems we
consider (a range of real-world datasets as well as synthetic
data), the inductive bias that seems appropriate is the regular-
ity or smoothness of a function as measured by a certain function
space norm. Choosing the smoothest function that perfectly fits
observed data is a form of Occam’s razor: The simplest expla-
nation compatible with the observations should be preferred (cf.
refs. 7 and 8). By considering larger function classes, which con-
tain more candidate predictors compatible with the data, we
are able to find interpolating functions that have smaller norm
and are thus “simpler.” Thus, increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins
theory (7, 9, 10), where a larger function class H may permit
the discovery of a classifier with a larger margin. While the
margins theory can be used to study classification, it does not

apply to regression and also does not predict the second descent
beyond the interpolation threshold. Recently, there has been an
emerging recognition that certain interpolating predictors (not
based on ERM) can indeed be provably statistically optimal or
near optimal (11, 12), which is compatible with our empirical
observations in the interpolating regime.

In the remainder of this article, we discuss empirical evidence
for the double-descent curve and the mechanism for its emer-
gence and conclude with some final observations and parting
thoughts.

Neural Networks
In this section, we discuss the double-descent risk curve in the
context of neural networks.

Random Fourier Features. We first consider a popular class of non-
linear parametric models called random Fourier features (RFF)
(13), which can be viewed as a class of 2-layer neural networks
with fixed weights in the first layer. The RFF model family
HN with N (complex-valued) parameters consists of functions
h : Rd !C of the form

h(x) =

NX

k=1

ak�(x ; vk) where �(x ; v):=e
p�1hvk ,xi,

and the vectors v1, . . . , vN are sampled independently from the
standard normal distribution in Rd . (We consider HN as a class
of real-valued functions with 2N real-valued parameters by tak-
ing real and imaginary parts separately.) Note that HN is a
randomized function class, but as N !1, the function class
becomes a closer and closer approximation to the reproducing
kernel Hilbert space (RKHS) corresponding to the Gaussian
kernel, denoted by H1. While it is possible to directly use
H1 [e.g., as is done with kernel machines (14)], the random
classes HN are computationally attractive to use when the sam-
ple size n is large but the number of parameters N is small
compared with n .

Our learning procedure using HN is as follows. Given data
(x1, y1), . . . , (xn , yn) from Rd ⇥R, we find the predictor hn,N 2
HN via ERM with squared loss. That is, we minimize the empiri-
cal risk objective 1

n

Pn
i=1(h(xi)� yi)

2 over all functions h 2HN .
When the minimizer is not unique (as is always the case when
N >n), we choose the minimizer whose coefficients (a1, . . . , aN)
have the minimum `2 norm. This choice of norm is intended as
an approximation to the RKHS norm khkH1 , which is generally
difficult to compute for arbitrary functions in HN . For prob-
lems with multiple outputs (e.g., multiclass classification), we use
functions with vector-valued outputs and the sum of the squared
losses for each output.

15850 | www.pnas.org/cgi/doi/10.1073/pnas.1903070116 Belkin et al.

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

M
ar

ch
 1

9,
 2

02
1

[Belkin et al., 2019] Double Descent

Proposed explanation: suppose learning alg roughly behaves as

among ERM solutions hS ∈ argmin
h∈H

LS(h)

choose solution with smallest norm ∥hS∥??

Below int. threshold: ERM unique → classical bias-variance trade-off
Above int. threshold: larger H → more ERM solutions → smaller ∥hS∥??
▶ LS for e.g. logistic or squared loss (encouraging large margin)

▶ Different norm depending on manifestation of double descent

15 / 1

A Potential Explanation

[Belkin, Hsu, Ma, Mandal, 2019]

A B

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias–variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.

networks and kernel machines trained to interpolate the training
data obtain near-optimal test results even when the training data
are corrupted with high levels of noise (5, 6).

The main finding of this work is a pattern in how perfor-
mance on unseen data depends on model capacity and the
mechanism underlying its emergence. This dependence, empir-
ically witnessed with important model classes including neural
networks and a range of datasets, is summarized in the “double-
descent” risk curve shown in Fig. 1B. The curve subsumes the
classical U-shaped risk curve from Fig. 1A by extending it beyond
the point of interpolation.

When function class capacity is below the “interpolation
threshold,” learned predictors exhibit the classical U-shaped
curve from Fig. 1A. (In this paper, function class capacity is iden-
tified with the number of parameters needed to specify a function
within the class.) The bottom of the U is achieved at the sweet
spot which balances the fit to the training data and the suscepti-
bility to overfitting: To the left of the sweet spot, predictors are
underfitted, and immediately to the right, predictors are overfit-
ted. When we increase the function class capacity high enough
(e.g., by increasing the number of features or the size of the neu-
ral network architecture), the learned predictors achieve (near)
perfect fits to the training data—i.e., interpolation. Although
the learned predictors obtained at the interpolation threshold
typically have high risk, we show that increasing the function
class capacity beyond this point leads to decreasing risk, typically
going below the risk achieved at the sweet spot in the “classical”
regime.

All of the learned predictors to the right of the interpolation
threshold fit the training data perfectly and have zero empiri-
cal risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer
is that the capacity of the function class does not necessarily
reflect how well the predictor matches the inductive bias appro-
priate for the problem at hand. For the learning problems we
consider (a range of real-world datasets as well as synthetic
data), the inductive bias that seems appropriate is the regular-
ity or smoothness of a function as measured by a certain function
space norm. Choosing the smoothest function that perfectly fits
observed data is a form of Occam’s razor: The simplest expla-
nation compatible with the observations should be preferred (cf.
refs. 7 and 8). By considering larger function classes, which con-
tain more candidate predictors compatible with the data, we
are able to find interpolating functions that have smaller norm
and are thus “simpler.” Thus, increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins
theory (7, 9, 10), where a larger function class H may permit
the discovery of a classifier with a larger margin. While the
margins theory can be used to study classification, it does not

apply to regression and also does not predict the second descent
beyond the interpolation threshold. Recently, there has been an
emerging recognition that certain interpolating predictors (not
based on ERM) can indeed be provably statistically optimal or
near optimal (11, 12), which is compatible with our empirical
observations in the interpolating regime.

In the remainder of this article, we discuss empirical evidence
for the double-descent curve and the mechanism for its emer-
gence and conclude with some final observations and parting
thoughts.

Neural Networks
In this section, we discuss the double-descent risk curve in the
context of neural networks.

