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Bandit problems

▶ Adversarial bandit Setting

▶ EXP3 Algorithm and analysis

▶ Stochastic bandit Setting

▶ UCB Algorithm and analysis
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Recap and Bandit Setting
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Overview of Second Half of Course

Online Convex Optimisation

Experts
AA, Hedge

Bandits
UCB, EXP3

(Strongly) Convex Losses
Online Gradient Descent (2x)

Exp-concave Losses
Online Newton Step

Boosting
AdaBoost

Probabilistic Classes
Norm. Max. Likelihood

Material: course notes on MLT website.
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Recap: Setting

Protocol (Dot Loss Game)

▶ For t = 1, 2, . . .
▶ Learner chooses a distribution wt ∈ △K on K “experts”.
▶ Adversary reveals loss vector ℓt ∈ [0, 1]K .
▶ Learner’s loss is the dot loss w⊺

t ℓt =
∑K

k=1 w
k
t ℓ

k
t

Objective
Regret after T rounds:

RT =
T∑
t=1

w⊺
t ℓt︸ ︷︷ ︸

Learner’s loss

− min
k

T∑
t=1

ℓkt︸ ︷︷ ︸
loss of best expert

A good learner has small regret, i.e. it approximately behaves as if it
knows the best expert.
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Recap: Method and Result

Definition (Hedge Algorithm)

The Hedge algorithm with learning rate η plays weights in round t:

wk
t =

e−η
∑t−1

s=1 ℓks∑K
j=1 e

−η
∑t−1

s=1 ℓjs
. (Hedge)

or, equivalently, wk
1 = 1

K and

wk
t+1 =

wk
t e

−ηℓkt∑K
j=1 w

j
t e−ηℓjt

(Hedge, incremental)

Theorem (Hedge Regret Bound)

The regret of Hedge with learning rate η =
√

8 lnK
T is at most

RT ≤
√
T/2 lnK .
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“Bandits”: a (minor?) change of feedback

Learner picks wt ∈ △K

Environment determines loss ℓt ∈ [0, 1]K

Learner sees full ℓt

Learner picks action It ∈ [K ] (possibly at random)
Environment determines loss ℓt ∈ [0, 1]K

Learner sees only ℓItt

Radical upgrade: Learner actively controls which data are collected.

Applications

▶ Clinical trials (round=patient, action=treatment)

▶ Advertising (round=visitor, action=serving specific ad)

▶ Radio channel selection (wifi)

▶ . . .
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Main Questions

▶ How difficult is it to learn from partial observations?
▶ How should learning algorithms be (re)designed?

▶ Obtaining information requires executing sub-optimal actions
▶ Exploration/Exploitation trade-off

▶ What is the effect of the environment model?
▶ Adversarial
▶ Stochastic

Different techniques, different complexity (regret rate)
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Two Brilliant Ideas

▶ Importance Weighted Loss Estimates

▶ Optimism in Face of Uncertainty
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Adversarial Bandits
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Main Questions

How difficult is it to learn from partial observations?
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The setup

Protocol (K -armed adversarial bandit)

▶ Adversary hides ℓkt ∈ [0, 1] for all t ≤ T , k ≤ K .

▶ For t = 1, 2, . . . ,T
▶ Learner picks arm It (typically by sampling It ∼ wt)
▶ Learner observes and incurs loss ℓItt

Objective:
Expected regret w.r.t. best arm after T rounds:

E[RT ] = E
I1···IT

[
T∑
t=1

ℓItt

]
−min

k

T∑
t=1

ℓkt
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Outline of this part

We will prove the following result:

Theorem (Main Adversarial Bandit Result)

There is an algorithm with regret

E[RT ] ≤
√
2TK lnK

Ingredients:

▶ Importance weighted estimates

▶ Reduction to AA

▶ Tweaks to AA analysis
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Importance Weighted Loss Estimates
▶ Opponent fixed ℓt .

▶ We draw It ∼ wt .

▶ We see ℓItt .

We only see one entry of ℓt . Can we still estimate the full ℓt?

Definition (Loss Estimate)

The importance weighted loss estimate is ℓ̂t with entries ℓ̂kt :=
ℓItt

w It
t

1It=k .

Example
Say K = 4, wt = (0.1, 0.2, 0.3, 0.4), ℓt = (0.6, 0.7, 0.8, 0.9) and sampling
from wt gives It = 3. Then we see ℓItt = ℓ3t = 0.8 and form the estimate

ℓ̂t =


0
0

0.8/0.3 = 2.66 . . .
0

 .
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Importance Weighted Loss Estimates

Recall ℓ̂t has entries ℓ̂
k
t = ℓ

It
t

w
It
t

1It=k .

