
1/ 19

Tutorial on

Quantum Machine Learning

Ronald de Wolf

2/ 19

Quantum computers

Quantum mechanics:
developed from 1900

Computer science:
developed from 1930s

Richard Feynman, David Deutsch
in early 1980s:

Harness those quantum effects for useful computations!

2/ 19

Quantum computers

Quantum mechanics:
developed from 1900

Computer science:
developed from 1930s

Richard Feynman, David Deutsch
in early 1980s:

Harness those quantum effects for useful computations!

2/ 19

Quantum computers

Quantum mechanics:
developed from 1900

Computer science:
developed from 1930s

Richard Feynman, David Deutsch
in early 1980s:

Harness those quantum effects for useful computations!

2/ 19

Quantum computers

Quantum mechanics:
developed from 1900

Computer science:
developed from 1930s

Richard Feynman, David Deutsch
in early 1980s:

Harness those quantum effects for useful computations!

3/ 19

The math of quantum computing on one slide

▶ Qubit is superposition of 0 and 1: α0|0⟩+ α1|1⟩ ∈ C2

▶ n-qubit system: superposition of all n-bit strings:∑
x∈{0,1}n

αx |x⟩ ∈ C2n

▶ Measurement: see outcome x ∈ {0, 1}n with probability |αx |2

▶ Unitary transformation: matrix that preserves the length of
the vector of amplitudes. Gates: unitaries on 1 qubit

X =

(
0 1
1 0

)
,Z =

(
1 0
0 −1

)
,T =

(
1 0

0 e iπ/4

)
,H =

1√
2

(
1 1
1 −1

)
or on 2 qubits, CNOT: |a, b⟩ 7→ |a, a⊕ b⟩

▶ Combine simultaneous gates via tensor product,
combine sequential gates via matrix product

3/ 19

The math of quantum computing on one slide

▶ Qubit is superposition of 0 and 1: α0|0⟩+ α1|1⟩

∈ C2

▶ n-qubit system: superposition of all n-bit strings:∑
x∈{0,1}n

αx |x⟩ ∈ C2n

▶ Measurement: see outcome x ∈ {0, 1}n with probability |αx |2

▶ Unitary transformation: matrix that preserves the length of
the vector of amplitudes. Gates: unitaries on 1 qubit

X =

(
0 1
1 0

)
,Z =

(
1 0
0 −1

)
,T =

(
1 0

0 e iπ/4

)
,H =

1√
2

(
1 1
1 −1

)
or on 2 qubits, CNOT: |a, b⟩ 7→ |a, a⊕ b⟩

▶ Combine simultaneous gates via tensor product,
combine sequential gates via matrix product

3/ 19

The math of quantum computing on one slide

▶ Qubit is superposition of 0 and 1: α0|0⟩+ α1|1⟩ ∈ C2

▶ n-qubit system: superposition of all n-bit strings:∑
x∈{0,1}n

αx |x⟩ ∈ C2n

▶ Measurement: see outcome x ∈ {0, 1}n with probability |αx |2

▶ Unitary transformation: matrix that preserves the length of
the vector of amplitudes. Gates: unitaries on 1 qubit

X =

(
0 1
1 0

)
,Z =

(
1 0
0 −1

)
,T =

(
1 0

0 e iπ/4

)
,H =

1√
2

(
1 1
1 −1

)
or on 2 qubits, CNOT: |a, b⟩ 7→ |a, a⊕ b⟩

▶ Combine simultaneous gates via tensor product,
combine sequential gates via matrix product

3/ 19

The math of quantum computing on one slide

▶ Qubit is superposition of 0 and 1: α0|0⟩+ α1|1⟩ ∈ C2

▶ n-qubit system: superposition of all n-bit strings:∑
x∈{0,1}n

αx |x⟩

∈ C2n

▶ Measurement: see outcome x ∈ {0, 1}n with probability |αx |2

▶ Unitary transformation: matrix that preserves the length of
the vector of amplitudes. Gates: unitaries on 1 qubit

X =

(
0 1
1 0

)
,Z =

(
1 0
0 −1

)
,T =

(
1 0

0 e iπ/4

)
,H =

1√
2

(
1 1
1 −1

)
or on 2 qubits, CNOT: |a, b⟩ 7→ |a, a⊕ b⟩

▶ Combine simultaneous gates via tensor product,
combine sequential gates via matrix product