Random Fourier Features. We first consider a popular class of non-
linear parametric models called random Fourier features (RFF)
(13), which can be viewed as a class of 2-layer neural networks
with fixed weights in the first layer. The RFF model family
HN with N (complex-valued) parameters consists of functions
h : Rd !C of the form

h(x) =

NX

k=1

ak�(x ; vk) where �(x ; v):=e
p�1hvk ,xi,

and the vectors v1, . . . , vN are sampled independently from the
standard normal distribution in Rd . (We consider HN as a class
of real-valued functions with 2N real-valued parameters by tak-
ing real and imaginary parts separately.) Note that HN is a
randomized function class, but as N !1, the function class
becomes a closer and closer approximation to the reproducing
kernel Hilbert space (RKHS) corresponding to the Gaussian
kernel, denoted by H1. While it is possible to directly use
H1 [e.g., as is done with kernel machines (14)], the random
classes HN are computationally attractive to use when the sam-
ple size n is large but the number of parameters N is small
compared with n .

Our learning procedure using HN is as follows. Given data
(x1, y1), . . . , (xn , yn) from Rd ⇥R, we find the predictor hn,N 2
HN via ERM with squared loss. That is, we minimize the empiri-
cal risk objective 1

n

Pn
i=1(h(xi)� yi)

2 over all functions h 2HN .
When the minimizer is not unique (as is always the case when
N >n), we choose the minimizer whose coefficients (a1, . . . , aN)
have the minimum `2 norm. This choice of norm is intended as
an approximation to the RKHS norm khkH1 , which is generally
difficult to compute for arbitrary functions in HN . For prob-
lems with multiple outputs (e.g., multiclass classification), we use
functions with vector-valued outputs and the sum of the squared
losses for each output.

15850 | www.pnas.org/cgi/doi/10.1073/pnas.1903070116 Belkin et al.

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

M
ar

ch
 1

9,
 2

02
1

[Belkin et al., 2019] Double Descent

Proposed explanation: suppose learning alg roughly behaves as

among ERM solutions hS ∈ argmin
h∈H

LS(h)

choose solution with smallest norm ∥hS∥??

Below int. threshold: ERM unique → classical bias-variance trade-off
Above int. threshold: larger H → more ERM solutions → smaller ∥hS∥??

▶ LS for e.g. logistic or squared loss (encouraging large margin)

▶ Different norm depending on manifestation of double descent

15 / 1

A Potential Explanation

[Belkin, Hsu, Ma, Mandal, 2019]

A B

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias–variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.

networks and kernel machines trained to interpolate the training
data obtain near-optimal test results even when the training data
are corrupted with high levels of noise (5, 6).

The main finding of this work is a pattern in how perfor-
mance on unseen data depends on model capacity and the
mechanism underlying its emergence. This dependence, empir-
ically witnessed with important model classes including neural
networks and a range of datasets, is summarized in the “double-
descent” risk curve shown in Fig. 1B. The curve subsumes the
classical U-shaped risk curve from Fig. 1A by extending it beyond
the point of interpolation.

When function class capacity is below the “interpolation
threshold,” learned predictors exhibit the classical U-shaped
curve from Fig. 1A. (In this paper, function class capacity is iden-
tified with the number of parameters needed to specify a function
within the class.) The bottom of the U is achieved at the sweet
spot which balances the fit to the training data and the suscepti-
bility to overfitting: To the left of the sweet spot, predictors are
underfitted, and immediately to the right, predictors are overfit-
ted. When we increase the function class capacity high enough
(e.g., by increasing the number of features or the size of the neu-
ral network architecture), the learned predictors achieve (near)
perfect fits to the training data—i.e., interpolation. Although
the learned predictors obtained at the interpolation threshold
typically have high risk, we show that increasing the function
class capacity beyond this point leads to decreasing risk, typically
going below the risk achieved at the sweet spot in the “classical”
regime.

All of the learned predictors to the right of the interpolation
threshold fit the training data perfectly and have zero empiri-
cal risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer
is that the capacity of the function class does not necessarily
reflect how well the predictor matches the inductive bias appro-
priate for the problem at hand. For the learning problems we
consider (a range of real-world datasets as well as synthetic
data), the inductive bias that seems appropriate is the regular-
ity or smoothness of a function as measured by a certain function
space norm. Choosing the smoothest function that perfectly fits
observed data is a form of Occam’s razor: The simplest expla-
nation compatible with the observations should be preferred (cf.
refs. 7 and 8). By considering larger function classes, which con-
tain more candidate predictors compatible with the data, we
are able to find interpolating functions that have smaller norm
and are thus “simpler.” Thus, increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins
theory (7, 9, 10), where a larger function class H may permit
the discovery of a classifier with a larger margin. While the
margins theory can be used to study classification, it does not

apply to regression and also does not predict the second descent
beyond the interpolation threshold. Recently, there has been an
emerging recognition that certain interpolating predictors (not
based on ERM) can indeed be provably statistically optimal or
near optimal (11, 12), which is compatible with our empirical
observations in the interpolating regime.

In the remainder of this article, we discuss empirical evidence
for the double-descent curve and the mechanism for its emer-
gence and conclude with some final observations and parting
thoughts.

Neural Networks
In this section, we discuss the double-descent risk curve in the
context of neural networks.

Random Fourier Features. We first consider a popular class of non-
linear parametric models called random Fourier features (RFF)
(13), which can be viewed as a class of 2-layer neural networks
with fixed weights in the first layer. The RFF model family
HN with N (complex-valued) parameters consists of functions
h : Rd !C of the form

h(x) =

NX

k=1

ak�(x ; vk) where �(x ; v):=e
p�1hvk ,xi,

and the vectors v1, . . . , vN are sampled independently from the
standard normal distribution in Rd . (We consider HN as a class
of real-valued functions with 2N real-valued parameters by tak-
ing real and imaginary parts separately.) Note that HN is a
randomized function class, but as N !1, the function class
becomes a closer and closer approximation to the reproducing
kernel Hilbert space (RKHS) corresponding to the Gaussian
kernel, denoted by H1. While it is possible to directly use
H1 [e.g., as is done with kernel machines (14)], the random
classes HN are computationally attractive to use when the sam-
ple size n is large but the number of parameters N is small
compared with n .