Lemma (Unbiased Estimator)

EIt∼wt [ℓ̂t ] = ℓt .

Proof.
For each k

E
It∼wt

[ℓ̂kt ] =
K∑

It=1

w It
t

ℓItt

w It
t

1It=k =
K∑

It=1

ℓItt 1It=k = ℓkt .

Corollary

EIt∼wt [w
⊺
t ℓ̂t ] = w⊺

t ℓt = EIt∼wt [ℓ
It
t ].
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EXP3: AA + scaling + estimation

Slogan: EXP3 is AA applied to η-scaled importance weighted losses.

Definition (EXP3 Algorithm)

The EXP3 algorithm with learning rate η > 0 samples It ∼ wt in round
t, where

wk
t =

e−η
∑t−1

s=1 ℓ̂ks∑K
j=1 e

−η
∑t−1

s=1 ℓ̂js
. (EXP3)

or, equivalently, wk
1 = 1

K and

wk
t+1 =

wk
t e

−ηℓ̂kt∑K
j=1 w

j
t e−ηℓ̂jt

(EXP3, incremental)
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Dependency structure

w1 w2 w3 . . .

I1 I2 I3

ℓI11 ℓI22 ℓI33

ℓ1 ℓ2 ℓ3 not observed

ℓ̂1 ℓ̂2 ℓ̂3

functional dependency

random sampling
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EXP3 Analysis: dot/mix loss

We would like to use the dot/mix loss relationship. For Hedge the losses
ℓt are bounded, and we can use Hoeffding’s Inequality. But for EXP3
the importance weighted loss estimates ℓ̂t are not bounded above. We
need another relation.

Lemma

For losses ℓ̂kt ≥ 0 and learning rate η > 0,

K∑
k=1

wk
t ℓ̂

k
t︸ ︷︷ ︸

dot loss on ℓ̂t

≤ −1

η
ln

(
K∑

k=1

wk
t e

−ηℓ̂kt

)
︸ ︷︷ ︸

(scaled) mix loss on ηℓ̂t

+
η

2

K∑
k=1

wk
t (ℓ̂

k
t )

2

︸ ︷︷ ︸
overhead

. (1)
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EXP3 Analysis: dot/mix loss

	0.1
	0.2
	0.3
	0.4
	0.5
	0.6
	0.7
	0.8
	0.9
	1

	0 	0.5 	1 	1.5 	2

e-x
1-x+x2/2

Proof.
For x ≥ 0, we have e−x ≤ 1− x + 1

2x
2. Hence

− ln

(
K∑

k=1

wk
t e

−ηℓ̂kt

)
≥ − ln

(
K∑

k=1

wk
t

(
1− ηℓ̂kt +

1

2
(ηℓ̂kt )

2

))

= − ln

(
1− η

K∑
k=1

wk
t ℓ̂

k
t +

η2

2

K∑
k=1

wk
t (ℓ̂

k
t )

2

)

≥ η

K∑
k=1

wk
t ℓ̂

k
t −

η2

2

K∑
k=1

wk
t (ℓ̂

k
t )

2

Dividing by η > 0 and moving the rightmost term over gives the
lemma.
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EXP3 Analysis: overhead term
Let’s study that overhead term in expectation

Lemma

In round t, for the importance weighted loss estimator ℓ̂t

E
It∼wt

[
K∑

k=1

wk
t (ℓ̂

k
t )

2

]
≤ K . (2)

Proof.
By definition of the importance weighted loss estimator

E
It∼wt

[
K∑

k=1

wk
t (ℓ̂

k
t )

2

]
=

K∑
It=1

w It
t

K∑
k=1

wk
t

(
ℓItt

w It
t

1It=k

)2

Only the diagonal It = k contributes, and the loss is bounded ℓItt ∈ [0, 1],
so

=
K∑

It=1

w It
t w

It
t

(ℓItt )
2

(w It
t )2

=
K∑

It=1

(ℓItt )
2 ≤ K .
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EXP3 Regret Bound

Theorem

The expected regret of EXP3 with learning rate η > 0 is

E
I1···IT

[
T∑
t=1

ℓItt

]
−min

k

T∑
t=1

ℓkt ≤ lnK

η
+

TKη

2
.

