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Recap and Bandit Setting
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Overview of Second Half of Course

Experts
AA, Hedge

(Strongly) Convex Losses
Online Gradient Descent (2x)

Exp-concave Losses
Online Newton Step

Online Convex Optimisation

Boosting
AdaBoost

Bandits
UCB, EXP3

Probabilistic Classes
Norm. Max. Likelihood

Material: course notes on MLT website.
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https://www.cwi.nl/~wmkoolen/MLT_2025/

Recap: Setting

Protocol (Dot Loss Game)

» Fort=1,2,...
P Learner chooses a distribution w; € Ak on K “experts”.
> Adversary reveals loss vector £; € [0, 1]%.
> Learner’s loss is the dot loss w!£; = Zle wfek

Objective
Regret after T rounds:

T T
Rr = > wlt, - mkin§ lf
t=1 t=1

——

Learner's loss  loss of best expert

A good learner has small regret, i.e. it approximately behaves as if it
knows the best expert.
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Recap: Method and Result
Definition (Hedge Algorithm)
The Hedge algorithm with learning rate n plays weights in round t:

P e—nZZ 11 éé
Wi = Sk ed (Hedge)
Z—le (R

or, equivalently, Wlk = % and

k
Wé(e*ﬂzt

k
W, = /0
t+1 K _ ZJ
2 jm wre

(Hedge, incremental)

Theorem (Hedge Regret Bound)
The regret of Hedge with learning rate n = /& "7‘.K is at most

Rr < /T/2InK.
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“Bandits”: a (minor?) change of feedback

Learner picks w; € Ak
Environment determines loss £; € [0, 1]%
Learner sees

v
Learner picks action /; € [K] (possibly at random)
Environment determines loss £, € [0, 1]X

Learner sees

Learner actively controls which data are collected.

Applications
» Clinical trials (round=patient, action=treatment)
> Advertising (round=uvisitor, action=serving specific ad)
» Radio channel selection (wifi)
>
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Main Questions

» How difficult is it to learn from 7
» How should learning algorithms be (re)designed?

» Obtaining information requires executing sub-optimal actions
» Exploration/Exploitation trade-off

» What is the effect of the environment model?

» Adversarial
» Stochastic

Different techniques, different complexity (regret rate)
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Two Brilliant Ideas Q

» Importance Weighted Loss Estimates
» Optimism in Face of Uncertainty
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Adversarial Bandits
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Main Questions

How difficult is it to learn from partial observations?
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The setup

Protocol (K-armed adversarial bandit)

» Adversary hides ¢k € [0,1] for all t < T,k < K.

» Fort=1,2,...,T
> Learner picks arm I; (typically by sampling I ~ w;)
> Learner observes and incurs loss £

Objective:
Expected regret w.r.t. best arm after T rounds:

T T
Z 6?1 — mkin ZE’;

E[RT] = \ -IE;/T
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Outline of this part

We will prove the following result:

Theorem (Main Adversarial Bandit Result)

There is an algorithm with regret

E[Rr] < V2TKInK

Ingredients:

» Importance weighted estimates
» Reduction to AA
» Tweaks to AA analysis
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Importance Weighted Loss Estimates
» Opponent fixed £;.
» We draw [; ~ w;.
> We see (.

We only see one entry of £;. Can we still estimate the full £,7

Definition (Loss Estimate)

) . o el
The importance weighted loss estimate is £; with entries E’t‘ = —t,tllt:k-
Wi

Example

Say K =4, w; = (0.1,0.2,0.3,0.4), £, = (0.6,0.7,0.8,0.9) and sampling
from w; gives I; = 3. Then we see E,’f = (3 = 0.8 and form the estimate

0
s 0

£ 7 10.8/0.3=2.66...
0

&~
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Importance Weighted Loss Estimates

~ . N e’t
Recall £; has entries /K = ~t-1,
Wi

=k
Lemma (Unbiased Estimator)

Eltht [‘é\f] = Ef'

Proof.

For each k

li~wy

K
E [/%] = Zwt 4 1,t =) Uil = Lf O
=1

Corollary
Eltht [w;‘r’ét] = wI'et = ]Elr'\"wr [git]
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EXP3: AA + scaling + estimation

Slogan: EXP3 is AA applied to 7-scaled losses.
Definition (EXP3 Algorithm)

The EXP3 algorithm with learning rate ) > 0 samples /; ~ w; in round
t, where a
P e " 22211 E: EXP3
" e o

or, equivalently, wf = % and
Pk
wfe

k .
Wi = =% (EXP3, incremental)
Yo wee
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Dependency structure

w1 w» w3
v v <
h \ h \ I \
/v b /v 2 /v 2
Gy 0 03
4 £, L3 not observed
N functional dependency

= random sampling
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EXP3 Analysis: dot/mix loss

We would like to use the dot/mix loss relationship. For Hedge the losses
£; are bounded, and we can use Hoeffding's Inequality. But for EXP3
the importance weighted loss estimates 2, are above. We
need another relation.