Our learning procedure using HN is as follows. Given data
(x1, y1), . . . , (xn , yn) from Rd ⇥R, we find the predictor hn,N 2
HN via ERM with squared loss. That is, we minimize the empiri-
cal risk objective 1

n

Pn
i=1(h(xi)� yi)

2 over all functions h 2HN .
When the minimizer is not unique (as is always the case when
N >n), we choose the minimizer whose coefficients (a1, . . . , aN)
have the minimum `2 norm. This choice of norm is intended as
an approximation to the RKHS norm khkH1 , which is generally
difficult to compute for arbitrary functions in HN . For prob-
lems with multiple outputs (e.g., multiclass classification), we use
functions with vector-valued outputs and the sum of the squared
losses for each output.

15850 | www.pnas.org/cgi/doi/10.1073/pnas.1903070116 Belkin et al.

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

M
ar

ch
 1

9,
 2

02
1

[Belkin et al., 2019] Double Descent

Proposed explanation: suppose learning alg roughly behaves as

among ERM solutions hS ∈ argmin
h∈H

LS(h)

choose solution with smallest norm ∥hS∥??

Below int. threshold: ERM unique → classical bias-variance trade-off
Above int. threshold: larger H → more ERM solutions → smaller ∥hS∥??
▶ LS for e.g. logistic or squared loss (encouraging large margin)

▶ Different norm depending on manifestation of double descent

15 / 1

Double Descent for Neural Networks Again

Fig. 3. Double-descent risk curve for a fully connected neural network
on MNIST. Shown are training and test risks of a network with a single
layer of H hidden units, learned on a subset of MNIST (n = 4 · 103, d = 784,
K = 10 classes). The number of parameters is (d + 1) · H + (H + 1) · K. The
interpolation threshold (black dashed line) is observed at n · K.

The computational complexity of ERM with neural networks
makes the double-descent risk curve difficult to observe. Indeed,
in the classical underparameterized regime (N ⌧n), the non-
convexity of the ERM optimization problem causes the behavior
of local search-based heuristics, like SGD, to be highly sensi-
tive to their initialization. Thus, if only suboptimal solutions are
found for the ERM optimization problems, increasing the size
of a neural network architecture may not always lead to a corre-
sponding decrease in the training risk. This suboptimal behavior
can lead to high variability in both the training and test risks that
masks the double-descent curve.

It is common to use neural networks with an extremely large
number of parameters (22). But to achieve interpolation for a
single output (regression or 2-class classification) one expects to
need at least as many parameters as there are data points. More-
over, if the prediction problem has more than one output (as in
multiclass classification), then the number of parameters needed
should be multiplied by the number of outputs. This is indeed
the case empirically for neural networks shown in Fig. 3. Thus,
for instance, datasets as large as ImageNet (23), which has ⇠106

examples and ⇠103 classes, may require networks with ⇠109

parameters to achieve interpolation; this is larger than many
neural network models for ImageNet (22). In such cases, the clas-
sical regime of the U-shaped risk curve is more appropriate to
understand generalization. For smaller datasets, these large neu-
ral networks would be firmly in the overparameterized regime,
and simply training to obtain zero training risk often results in
good test performance (5).

Additional results with neural networks are given in SI
Appendix.

Decision Trees and Ensemble Methods
Does the double-descent risk curve manifest with other pre-
diction methods besides neural networks? We give empirical
evidence that the families of functions explored by boosting with
decision trees and random forests also show similar generaliza-
tion behavior to that of neural nets, both before and after the
interpolation threshold.

AdaBoost and random forests have recently been investigated
in the interpolation regime by ref. 24 for classification. In par-

ticular, they give empirical evidence that, when AdaBoost and
random forests are used with maximally large (interpolating)
decision trees, the flexibility of the fitting methods yields interpo-
lating predictors that are more robust to noise in the training data
than the predictors produced by rigid, noninterpolating meth-
ods (e.g., AdaBoost or random forests with shallow trees). This
in turn is said to yield better generalization. The averaging of
the (near) interpolating trees ensures that the resulting function
is substantially smoother than any individual tree, which aligns
with an inductive bias that is compatible with many real-world
problems.

We can understand these flexible fitting methods in the con-
text of the double-descent risk curve. Observe that the size of a
decision tree (controlled by the number of leaves) is a natural
way to parameterize the function class capacity: Trees with only
2 leaves correspond to 2-piecewise constant functions with an
axis-aligned boundary, while trees with n leaves can interpolate n
training examples. It is a classical observation that the U-shaped
bias–variance trade-off curve manifests in many problems when
the class capacity is considered this way (2). (The interpolation
threshold may be reached with fewer than n leaves in many cases,
but n is clearly an upper bound.) To further enlarge the function
class, we consider ensembles (averages) of several interpolating
trees.

⇤
So, beyond the interpolation threshold, we use the num-

ber of such trees to index the class capacity. When we view the
risk curve as a function of class capacity defined in this hybrid
fashion, we see the double-descent curve appear just as with
neural networks (Fig. 4 and SI Appendix). We observe a sim-
ilar phenomenon using L2 boosting (26, 27), another popular
ensemble method; the results are reported in SI Appendix.

Concluding Thoughts
The double-descent risk curve introduced in this paper recon-
ciles the U-shaped curve predicted by the bias–variance trade-off
and the observed behavior of rich models used in modern
machine-learning practice. The posited mechanism that under-
lies its emergence is based on common inductive biases and
hence can explain its appearance (and, we argue, ubiquity) in
machine-learning applications.

We conclude with some final remarks.

Historical Absence. The double-descent behavior may have been
historically overlooked on account of several cultural and prac-
tical barriers. Observing the double-descent curve requires a
parametric family of spaces with functions of arbitrary complex-
ity. The linear settings studied extensively in classical statistics
usually assume a small, fixed set of features and hence fixed
fitting capacity. Richer families of function classes are typically
used in the context of nonparametric statistics, where smoothing
and regularization are almost always used (28). Regularization,
of all forms, can both prevent interpolation and change the effec-
tive capacity of the function class, thus attenuating or masking
the interpolation peak.

The RFF model is a popular and flexible parametric family.
However, these models were originally proposed as a computa-
tionally favorable alternative to kernel machines. This compu-
tational advantage over traditional kernel methods holds only
for N ⌧n , and hence models at or beyond the interpolation
threshold are typically not considered.

The situation with general multilayer neural networks is
slightly different and more involved. Due to the nonconvex-
ity of the ERM optimization problem, solutions in the classical
underparameterized regime are highly sensitive to initialization.

*These trees are trained in the way proposed in random forest except without bootstrap
resampling. This is similar to the PERT method of ref. 25.