Corollary

The expected regret of EXP3 with learning rate η =
√

2 lnK
TK is

E
I1···IT

[
T∑
t=1

ℓItt

]
−min

k

T∑
t=1

ℓkt ≤
√
2TK lnK .
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EXP3 Analysis
Proof.
Sum the mix/dot loss inequality (1) over rounds

T∑
t=1

K∑
k=1

w k
t ℓ̂

k
t ≤

T∑
t=1

−1

η
ln

(
K∑

k=1

w k
t e

−ηℓ̂kt

)
+

T∑
t=1

η

2

K∑
k=1

w k
t (ℓ̂

k
t )

2

Apply the AA regret bound (Lecture 8) to the middle sum

T∑
t=1

K∑
k=1

w k
t ℓ̂

k
t ≤ min

k

T∑
t=1

ℓ̂kt +
lnK

η
+

T∑
t=1

η

2

K∑
k=1

w k
t (ℓ̂

k
t )

2

Take expectations, and pull the min out using Jensen’s Inequality

E
I1···IT

[
T∑
t=1

K∑
k=1

w k
t ℓ̂

k
t

]
≤ min

k
E

I1···IT

[
T∑
t=1

ℓ̂kt

]
+

lnK

η
+ E

I1···IT

[
T∑
t=1

η

2

K∑
k=1

w k
t (ℓ̂

k
t )

2

]

Use unbiasedness and our expected overhead bound (2) to conclude

E
I1···IT

[
T∑
t=1

ℓItt

]
≤ min

k

T∑
t=1

ℓkt +
lnK

η
+ T

η

2
K .
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Conclusion of Adversarial Bandits part

An algorithm that can learn from partial information even with
adversarially determined losses.

Observations:

▶ Efficient: run time is O(K ) per round.

▶ Regret of EXP3 is
√
TK lnK compared to

√
T lnK for Hedge in full

information setting.

▶ For
√
KT lower bound see bonus material.

▶ Exploration/exploitation. Unsampled arms get 0 estimated loss. So
eventually they will get sampled.
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Stochastic Bandits
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Main Questions

How difficult is it to learn from partial observations if we assume the
environment is stochastic?

Are we back in statistical learning?

Not quite:

▶ Yes: statistical model for environment

▶ No (Major): Learner actively controls which data are collected

▶ No (Minor): sequential evaluation

A completely different style of algorithm.
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Setting

Protocol (K -armed stochastic bandit)

▶ Environment: distributions (ν1, . . . , νK ) of arm rewards
▶ For t = 1, 2, . . . ,T

▶ Learner picks arm It
▶ Learner observes and receives reward Xt ∼ νIt

Definition (Stochastic Bandit Notation)

The mean reward of arm k is µk = EX∼νk
[X ]. The best arm is

i∗ = argmaxk µ
k . The sub-optimality gap of arm i is ∆i = µi∗ − µi .

Objective
Pseudo-regret after T rounds:

R̄T = Tµi∗ − E
X1···XT
I1···IT

{
T∑
t=1

µIt

}
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Distributional Assumption and Its Consequences
We assume each arm’s reward distribution νk is Gaussian N (µk , 1).

Lemma (Chernoff Bound)

Let X1, . . . ,Xt i.i.d. N (µ, 1) with average µ̂t =
1
t

∑t
i=1 Xi . For any ϵ ≥ 0

P {µ̂t ≥ µ+ ϵ} ≤ e−t ϵ2

2 and

P {µ̂t ≤ µ− ϵ} ≤ e−t ϵ2

2 .
(3a)

Equivalent confidence interval statements: for any δ ∈ (0, 1],

P
{
µ ≤ µ̂t −

√
2 ln 1

δ

t

}
≤ δ and

P
{
µ ≥ µ̂t +

√
2 ln 1

δ

t

}
≤ δ.

(3b)

In fact, we may take sub-Gaussian rewards, defined to satisfy (3). This
includes Gaussian, Bernoulli, non-parametric support [±1], . . .
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Outline of this part

We will prove the following result:

Theorem (Main Stochastic Bandit Result)

There is an algorithm with pseudo-regret

R̄T ≤ C

 K∑
k ̸=i∗

1

∆k

 lnT + C ′
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Idea

▶ For each arm, estimate its mean.

▶ Empirical estimate of mean of arm k after t rounds:

µ̂k
t =

∑t
s=1 Xs1Is=k

Nk
t

where Nk
t =

t∑
s=1

1Is=k

▶ Uncertainty quantification by means of a confidence interval

LCBk
t := µ̂k

t −

√
2α ln(t + 1)

Nk
t

UCBk
t := µ̂k

t +

√
2α ln(t + 1)

Nk
t

Claim: True mean µk ∈ [LCBk
t ,UCB

k
t ] with near-certainty

(probability ≈ 1).