3/ 19

The math of quantum computing on one slide

▶ Qubit is superposition of 0 and 1: α0|0⟩+ α1|1⟩ ∈ C2

▶ n-qubit system: superposition of all n-bit strings:∑
x∈{0,1}n

αx |x⟩ ∈ C2n

▶ Measurement: see outcome x ∈ {0, 1}n with probability |αx |2

▶ Unitary transformation: matrix that preserves the length of
the vector of amplitudes. Gates: unitaries on 1 qubit

X =

(
0 1
1 0

)
,Z =

(
1 0
0 −1

)
,T =

(
1 0

0 e iπ/4

)
,H =

1√
2

(
1 1
1 −1

)
or on 2 qubits, CNOT: |a, b⟩ 7→ |a, a⊕ b⟩

▶ Combine simultaneous gates via tensor product,
combine sequential gates via matrix product

3/ 19

The math of quantum computing on one slide

▶ Qubit is superposition of 0 and 1: α0|0⟩+ α1|1⟩ ∈ C2

▶ n-qubit system: superposition of all n-bit strings:∑
x∈{0,1}n

αx |x⟩ ∈ C2n

▶ Measurement: see outcome x ∈ {0, 1}n with probability |αx |2

▶ Unitary transformation: matrix that preserves the length of
the vector of amplitudes. Gates: unitaries on 1 qubit

X =

(
0 1
1 0

)
,Z =

(
1 0
0 −1

)
,T =

(
1 0

0 e iπ/4

)
,H =

1√
2

(
1 1
1 −1

)
or on 2 qubits, CNOT: |a, b⟩ 7→ |a, a⊕ b⟩

▶ Combine simultaneous gates via tensor product,
combine sequential gates via matrix product

3/ 19

The math of quantum computing on one slide

▶ Qubit is superposition of 0 and 1: α0|0⟩+ α1|1⟩ ∈ C2

▶ n-qubit system: superposition of all n-bit strings:∑
x∈{0,1}n

αx |x⟩ ∈ C2n

▶ Measurement: see outcome x ∈ {0, 1}n with probability |αx |2

▶ Unitary transformation: matrix that preserves the length of
the vector of amplitudes.

Gates: unitaries on 1 qubit

X =

(
0 1
1 0

)
,Z =

(
1 0
0 −1

)
,T =

(
1 0

0 e iπ/4

)
,H =

1√
2

(
1 1
1 −1

)
or on 2 qubits, CNOT: |a, b⟩ 7→ |a, a⊕ b⟩

▶ Combine simultaneous gates via tensor product,
combine sequential gates via matrix product

3/ 19

The math of quantum computing on one slide

▶ Qubit is superposition of 0 and 1: α0|0⟩+ α1|1⟩ ∈ C2

▶ n-qubit system: superposition of all n-bit strings:∑
x∈{0,1}n

αx |x⟩ ∈ C2n

▶ Measurement: see outcome x ∈ {0, 1}n with probability |αx |2

▶ Unitary transformation: matrix that preserves the length of
the vector of amplitudes. Gates: unitaries on 1 qubit

X =

(
0 1
1 0

)
,Z =

(
1 0
0 −1

)
,T =

(
1 0

0 e iπ/4

)
,H =

1√
2

(
1 1
1 −1

)
or on 2 qubits, CNOT: |a, b⟩ 7→ |a, a⊕ b⟩

▶ Combine simultaneous gates via tensor product,
combine sequential gates via matrix product

3/ 19

The math of quantum computing on one slide

▶ Qubit is superposition of 0 and 1: α0|0⟩+ α1|1⟩ ∈ C2

▶ n-qubit system: superposition of all n-bit strings:∑
x∈{0,1}n

αx |x⟩ ∈ C2n

▶ Measurement: see outcome x ∈ {0, 1}n with probability |αx |2

▶ Unitary transformation: matrix that preserves the length of
the vector of amplitudes. Gates: unitaries on 1 qubit

X =

(
0 1
1 0

)

,Z =

(
1 0
0 −1

)
,T =

(
1 0

0 e iπ/4

)
,H =

1√
2

(
1 1
1 −1

)
or on 2 qubits, CNOT: |a, b⟩ 7→ |a, a⊕ b⟩

▶ Combine simultaneous gates via tensor product,
combine sequential gates via matrix product

3/ 19

The math of quantum computing on one slide

▶ Qubit is superposition of 0 and 1: α0|0⟩+ α1|1⟩ ∈ C2

▶ n-qubit system: superposition of all n-bit strings:∑
x∈{0,1}n

αx |x⟩ ∈ C2n

▶ Measurement: see outcome x ∈ {0, 1}n with probability |αx |2

▶ Unitary transformation: matrix that preserves the length of
the vector of amplitudes. Gates: unitaries on 1 qubit