15852 | www.pnas.org/cgi/doi/10.1073/pnas.1903070116 Belkin et al.

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

M
ar

ch
 1

9,
 2

02
1

[Belkin, Hsu, Ma, Mandal, 2019]

▶ Classification: CIFAR-10 32x32 images from 10 classes, e.g.
airplanes, cats, dogs

Which norm ∥hS∥???
Implicitly induced by optimization algorithm!

▶ Exist proposals in the literature to characterize norm.
E.g. using neural tangent kernel [Jacot, Gabriel, Hongler, 2018]

16 / 1

Double Descent for Neural Networks Again

Fig. 3. Double-descent risk curve for a fully connected neural network
on MNIST. Shown are training and test risks of a network with a single
layer of H hidden units, learned on a subset of MNIST (n = 4 · 103, d = 784,
K = 10 classes). The number of parameters is (d + 1) · H + (H + 1) · K. The
interpolation threshold (black dashed line) is observed at n · K.

The computational complexity of ERM with neural networks
makes the double-descent risk curve difficult to observe. Indeed,
in the classical underparameterized regime (N ⌧n), the non-
convexity of the ERM optimization problem causes the behavior
of local search-based heuristics, like SGD, to be highly sensi-
tive to their initialization. Thus, if only suboptimal solutions are
found for the ERM optimization problems, increasing the size
of a neural network architecture may not always lead to a corre-
sponding decrease in the training risk. This suboptimal behavior
can lead to high variability in both the training and test risks that
masks the double-descent curve.

It is common to use neural networks with an extremely large
number of parameters (22). But to achieve interpolation for a
single output (regression or 2-class classification) one expects to
need at least as many parameters as there are data points. More-
over, if the prediction problem has more than one output (as in
multiclass classification), then the number of parameters needed
should be multiplied by the number of outputs. This is indeed
the case empirically for neural networks shown in Fig. 3. Thus,
for instance, datasets as large as ImageNet (23), which has ⇠106

examples and ⇠103 classes, may require networks with ⇠109

parameters to achieve interpolation; this is larger than many
neural network models for ImageNet (22). In such cases, the clas-
sical regime of the U-shaped risk curve is more appropriate to
understand generalization. For smaller datasets, these large neu-
ral networks would be firmly in the overparameterized regime,
and simply training to obtain zero training risk often results in
good test performance (5).

Additional results with neural networks are given in SI
Appendix.

Decision Trees and Ensemble Methods
Does the double-descent risk curve manifest with other pre-
diction methods besides neural networks? We give empirical
evidence that the families of functions explored by boosting with
decision trees and random forests also show similar generaliza-
tion behavior to that of neural nets, both before and after the
interpolation threshold.

AdaBoost and random forests have recently been investigated
in the interpolation regime by ref. 24 for classification. In par-

ticular, they give empirical evidence that, when AdaBoost and
random forests are used with maximally large (interpolating)
decision trees, the flexibility of the fitting methods yields interpo-
lating predictors that are more robust to noise in the training data
than the predictors produced by rigid, noninterpolating meth-
ods (e.g., AdaBoost or random forests with shallow trees). This
in turn is said to yield better generalization. The averaging of
the (near) interpolating trees ensures that the resulting function
is substantially smoother than any individual tree, which aligns
with an inductive bias that is compatible with many real-world
problems.

We can understand these flexible fitting methods in the con-
text of the double-descent risk curve. Observe that the size of a
decision tree (controlled by the number of leaves) is a natural
way to parameterize the function class capacity: Trees with only
2 leaves correspond to 2-piecewise constant functions with an
axis-aligned boundary, while trees with n leaves can interpolate n
training examples. It is a classical observation that the U-shaped
bias–variance trade-off curve manifests in many problems when
the class capacity is considered this way (2). (The interpolation
threshold may be reached with fewer than n leaves in many cases,
but n is clearly an upper bound.) To further enlarge the function
class, we consider ensembles (averages) of several interpolating
trees.

⇤
So, beyond the interpolation threshold, we use the num-

ber of such trees to index the class capacity. When we view the
risk curve as a function of class capacity defined in this hybrid
fashion, we see the double-descent curve appear just as with
neural networks (Fig. 4 and SI Appendix). We observe a sim-
ilar phenomenon using L2 boosting (26, 27), another popular
ensemble method; the results are reported in SI Appendix.

Concluding Thoughts
The double-descent risk curve introduced in this paper recon-
ciles the U-shaped curve predicted by the bias–variance trade-off
and the observed behavior of rich models used in modern
machine-learning practice. The posited mechanism that under-
lies its emergence is based on common inductive biases and
hence can explain its appearance (and, we argue, ubiquity) in
machine-learning applications.

We conclude with some final remarks.

Historical Absence. The double-descent behavior may have been
historically overlooked on account of several cultural and prac-
tical barriers. Observing the double-descent curve requires a
parametric family of spaces with functions of arbitrary complex-
ity. The linear settings studied extensively in classical statistics
usually assume a small, fixed set of features and hence fixed
fitting capacity. Richer families of function classes are typically
used in the context of nonparametric statistics, where smoothing
and regularization are almost always used (28). Regularization,
of all forms, can both prevent interpolation and change the effec-
tive capacity of the function class, thus attenuating or masking
the interpolation peak.

The RFF model is a popular and flexible parametric family.
However, these models were originally proposed as a computa-
tionally favorable alternative to kernel machines. This compu-
tational advantage over traditional kernel methods holds only
for N ⌧n , and hence models at or beyond the interpolation
threshold are typically not considered.

The situation with general multilayer neural networks is
slightly different and more involved. Due to the nonconvex-
ity of the ERM optimization problem, solutions in the classical
underparameterized regime are highly sensitive to initialization.

*These trees are trained in the way proposed in random forest except without bootstrap
resampling. This is similar to the PERT method of ref. 25.

15852 | www.pnas.org/cgi/doi/10.1073/pnas.1903070116 Belkin et al.

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

M
ar

ch
 1

9,
 2

02
1

[Belkin, Hsu, Ma, Mandal, 2019]

▶ Classification: CIFAR-10 32x32 images from 10 classes, e.g.
airplanes, cats, dogs

Which norm ∥hS∥???
Implicitly induced by optimization algorithm!