▶ Strategy: Sample the arm of highest UCBt
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UCB Algorithm

Definition (UCB Algorithm)

In round t, the UCB algorithm with parameter α > 2 samples arm

It := argmax
k

UCBk
t−1 = argmax

k
µ̂k
t−1 +

√
2α ln(t)

Nk
t−1

UCB sets It deterministically given the past I<t ,X<t

Optimism in face of uncertainty:
Take the action of highest reward among any plausible bandit model.
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Where we are heading

We will show

Theorem (UCB Regret Bound)

UCB with α > 2 satisfies

R̄T =
K∑

k=1

E[Nk
T ]∆k ≤

 K∑
k ̸=i∗

1

∆i

 8α lnT +
α

α− 2

K∑
k=1

∆k
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UCB Analysis

Let i∗ = argmaxk µ
k be the index of the arm of highest mean.

If in some round t the algorithm samples a suboptimal arm, It = i ̸= i∗,
one of three things must be the case

▶ We have not sampled arm i often; its confidence width is still large

▶ Arm i is overestimated (its LCBi
t−1 is too high).

▶ Arm i∗ is underestimated (its UCBi∗

t−1 is too low).
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UCB Analysis

Lemma

If UCB samples suboptimal It = i ̸= i∗ then

(a) UCBi∗

t−1 ≤ µi∗or

(b) LCBi
t−1 > µi or

(c) N i
t−1 <

8α ln t
∆2

i
where ∆i = µi∗ − µi .

Proof.
Suppose not. Then

UCBi∗

t−1

(a)
> µi∗ = µi +∆i

(c)

≥ µi + 2

√
2α ln t

N i
t−1

(b)

≥ LCBi
t−1 +2

√
2α ln t

N i
t−1

def.
= UCBi

t−1

and this contradicts that UCB samples It = i .
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UCB Analysis

NB: E scopes the rewards X1 · · ·XT . UCB picks It deterministically.

The pseudo-regret can be rewritten as

R̄T = Tµi∗ − E

[
T∑
t=1

µIt

]
=

K∑
k=1

E[Nk
T ]∆k

As ∆i∗ = 0, it suffices to bound E[N i
T ] for suboptimal i ̸= i∗.

We will show for each k ̸= i∗

E[Nk
T ] ≤ C

8α

∆2
k

lnT + C ′

Slogan: Sub-optimal arms are sampled logarithmically often
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UCB Analysis

E[N i
T ] = E

[
T∑
t=1

1It=i

]
=

T∑
t=1

P {It = i}

=
T∑
t=1

P
{
It = i and N i

t−1 < u
}
+

T∑
t=1

P
{
It = i and N i

t−1 ≥ u
}

≤ u +
T∑

t=u+1

P
{
It = i and N i

t−1 ≥ u
}

Lemma

≤ u +
T∑

t=u+1

P
{
UCBi∗

t−1 ≤ µi∗ or LCBi
t−1 > µi

}
Union bd.

≤ u +
T∑

t=u+1

P
{
UCBi∗

t−1 ≤ µi∗
}
+

T∑
t=u+1

P
{
LCBi

t−1 > µi

}
where u = ⌈ 8α lnT

∆2
i

⌉ ≤ 8α lnT
∆2

i
+ 1.
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Confidence bounds are valid
We need to control two similar deviation events. For the first we will show

T∑
t=u+1

P
{
UCBi∗

t−1 ≤ µi∗
}

≤
T∑

t=u+1

1

tα−1
≤ 1

α− 2
.

Let µ̃i
n be the average of the first n samples from arm i , so that

µ̂i
t−1 = µ̃i

N i
t−1

. Then

P
{
UCBi∗

t−1 ≤ µ
i∗
}

def
= P

{
µ̂
i∗
t−1 +

√
2α ln(t)

N i∗
t−1

≤ µ
i∗
}

= P
{
µ̃
i∗

Ni∗
t−1

+

√
2α ln(t)

N i∗
t−1

≤ µ
i∗
}

≤ P

∃s ∈ {1, . . . , t} : µ̃i∗
s +

√
2α ln(t)

s
≤ µ

i∗


union bd

≤
t∑

s=1

P

µ̃
i∗
s +

√
2α ln(t)

s
≤ µ

i∗


Chernoff

≤
t∑

s=1

e
− s

2

(√
2α ln(t)

s

)2

=
t∑

s=1

1

tα
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Overall result

We proved

Theorem (UCB Regret Bound)

UCB with α > 2 satisfies

R̄T =
K∑

k=1

E[Nk
T ]∆k ≤

 K∑
k ̸=i∗

1

∆i

 8α lnT +

(
1 +

2

α− 2

) K∑
k=1

∆k
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Conclusion of stochastic bandit part

An algorithm that can learn from partial information with stochastic
losses.

Observations:

▶ Regret of UCB is lnT whereas EXP3 is
√
T .

▶ Regret of UCB is instance dependent (through gaps ∆i )

▶ Exploration/exploitation mechanism: confidence intervals +
optimism

▶ Matching lower bounds exist (bonus material).
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