X =

(
0 1
1 0

)
,Z =

(
1 0
0 −1

)

,T =

(
1 0

0 e iπ/4

)
,H =

1√
2

(
1 1
1 −1

)
or on 2 qubits, CNOT: |a, b⟩ 7→ |a, a⊕ b⟩

▶ Combine simultaneous gates via tensor product,
combine sequential gates via matrix product

3/ 19

The math of quantum computing on one slide

▶ Qubit is superposition of 0 and 1: α0|0⟩+ α1|1⟩ ∈ C2

▶ n-qubit system: superposition of all n-bit strings:∑
x∈{0,1}n

αx |x⟩ ∈ C2n

▶ Measurement: see outcome x ∈ {0, 1}n with probability |αx |2

▶ Unitary transformation: matrix that preserves the length of
the vector of amplitudes. Gates: unitaries on 1 qubit

X =

(
0 1
1 0

)
,Z =

(
1 0
0 −1

)
,T =

(
1 0

0 e iπ/4

)

,H =
1√
2

(
1 1
1 −1

)
or on 2 qubits, CNOT: |a, b⟩ 7→ |a, a⊕ b⟩

▶ Combine simultaneous gates via tensor product,
combine sequential gates via matrix product

3/ 19

The math of quantum computing on one slide

▶ Qubit is superposition of 0 and 1: α0|0⟩+ α1|1⟩ ∈ C2

▶ n-qubit system: superposition of all n-bit strings:∑
x∈{0,1}n

αx |x⟩ ∈ C2n

▶ Measurement: see outcome x ∈ {0, 1}n with probability |αx |2

▶ Unitary transformation: matrix that preserves the length of
the vector of amplitudes. Gates: unitaries on 1 qubit

X =

(
0 1
1 0

)
,Z =

(
1 0
0 −1

)
,T =

(
1 0

0 e iπ/4

)
,H =

1√
2

(
1 1
1 −1

)

or on 2 qubits, CNOT: |a, b⟩ 7→ |a, a⊕ b⟩
▶ Combine simultaneous gates via tensor product,

combine sequential gates via matrix product

3/ 19

The math of quantum computing on one slide

▶ Qubit is superposition of 0 and 1: α0|0⟩+ α1|1⟩ ∈ C2

▶ n-qubit system: superposition of all n-bit strings:∑
x∈{0,1}n

αx |x⟩ ∈ C2n

▶ Measurement: see outcome x ∈ {0, 1}n with probability |αx |2

▶ Unitary transformation: matrix that preserves the length of
the vector of amplitudes. Gates: unitaries on 1 qubit

X =

(
0 1
1 0

)
,Z =

(
1 0
0 −1

)
,T =

(
1 0

0 e iπ/4

)
,H =

1√
2

(
1 1
1 −1

)
or on 2 qubits, CNOT: |a, b⟩ 7→ |a, a⊕ b⟩

▶ Combine simultaneous gates via tensor product,
combine sequential gates via matrix product

3/ 19

The math of quantum computing on one slide

▶ Qubit is superposition of 0 and 1: α0|0⟩+ α1|1⟩ ∈ C2

▶ n-qubit system: superposition of all n-bit strings:∑
x∈{0,1}n

αx |x⟩ ∈ C2n

▶ Measurement: see outcome x ∈ {0, 1}n with probability |αx |2

▶ Unitary transformation: matrix that preserves the length of
the vector of amplitudes. Gates: unitaries on 1 qubit

X =

(
0 1
1 0

)
,Z =

(
1 0
0 −1

)
,T =

(
1 0

0 e iπ/4

)
,H =

1√
2

(
1 1
1 −1

)
or on 2 qubits, CNOT: |a, b⟩ 7→ |a, a⊕ b⟩

▶ Combine simultaneous gates via tensor product,
combine sequential gates via matrix product

4/ 19

Quantum algorithms

Q algorithms work by interplay of superposition and interference:

1. Start with qubits in some simple state (e.g. all |0⟩)
2. Run circuit of gates to create the

the right interference, so final state
has most of its weight on solutions
to your computational problem

3. Measuring final state then gives solution to your problem

Two important questions:

▶ Can we build such a computer?

▶ What can it do?