▶ Exist proposals in the literature to characterize norm.
E.g. using neural tangent kernel [Jacot, Gabriel, Hongler, 2018]

16 / 1

Double Descent: Not Just for Neural Networks
[Belkin et al., 2019] reproduce double descent phenomenon on e.g. MNIST:

ST
A

TI
ST

IC
S

In Fig. 2, we show the test risk of the predictors learned using
HN on a subset of the popular dataset of handwritten digits
called MNIST. Fig. 2 also shows the `2 norm of the function
coefficients, as well as the training risk. We see that for small
values of N , the test risk shows the classical U-shaped curve con-
sistent with the bias–variance trade-off, with a peak occurring
at the interpolation threshold N =n . Some statistical analyses
of RFF suggest choosing N /p

n log n to obtain good test risk
guarantees (15).

The interpolation regime connected with modern practice is
shown to the right of the interpolation threshold, with N �n .
The model class that achieves interpolation with fewest param-
eters (N =n random features) yields the least accurate predic-
tor. (In fact, it has no predictive ability for classification.) But
as the number of features increases beyond n , the accuracy
improves dramatically, exceeding that of the predictor corre-
sponding to the bottom of the U-shaped curve. The plot also
shows that the predictor hn,1 obtained from H1 (the ker-
nel machine) outperforms the predictors from HN for any
finite N .

What structural mechanisms account for the double-descent
shape? When the number of features is much smaller than the
sample size, N ⌧n , classical statistical arguments imply that the
training risk is close to the test risk. Thus, for small N , adding
more features yields improvements in both the training and the
test risks. However, as the number of features approaches n
(the interpolation threshold), features not present or only weakly
present in the data are forced to fit the training data nearly
perfectly. This results in classical overfitting as predicted by the
bias–variance trade-off and prominently manifested at the peak
of the curve, where the fit becomes exact.

To the right of the interpolation threshold, all function classes
are rich enough to achieve zero training risk. For the classes HN

that we consider, there is no guarantee that the most regular,
smallest norm predictor consistent with training data (namely
hn,1, which is in H1) is contained in the class HN for any finite
N . But increasing N allows us to construct progressively better

approximations to that smallest norm function. Thus, we expect
to have learned predictors with largest norm at the interpolation
threshold and for the norm of hn,N to decrease monotonically
as N increases, thus explaining the second descent segment of
the curve. This is what we observe in Fig. 2, and indeed hn,1
has better accuracy than all hn,N for any finite N . Favoring small
norm interpolating predictors turns out to be a powerful induc-
tive bias on MNIST and other real and synthetic datasets (6). For
noiseless data, we make this claim mathematically precise in SI
Appendix.

Additional empirical evidence for the same double-descent
behavior using other datasets is presented in SI Appendix. For
instance, we demonstrate double descent for rectified linear unit
(ReLU) random feature models, a class of ReLU neural net-
works with a setting similar to that of RFF. We also describe
a simple synthetic model, which can be regarded as a 1D version
of the RFF model, where we observe the same double-descent
behavior.

Neural Networks and Backpropagation. In general multilayer neu-
ral networks (beyond RFF or ReLU random feature models),
a learning algorithm will tune all of the weights to fit the train-
ing data, typically using versions of stochastic gradient descent
(SGD), with backpropagation to compute partial derivatives.
This flexibility increases the representational power of neural
networks, but also makes ERM generally more difficult to imple-
ment. Nevertheless, as shown in Fig. 3, we observe that increasing
the number of parameters in fully connected 2-layer neural net-
works leads to a risk curve qualitatively similar to that observed
with RFF models. That the test risk improves beyond the inter-
polation threshold is compatible with the conjectured “small
norm” inductive biases of the common training algorithms for
neural networks (16, 17). We note that this transition from
under- to overparameterized regimes for neural networks was
also previously observed by refs. 18–21. In particular, ref. 21
draws a connection to the physical phenomenon of “jamming”
in particle systems.

Fig. 2. Double-descent risk curve for the RFF model on MNIST. Shown are test risks (log scale), coefficient `2 norms (log scale), and training risks of the RFF
model predictors hn,N learned on a subset of MNIST (n = 104, 10 classes). The interpolation threshold is achieved at N = 104.

Belkin et al. PNAS | August 6, 2019 | vol. 116 | no. 32 | 15851

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

M
ar

ch
 1

9,
 2

02
1

Random Fourier features: linear model over N randomly generated
basis functions that approximate a certain (reproducing kernel) Hilbert

space as N → ∞

17 / 1

Double Descent: Not Just for Neural Networks

[Belkin et al., 2019] reproduce double descent phenomenon on e.g. MNIST:

ST
A

TI
ST

IC
S

Fig. 4. Double-descent risk curve for random forests on MNIST. The double-
descent risk curve is observed for random forests with increasing model
complexity trained on a subset of MNIST (n = 104, 10 classes). Its complex-
ity is controlled by the number of trees Ntree and the maximum number of
leaves allowed for each tree Nmax

leaf .

Moreover, as we have seen, the peak at the interpolation thresh-
old is observed within a narrow range of parameters. Sampling of
the parameter space that misses that range may lead to the mis-
leading impression that increasing the size of the network simply
improves performance. Finally, in practice, training of neural
networks is typically stopped as soon as (an estimate of) the test
risk fails to improve. This early stopping has a strong regularizing
effect that, as discussed above, makes it difficult to observe the
interpolation peak.

Inductive Bias. In this paper, we have dealt with several types
of methods for choosing interpolating solutions. For random
Fourier features, solutions are constructed explicitly by mini-
mum norm linear regression in the feature space. As the number
of features tends to infinity they approach the minimum func-
tional norm solution in the reproducing kernel Hilbert space,
a solution which maximizes functional smoothness subject to
the interpolation constraints. For neural networks, the induc-
tive bias owes to the specific training procedure used, which

is typically SGD. When all but the final layer of the network
are fixed (as in RFF models), SGD initialized at zero also con-
verges to the minimum norm solution. While the behavior of
SGD for more general neural networks is not fully understood,
there is significant empirical and some theoretical evidence (e.g.,
ref. 16) that a similar minimum norm inductive bias is present.
Yet another type of inductive bias related to averaging is used
in random forests. Averaging potentially nonsmooth interpolat-
ing trees leads to an interpolating solution with a higher degree
of smoothness; this averaged solution performs better than any
individual interpolating tree.

Remarkably, for kernel machines all 3 methods lead to the
same minimum norm solution. Indeed, the minimum norm inter-
polating classifier, hn,1, can be obtained directly by explicit norm
minimization (solving an explicit system of linear equations),
through SGD, or by averaging trajectories of Gaussian processes
[computing the posterior mean (29)].