Lemma

For losses f’t‘ > 0 and learning rate n > 0,

K
Zwkek < ——In <Zwk ﬂ”) gz wh(P2. ()

v A -
dot loss on £; (scaled) mix loss on 1, overhead
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EXP3 Analysis: dot/mix loss

ex
1x+x212

Proof.

coocoooo00
SRGRuomon

o
o L
o
-

For x >0, we have e™* <1 — x+ %x2. Hence

K K
N ~ 1, .
—In (Z wtke_"a> > —1In (Z wf (1 -l + 2(U£I§)2>>
k=1

k=1

Il
|
S
VRS
[
|
3
(]~
~
X
+
N3,
(]~
=
X
—~
[y
~ X<
SN—r
N
~

k=1 k=1
K i K
S S
k=1 k=1

Dividing by n > 0 and moving the rightmost term over gives the
lemma.
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EXP3 Analysis: overhead term

Let’s study that overhead term in expectation

Lemma

In round t, for the importance weighted loss estimator 2,

K
2, [y

< K. (2)

Proof.
By definition of the importance weighted loss estimator
K K K /e 2
k(pky2 I k| te
ERNTTIED D sRIE
W w,
k=1 h=1 k=1 t

Only the diagonal I; = k contributes, and the loss is bounded Ei‘ €[0,1],

SO
K

- (t4)*
= ) wiwi s = Y () < K. m

t Wy ]
li=1 (wy')? =
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EXP3 Regret Bound

The expected regret of EXP3 with learning rate n > 0 is

T T
InK TK
E lzeit —mkinZEk < nT+Tn
t=1

hotr 1321

Corollary

The expected regret of EXP3 with learning rate n = /35K s

T T
Zzg} _mkinZef < V2TKInK.
t=1

t=1

E

el
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EXP3 Analysis
Proof.

Sum the mix/dot loss inequality (1) over rounds

SIS < 3 (zwkenﬂ>+zgzw:(2f)2

d\'—‘

t=1 k=1

Apply the AA regret bound (Lecture 8) to the middle sum

T K A T In K . K A
SO wilr < mkinzéf +Z§ZW5(55)2

t=1 k=1 t=1 t=1 k=1

Take expectations, and pull the min out using Jensen’s Inequality

T K
Il-I-EIT [ZZWffﬁ] < mln IE |:Z£

Use unbiasedness and our expected overhead bound (2) to conclude

,
Iy k In K n
JE [Zet] < mmZz + T3k

t=1
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Conclusion of Adversarial Bandits part

An algorithm that can learn from even with
adversarially determined losses.

Observations:
> Efficient: run time is O(K) per round.

» Regret of EXP3 is v TK In K compared to v T In K for Hedge in full
information setting.

» For VKT lower bound see bonus material.

> Exploration/exploitation. Unsampled arms get 0 estimated loss. So
eventually they will get sampled.
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Stochastic Bandits
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Main Questions

How difficult is it to learn from
environment is stochastic?

Are we back in statistical learning?

Not quite:
» Yes: statistical model for environment
» No (Major): Learner actively controls
» No (Minor): sequential evaluation

A completely different style of algorithm.

if we assume the

are collected

24 /37



Setting
Protocol (K-armed stochastic bandit)

» Environment: distributions (v4, ..., vk) of arm rewards
» Fort=1,2,...,T

» Learner picks arm /;

> Learner observes and receives reward X; ~ v,

Definition (Stochastic Bandit Notation)

The mean reward of arm k is ¥ = Ex.,,[X]. The best arm is
= arg maxy puX. The sub-optimality gap of arm j is A; = - w'.

Objective
Pseudo-regret after T rounds:

)
D _ i* _ I
Fr — Ta XII;@XT{ZM }
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Distributional Assumption and Its Consequences
We assume each arm'’s reward distribution vy is Gaussian N (u*,1).

Lemma (Chernoff Bound)
Let X1,..., X i.i.d. N(u,1) with average iy = % S i1 Xi. Foranye>0

62
e '7 and
(3a)

IA

P{f: > p+ e}
P{fe < p—e}

IA
®
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Distributional Assumption and Its Consequences
We assume each arm'’s reward distribution vy is Gaussian N (u*,1).

Lemma (Chernoff Bound)
Let X1,..., X i.i.d. N(u,1) with average iy = % S i1 Xi. Foranye>0

2
P{fi;>pu+et < etz and
(3a)
P{ic<p—e} < e
Equivalent confidence interval statements: for any ¢ € (0, 1],

P{ugﬂt—\/%} 0 and

P{MZﬁmL 2";35} <

IN

(3b)
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Distributional Assumption and Its Consequences
N(pk,1).