4/ 19

Quantum algorithms

Q algorithms work by interplay of superposition and interference

:

1. Start with qubits in some simple state (e.g. all |0⟩)
2. Run circuit of gates to create the

the right interference, so final state
has most of its weight on solutions
to your computational problem

3. Measuring final state then gives solution to your problem

Two important questions:

▶ Can we build such a computer?

▶ What can it do?

4/ 19

Quantum algorithms

Q algorithms work by interplay of superposition and interference:

1. Start with qubits in some simple state (e.g. all |0⟩)

2. Run circuit of gates to create the
the right interference, so final state
has most of its weight on solutions
to your computational problem

3. Measuring final state then gives solution to your problem

Two important questions:

▶ Can we build such a computer?

▶ What can it do?

4/ 19

Quantum algorithms

Q algorithms work by interplay of superposition and interference:

1. Start with qubits in some simple state (e.g. all |0⟩)
2. Run circuit of gates to create the

the right interference, so final state
has most of its weight on solutions
to your computational problem

3. Measuring final state then gives solution to your problem

Two important questions:

▶ Can we build such a computer?

▶ What can it do?

4/ 19

Quantum algorithms

Q algorithms work by interplay of superposition and interference:

1. Start with qubits in some simple state (e.g. all |0⟩)
2. Run circuit of gates to create the

the right interference, so final state
has most of its weight on solutions
to your computational problem

3. Measuring final state then gives solution to your problem

Two important questions:

▶ Can we build such a computer?

▶ What can it do?

4/ 19

Quantum algorithms

Q algorithms work by interplay of superposition and interference:

1. Start with qubits in some simple state (e.g. all |0⟩)
2. Run circuit of gates to create the

the right interference, so final state
has most of its weight on solutions
to your computational problem

3. Measuring final state then gives solution to your problem

Two important questions:

▶ Can we build such a computer?

▶ What can it do?

4/ 19

Quantum algorithms

Q algorithms work by interplay of superposition and interference:

1. Start with qubits in some simple state (e.g. all |0⟩)
2. Run circuit of gates to create the

the right interference, so final state
has most of its weight on solutions
to your computational problem

3. Measuring final state then gives solution to your problem

Two important questions:

▶ Can we build such a computer?

▶ What can it do?

4/ 19

Quantum algorithms

Q algorithms work by interplay of superposition and interference:

1. Start with qubits in some simple state (e.g. all |0⟩)
2. Run circuit of gates to create the

the right interference, so final state
has most of its weight on solutions
to your computational problem

3. Measuring final state then gives solution to your problem

Two important questions:

▶ Can we build such a computer?

▶ What can it do?

5/ 19

Quantum algorithms: main examples that we know

▶ Shor’s algorithm’94: can factor large integers and find discrete
logarithms efficiently (runtime quadratic in number input bits)

▶ Grover’s algorithm’96: search through an unstructured search
space of size N in time

√
N

▶ Quantum walks’00ff: for more structured search problems on
graphs, typically quadratic quantum speed-up or less

▶ HHL algorithm’09: can solve a sparse, well-conditioned linear
system Ax = b very efficiently, but provides the answer as a
quantum state

∑
i xi |i⟩ (when is this useful?)

▶ Hamiltonian simulation’96ff: given classical description
of a local Hamiltonian H =

∑
j Hj , implement the unitary

evolution e−iHt as a small circuit of gates

5/ 19

Quantum algorithms: main examples that we know

▶ Shor’s algorithm’94: can factor large integers and find discrete
logarithms efficiently (runtime quadratic in number input bits)

▶ Grover’s algorithm’96: search through an unstructured search
space of size N in time

√
N

▶ Quantum walks’00ff: for more structured search problems on
graphs, typically quadratic quantum speed-up or less

▶ HHL algorithm’09: can solve a sparse, well-conditioned linear
system Ax = b very efficiently, but provides the answer as a
quantum state

∑
i xi |i⟩ (when is this useful?)

▶ Hamiltonian simulation’96ff: given classical description
of a local Hamiltonian H =

∑
j Hj , implement the unitary

evolution e−iHt as a small circuit of gates

5/ 19

Quantum algorithms: main examples that we know

▶ Shor’s algorithm’94: can factor large integers and find discrete
logarithms efficiently (runtime quadratic in number input bits)

▶ Grover’s algorithm’96: search through an unstructured search
space of size N in time

√
N

▶ Quantum walks’00ff: for more structured search problems on
graphs, typically quadratic quantum speed-up or less

▶ HHL algorithm’09: can solve a sparse, well-conditioned linear
system Ax = b very efficiently, but provides the answer as a
quantum state

∑
i xi |i⟩ (when is this useful?)