Optimization and Practical Considerations. In our experiments,
appropriately chosen “modern” models usually outperform the
optimal classical model on the test set. But another important
practical advantage of overparameterized models is in optimiza-
tion. There is a growing understanding that larger models are
“easy” to optimize as local methods, such as SGD, converge to
global minima of the training risk in overparameterized regimes
(e.g., ref. 30). Thus, large interpolating models can have low
test risk and be easy to optimize at the same time, in particu-
lar with SGD (31). It is likely that the models to the left of the
interpolation peak have optimization properties qualitatively dif-
ferent from those to the right, a distinction of significant practical
import.

Outlook. The classical U-shaped bias–variance trade-off curve
has shaped our view of model selection and directed applica-
tions of learning algorithms in practice. The understanding of
model performance developed in this work delineates the lim-
its of classical analyses and opens additional lines of inquiry
to study and compare computational, statistical, and math-
ematical properties of the classical and modern regimes in
machine learning. We hope that this perspective, in turn, will
help practitioners choose models and algorithms for optimal
performance.

ACKNOWLEDGMENTS. M.B. was supported by NSF Grant RI-1815697. D.H.
was supported by NSF Grant CCF-1740833 and a Sloan Research Fellowship.

1. S. Geman, E. Bienenstock, R. Doursat, Neural networks and the bias/variance dilemma.
Neural Comput. 4, 1–58 (1992).

2. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning (Springer,
2001), vol. 1.

3. G. Gigerenzer, H. Brighton, Homo heuristicus: Why biased minds make better
inferences. Top. Cognit. Sci. 1, 107–143 (2009).

4. R. Salakhutdinov, Deep learning tutorial at the Simons Institute, Berke-
ley. https://simons.berkeley.edu/talks/ruslan-salakhutdinov-01-26-2017-1. Accessed 28
December 2018 (2017).

5. C. Zhang, S. Bengio, M. Hardt, B. Recht, O. Vinyals, “Understanding deep learning
requires rethinking generalization” in Proceedings of International Conference on
Learning Representations (International Conference on Learning Representations,
2017).

6. M. Belkin, S. Ma, S. Mandal, “To understand deep learning we need to under-
stand kernel learning” in Proceedings of the 35th International Conference on
Machine Learning, J. Dy, A. Krause, Eds. (Proceedings of Machine Learning Research,
Stockholm, Sweden 2018), vol. 80, pp. 541–549.

7. V. N. Vapnik, The Nature of Statistical Learning Theory (Springer, 1995).
8. A. Blumer, A. Ehrenfeucht, D. Haussler, M. K. Warmuth, Occam’s razor. Inf. Process.

Lett. 24, 377–380 (1987).
9. P. L. Bartlett, The sample complexity of pattern classification with neural networks:

The size of the weights is more important than the size of the network. IEEE Trans.
Inf. Theory 44, 525–536 (1998).

10. R. E. Schapire, Y. Freund, P. Bartlett, W. S. Lee, Boosting the margin: A new
explanation for the effectiveness of voting methods. Ann. Stat. 26, 1651–1686 (1998).

11. M. Belkin, D. Hsu, P. Mitra, “Overfitting or perfect fitting? Risk bounds for classi-
fication and regression rules that interpolate” in Advances in Neural Information

Processing Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
R. Garnett, Eds. (Curran Associates, Inc., 2018), pp. 2300–2311.

12. M. Belkin, A. Rakhlin, A. B. Tsybakov, “Does data interpolation contradict sta-
tistical optimality?” in Proceedings of Machine Learning Research, K. Chaudhuri,
M. Sugiyama, Eds. (Proceedings of Machine Learning Research, 2019), vol. 89, pp.
1611–1619.

13. A. Rahimi, B. Recht, “Random features for large-scale kernel machines” in Advances
in Neural Information Processing Systems, J. C. Platt, D. Koller, Y. Singer, S. T. Roweis,
Eds. (Curran Associates, Inc., 2008), pp. 1177–1184.

14. B. E. Boser, I. M. Guyon, V. N. Vapnik, “A training algorithm for optimal margin clas-
sifiers” in Proceedings of the Fifth Annual Workshop on Computational Learning
Theory (ACM, New York, NY, 1992), pp. 144–152.

15. A. Rudi, L. Rosasco, “Generalization properties of learning with random features”
in Advances in Neural Information Processing Systems, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett, Eds. (Curran Associates,
Inc., New York, NY, 2017), pp. 3215–3225.

16. S. Gunasekar, B. E. Woodworth, S. Bhojanapalli, B. Neyshabur, N. Srebro, “Implicit
regularization in matrix factorization” in Advances in Neural Information Processing
Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
R. Garnett, Eds. (Curran Associates, Inc., New York, NY, 2017), pp. 6151–6159.

17. Y. Li, T. Ma, H. Zhang, “Algorithmic regularization in over-parameterized matrix
sensing and neural networks with quadratic activations” in Proceedings of the 31st
Conference On Learning Theory, S. Bubeck, V. Perchet, P. Rigollet, Eds. (Proceedings
of Machine Learning Research, 2018), vol. 75, pp. 2–47.

18. S. Bös, M. Opper, “Dynamics of training” in Advances in Neural Information Pro-
cessing Systems, M. C. Mozer, M. I. Jordan, T. Petsche, Eds. (MIT Press, 1997), pp.
141–147.

Belkin et al. PNAS | August 6, 2019 | vol. 116 | no. 32 | 15853

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

M
ar

ch
 1

9,
 2

02
1

Random forests: ensembles of decision trees

▶ Complexity controlled by number of leaves per tree and by number
of trees

17 / 1

Recent Alternative Explanation [Curth, Jeffares, v.d. Schaar, 2023]:
Need More Careful Parameter Counting

In all non-deep learning experiments by [Belkin et al., 2019]:
▶ Below interpolation threshold m: increase model complexity along

dimension 1
▶ Above interpolation threshold m: increase model complexity along

dimension 2

Examples:
▶ Random forests: [Belkin et al., 2019] increase depth of single tree up

to m (complexity dimension 1). Then average additional trees
above m (complexity dimension 2).

ST
A

TI
ST

IC
S

Fig. 4. Double-descent risk curve for random forests on MNIST. The double-
descent risk curve is observed for random forests with increasing model
complexity trained on a subset of MNIST (n = 104, 10 classes). Its complex-
ity is controlled by the number of trees Ntree and the maximum number of
leaves allowed for each tree Nmax

leaf .