We assume each arm’s reward distribution vy is

Lemma (Chernoff Bound)
Let X1,..., X i.i.d. N(u,1) with average iy = % S i1 Xi. Foranye>0

62
P{fi;>pu+et < etz and
(3a)
P{i:<p—e} < e

Equivalent confidence interval statements: for any ¢ € (0, 1],
N 2In i
Pep<fie— =% 0 and

P{uzm+ 2";35} )

rewards, defined to satisfy (3). This

IN

(3b)

In fact, we may take
includes Gaussian, Bernoulli, non-parametric support [£1], ...
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Outline of this part

We will prove the following result:

Theorem (Main Stochastic Bandit Result)

There is an algorithm with pseudo-regret
1
D !
Rr < C k; x| InT+C
1
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Idea

» For each arm, its mean.

» Empirical estimate of mean of arm k after t rounds:

t
ko 2osm1 Xsli=k

t
iy NE where Nf = Zl,szk
t s=1

» Uncertainty quantification by means of a confidence interval

2aIn(t + 1)
k. ~k
LCB; = fir — \/ TONE

2aln(t + 1)
k. ~k

Claim: True mean u* € [LCB¥, UCB¥] with near-certainty
(probability ~ 1).
» Strategy: Sample the arm of highest UCB;
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UCB Algorithm

Definition (UCB Algorithm)

In round ¢, the UCB algorithm with parameter oo > 2 samples arm

2aIn(t)
Ny

Iy = arg max UCBY , = arg max f_+
UCB sets I; deterministically given the past /¢, X<+

Optimism in face of uncertainty:
Take the action of highest reward among any plausible bandit model.
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Where we are heading

We will show

Theorem (UCB Regret Bound)
UCB with o > 2 satisfies

K K 1 a K
Rr = ) E[Nf]A. < ZE 8aln T + QZAk

k=1 ktix *-e
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UCB Analysis

Let i* = arg max, p¥ be the index of the arm of highest mean.

If in some round t the algorithm samples a suboptimal arm, I, =i #£ i*,
one of three things must be the case

» We have not sampled arm i often; its confidence width is still large
> Arm i is overestimated (its LCB!_, is too high).

> Arm i* is underestimated (its UCBL_; is too low).
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UCB Analysis

Lemma

If UCB samples suboptimal I; = i # i* then
(a) UCBt 1 <u or
(b) LCB!_; > p; or

(c) Ni_y <82t where Aj =’ — pil.

Proof.
Suppose not. Then

2aint
Ny

(®) 2aint
> LCBL 42,/ 28 4 yeBi,
Ni

and this contradicts that UCB samples I, = i.

v @ ; QU
UCB,_; > ¢ = ' +4; > p'+2
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UCB Analysis

NB: [E scopes the rewards Xj - -- X7. UCB picks /; deterministically.

The pseudo-regret can be rewritten as
B _ T K
Rr = Ty —E [Z u’r] = ) E[NF]A
t=1 k=1
As A = 0, it suffices to bound E[N’] for suboptimal i # i*

We will show for each k # i*

E[NY] < C In T+C

Slogan: Sub-optimal arms are sampled logarithmically often
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UCB Analysis

T T
E[N}] = E llet_,-] = > P{L=1i}
t=1 t=1

T T
> P{l=iand N} ; <u}+> P{l=iand N]_; > u}
t=1 t=1
-
u—+ Z ]P’{It = and NLl > u}
t=u+1

Lemma T s . .

< u+ Z ]P’{UCB’t_1 <p' or LCBL | > u;}
t=u+1

IN

Union bd.

< uy XT: P{UCBQ"_lguf*}+ XT: P{LCB;_1>M}

t=u+1 t=u+1

where y =[S0 1) < BalnT 4 7
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Confidence bounds are valid
We need to control two similar deviation events. For the first we will show

T ) T 1 1
§ : IP){UCBI:—l < } < E PR < P
t=u+1 t=u+1

Let /i’ be the average of the first n samples from arm i/, so that
fii_y = jii, . Then
t—1

o ok e N 2aIn(t *
rloces <} % e a9 <)
t—1
i* 2aIn(t) *
=P + — <y
{HNt—l N{Z SH
P 2acIn(t *
<P{ﬂse{1,m,t}:ﬂ;+ a"()<u’}
s
union bd _* " 2aIn(t) .
< P il <pu
<> {us + <
s=1
2
Chernoff L —%( 2a|sn(t)) t 1
e = e

35/37



Overall result

We proved
Theorem (UCB Regret Bound)

UCB with o« > 2 satisfies

K K 1 2
Rr = ) E[NflA, < (Z E) 8aln T+(1+m>2Ak

k=1 k#£ix ! k=1
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Conclusion of stochastic bandit part

An algorithm that can learn from with stochastic
losses.

Observations:
> Regret of UCB is In T whereas EXP3 is VT.

> Regret of UCB is (through gaps A;)
» Exploration/exploitation mechanism: confidence intervals +
optimism

» Matching lower bounds exist (bonus material).
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