Moreover, as we have seen, the peak at the interpolation thresh-
old is observed within a narrow range of parameters. Sampling of
the parameter space that misses that range may lead to the mis-
leading impression that increasing the size of the network simply
improves performance. Finally, in practice, training of neural
networks is typically stopped as soon as (an estimate of) the test
risk fails to improve. This early stopping has a strong regularizing
effect that, as discussed above, makes it difficult to observe the
interpolation peak.

Inductive Bias. In this paper, we have dealt with several types
of methods for choosing interpolating solutions. For random
Fourier features, solutions are constructed explicitly by mini-
mum norm linear regression in the feature space. As the number
of features tends to infinity they approach the minimum func-
tional norm solution in the reproducing kernel Hilbert space,
a solution which maximizes functional smoothness subject to
the interpolation constraints. For neural networks, the induc-
tive bias owes to the specific training procedure used, which

is typically SGD. When all but the final layer of the network
are fixed (as in RFF models), SGD initialized at zero also con-
verges to the minimum norm solution. While the behavior of
SGD for more general neural networks is not fully understood,
there is significant empirical and some theoretical evidence (e.g.,
ref. 16) that a similar minimum norm inductive bias is present.
Yet another type of inductive bias related to averaging is used
in random forests. Averaging potentially nonsmooth interpolat-
ing trees leads to an interpolating solution with a higher degree
of smoothness; this averaged solution performs better than any
individual interpolating tree.

Remarkably, for kernel machines all 3 methods lead to the
same minimum norm solution. Indeed, the minimum norm inter-
polating classifier, hn,1, can be obtained directly by explicit norm
minimization (solving an explicit system of linear equations),
through SGD, or by averaging trajectories of Gaussian processes
[computing the posterior mean (29)].

Optimization and Practical Considerations. In our experiments,
appropriately chosen “modern” models usually outperform the
optimal classical model on the test set. But another important
practical advantage of overparameterized models is in optimiza-
tion. There is a growing understanding that larger models are
“easy” to optimize as local methods, such as SGD, converge to
global minima of the training risk in overparameterized regimes
(e.g., ref. 30). Thus, large interpolating models can have low
test risk and be easy to optimize at the same time, in particu-
lar with SGD (31). It is likely that the models to the left of the
interpolation peak have optimization properties qualitatively dif-
ferent from those to the right, a distinction of significant practical
import.

Outlook. The classical U-shaped bias–variance trade-off curve
has shaped our view of model selection and directed applica-
tions of learning algorithms in practice. The understanding of
model performance developed in this work delineates the lim-
its of classical analyses and opens additional lines of inquiry
to study and compare computational, statistical, and math-
ematical properties of the classical and modern regimes in
machine learning. We hope that this perspective, in turn, will
help practitioners choose models and algorithms for optimal
performance.

ACKNOWLEDGMENTS. M.B. was supported by NSF Grant RI-1815697. D.H.
was supported by NSF Grant CCF-1740833 and a Sloan Research Fellowship.

1. S. Geman, E. Bienenstock, R. Doursat, Neural networks and the bias/variance dilemma.
Neural Comput. 4, 1–58 (1992).

2. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning (Springer,
2001), vol. 1.

3. G. Gigerenzer, H. Brighton, Homo heuristicus: Why biased minds make better
inferences. Top. Cognit. Sci. 1, 107–143 (2009).

4. R. Salakhutdinov, Deep learning tutorial at the Simons Institute, Berke-
ley. https://simons.berkeley.edu/talks/ruslan-salakhutdinov-01-26-2017-1. Accessed 28
December 2018 (2017).

5. C. Zhang, S. Bengio, M. Hardt, B. Recht, O. Vinyals, “Understanding deep learning
requires rethinking generalization” in Proceedings of International Conference on
Learning Representations (International Conference on Learning Representations,
2017).

6. M. Belkin, S. Ma, S. Mandal, “To understand deep learning we need to under-
stand kernel learning” in Proceedings of the 35th International Conference on
Machine Learning, J. Dy, A. Krause, Eds. (Proceedings of Machine Learning Research,
Stockholm, Sweden 2018), vol. 80, pp. 541–549.

7. V. N. Vapnik, The Nature of Statistical Learning Theory (Springer, 1995).
8. A. Blumer, A. Ehrenfeucht, D. Haussler, M. K. Warmuth, Occam’s razor. Inf. Process.

Lett. 24, 377–380 (1987).
9. P. L. Bartlett, The sample complexity of pattern classification with neural networks:

The size of the weights is more important than the size of the network. IEEE Trans.
Inf. Theory 44, 525–536 (1998).

10. R. E. Schapire, Y. Freund, P. Bartlett, W. S. Lee, Boosting the margin: A new
explanation for the effectiveness of voting methods. Ann. Stat. 26, 1651–1686 (1998).

11. M. Belkin, D. Hsu, P. Mitra, “Overfitting or perfect fitting? Risk bounds for classi-
fication and regression rules that interpolate” in Advances in Neural Information

Processing Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
R. Garnett, Eds. (Curran Associates, Inc., 2018), pp. 2300–2311.

12. M. Belkin, A. Rakhlin, A. B. Tsybakov, “Does data interpolation contradict sta-
tistical optimality?” in Proceedings of Machine Learning Research, K. Chaudhuri,
M. Sugiyama, Eds. (Proceedings of Machine Learning Research, 2019), vol. 89, pp.
1611–1619.

13. A. Rahimi, B. Recht, “Random features for large-scale kernel machines” in Advances
in Neural Information Processing Systems, J. C. Platt, D. Koller, Y. Singer, S. T. Roweis,
Eds. (Curran Associates, Inc., 2008), pp. 1177–1184.

14. B. E. Boser, I. M. Guyon, V. N. Vapnik, “A training algorithm for optimal margin clas-
sifiers” in Proceedings of the Fifth Annual Workshop on Computational Learning
Theory (ACM, New York, NY, 1992), pp. 144–152.

15. A. Rudi, L. Rosasco, “Generalization properties of learning with random features”
in Advances in Neural Information Processing Systems, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett, Eds. (Curran Associates,
Inc., New York, NY, 2017), pp. 3215–3225.

16. S. Gunasekar, B. E. Woodworth, S. Bhojanapalli, B. Neyshabur, N. Srebro, “Implicit
regularization in matrix factorization” in Advances in Neural Information Processing
Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
R. Garnett, Eds. (Curran Associates, Inc., New York, NY, 2017), pp. 6151–6159.

17. Y. Li, T. Ma, H. Zhang, “Algorithmic regularization in over-parameterized matrix
sensing and neural networks with quadratic activations” in Proceedings of the 31st
Conference On Learning Theory, S. Bubeck, V. Perchet, P. Rigollet, Eds. (Proceedings
of Machine Learning Research, 2018), vol. 75, pp. 2–47.

18. S. Bös, M. Opper, “Dynamics of training” in Advances in Neural Information Pro-
cessing Systems, M. C. Mozer, M. I. Jordan, T. Petsche, Eds. (MIT Press, 1997), pp.
141–147.

Belkin et al. PNAS | August 6, 2019 | vol. 116 | no. 32 | 15853

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

M
ar

ch
 1

9,
 2

02
1

18 / 1

Recent Alternative Explanation [Curth, Jeffares, v.d. Schaar, 2023]:
Need More Careful Parameter Counting

In all non-deep learning experiments by [Belkin et al., 2019]:

▶ Below interpolation threshold m: increase model complexity along
dimension 1

▶ Above interpolation threshold m: increase model complexity along
dimension 2

Examples:

▶ Random forests: [Belkin et al., 2019] increase depth of single tree up
to m (complexity dimension 1). Then average additional trees
above m (complexity dimension 2).

▶ N Random Fourier features: equivalent to least squares on basis
with dimension min(m,N), obtained by unsupervised dimensionality
reduction. [Curth, Jeffares, v.d. Schaar, 2023]

▶ Nr. of least squares parameters is min(m,N) (complexity
dimension 1).

▶ Quality of dimensionality reduction improves with m (complexity
dimension 2).

18 / 1

Recent Alternative Explanation [Curth, Jeffares, v.d. Schaar, 2023]:
Need More Careful Parameter Counting

In all non-deep learning experiments by [Belkin et al., 2019]:

▶ Below interpolation threshold m: increase model complexity along
dimension 1

▶ Above interpolation threshold m: increase model complexity along
dimension 2

U-curve

L-curve

E
rr

or

Complexity dim 1

Complexity

dim
2

Double descent

“unfolding”Complexity

dim
2

Figure 1: A 3D generalization plot with two complexity axes unfolding into double descent. A
generalization plot with two complexity axes, each exhibiting a convex curve (left). By increasing raw parameters
along different axes sequentially, a double descent effect appears to emerge along their composite axis (right).

The modern machine learning (ML) literature, conversely, focuses on far more flexible methods with
relatively huge parameter counts and considers their generalization to unseen inputs [GBC16, Mur22].
A similar U-shaped curve was long accepted to also govern the complexity-generalization relationship
of such methods [GBD92, Vap95, HTF09]– until highly overparametrized models, e.g. neural
networks, were recently found to achieve near-zero training error and excellent test set performance
[NTS14, BLLT20, Bel21]. In this light, the seminal paper of Belkin et al. (2019) [BHMM19]
sparked a new line of research by arguing for a need to extend on the apparent limitations of classic
understanding to account for a double descent in prediction performance as the total number of model
parameters (and thus – presumably – model complexity) grows. This is illustrated in the right panel of
Fig. 1. Intuitively, it is argued that while the traditional U-curve is appropriate for the regime in which
the number of total model parameters p is smaller than the number of instances n, it no longer holds in
the modern, zero train-error, interpolation regime where p>n – here, test error experiences a second
descent. Further, it was demonstrated that this modern double descent view of model complexity
applies not only in deep learning where it was first observed [BO96, NMB+18, SGd+18, ASS20],
but also ubiquitously appears across many non-deep learning methods such as trees, boosting and
even linear regression [BHMM19].

Contributions. In this work, we investigate whether the double descent behavior observed in recent
empirical studies of such non-deep ML methods truly disagrees with the traditional notion of a U-
shaped tradeoff between model complexity and prediction error. In two parts, we argue that once care-
ful consideration is given to what is being plotted on the axes of these double descent plots, the origi-
nally counter-intuitive peaking behavior can be comprehensively explained under existing paradigms:

• Part 1: Revisiting existing experimental evidence. We show that in the experimental evidence for
non-deep double descent – using trees, boosting, and linear regressions – there is implicitly more than
one complexity axis along which the parameter count grows. Conceptually, as illustrated in Fig. 1, we
demonstrate that this empirical evidence for double descent can thus be comprehensively explained as
a consequence of an implicit unfolding of a 3D plot with two orthogonal complexity axes (that both in-
dividually display a classical convex curve) into a single 2D-curve. We also highlight that the location
of the second descent is thus not inherently tied to the interpolation threshold. While this is straight-
forward to show for the tree- and boosting examples (Sec. 2), deconstructing the underlying axes in
the linear regression example is non-trivial (and involves understanding the connections between min-
norm solutions and unsupervised dimensionality reduction). Our analysis in this case (Sec. 3) could
thus be of independent interest as a simple new interpretation of double descent in linear regression.

• Part 2: Rethinking parameter counting through a classical statistics lens. We then note
that all methods considered in Part 1 can be interpreted as smoothers (Sec. 4), which are usually
compared in terms of a measure of the effective (instead of raw) number of parameters they use when
issuing predictions [HT90]. As existing measures were derived with in-sample prediction in mind, we
propose a generalized effective parameter measure p0

ŝ that allows to consider arbitrary sets of inputs
I0. Using p0

ŝ to measure complexity, we then indeed discover that the apparent double descent curves
fold back into more traditional U-shapes – because p0

ŝ is not actually increasing in the interpolation
regime. Further, we find that, in the interpolation regime, trained models tend to use a different
number of effective parameters when issuing predictions on unseen test inputs than on previously
observed training inputs. We also note that, while such interpolating models can generalize well
to unseen inputs, overparametrization cannot improve their performance in terms of the in-sample
prediction error originally of interest in statistics – providing a new reason for the historical absence
of double descent curves. Finally, we discuss practical implications for e.g. model comparison.

2

Double descent happens because experiments
stitch together two independent U-curves!

18 / 1

Conclusion

▶ Exciting new attempts to understand the double descent
phenomenon observed in deep learning, random Fourier features,
random forests, etc.

▶ Crucial to understand true model complexity rather than counting
parameters.

▶ Analysis involves tools like Rademacher complexity that you have
learned in this course.

▶ Whether proposed explanations can be fully formalized for deep
learning remains to be seen...

▶ In any case, the role of optimization algorithms in determining
effective model complexity provides a fascinating new frontier for
understanding the classical bias-variance trade-off!

19 / 1