▶ Hamiltonian simulation’96ff: given classical description
of a local Hamiltonian H =

∑
j Hj , implement the unitary

evolution e−iHt as a small circuit of gates

5/ 19

Quantum algorithms: main examples that we know

▶ Shor’s algorithm’94: can factor large integers and find discrete
logarithms efficiently (runtime quadratic in number input bits)

▶ Grover’s algorithm’96: search through an unstructured search
space of size N in time

√
N

▶ Quantum walks’00ff: for more structured search problems on
graphs, typically quadratic quantum speed-up or less

▶ HHL algorithm’09: can solve a sparse, well-conditioned linear
system Ax = b very efficiently, but provides the answer as a
quantum state

∑
i xi |i⟩ (when is this useful?)

▶ Hamiltonian simulation’96ff: given classical description
of a local Hamiltonian H =

∑
j Hj , implement the unitary

evolution e−iHt as a small circuit of gates

5/ 19

Quantum algorithms: main examples that we know

▶ Shor’s algorithm’94: can factor large integers and find discrete
logarithms efficiently (runtime quadratic in number input bits)

▶ Grover’s algorithm’96: search through an unstructured search
space of size N in time

√
N

▶ Quantum walks’00ff: for more structured search problems on
graphs, typically quadratic quantum speed-up or less

▶ HHL algorithm’09: can solve a sparse, well-conditioned linear
system Ax = b very efficiently, but provides the answer as a
quantum state

∑
i xi |i⟩

(when is this useful?)

▶ Hamiltonian simulation’96ff: given classical description
of a local Hamiltonian H =

∑
j Hj , implement the unitary

evolution e−iHt as a small circuit of gates

5/ 19

Quantum algorithms: main examples that we know

▶ Shor’s algorithm’94: can factor large integers and find discrete
logarithms efficiently (runtime quadratic in number input bits)

▶ Grover’s algorithm’96: search through an unstructured search
space of size N in time

√
N

▶ Quantum walks’00ff: for more structured search problems on
graphs, typically quadratic quantum speed-up or less

▶ HHL algorithm’09: can solve a sparse, well-conditioned linear
system Ax = b very efficiently, but provides the answer as a
quantum state

∑
i xi |i⟩ (when is this useful?)

▶ Hamiltonian simulation’96ff: given classical description
of a local Hamiltonian H =

∑
j Hj , implement the unitary

evolution e−iHt as a small circuit of gates

5/ 19

Quantum algorithms: main examples that we know

▶ Shor’s algorithm’94: can factor large integers and find discrete
logarithms efficiently (runtime quadratic in number input bits)

▶ Grover’s algorithm’96: search through an unstructured search
space of size N in time

√
N

▶ Quantum walks’00ff: for more structured search problems on
graphs, typically quadratic quantum speed-up or less

▶ HHL algorithm’09: can solve a sparse, well-conditioned linear
system Ax = b very efficiently, but provides the answer as a
quantum state

∑
i xi |i⟩ (when is this useful?)

▶ Hamiltonian simulation’96ff: given classical description
of a local Hamiltonian H =

∑
j Hj , implement the unitary

evolution e−iHt as a small circuit of gates

6/ 19

Quantum machine learning

▶ Machine learning: huge success since ± 2012

▶ Quantum machine learning: huge hype since ± 2015

▶ Often mentioned by startups and newspaper articles as
an obvious area where quantum computers are great

▶ What do we actually have?

▶ Hard-to-assess claims about speedups for natural problems
using variational circuits (“quantum neural networks”)

▶ Proven claims about quantum improvements in time/sample
complexity for problems with quantum data

▶ Proven but subsequently dequantized quantum ML algorithms
(Kerenidis-Prakash recommendation system by Ewin Tang)

6/ 19

Quantum machine learning

▶ Machine learning: huge success since ± 2012

▶ Quantum machine learning: huge hype since ± 2015

▶ Often mentioned by startups and newspaper articles as
an obvious area where quantum computers are great

▶ What do we actually have?

▶ Hard-to-assess claims about speedups for natural problems
using variational circuits (“quantum neural networks”)

▶ Proven claims about quantum improvements in time/sample
complexity for problems with quantum data

▶ Proven but subsequently dequantized quantum ML algorithms
(Kerenidis-Prakash recommendation system by Ewin Tang)

6/ 19

Quantum machine learning

▶ Machine learning: huge success since ± 2012

▶ Quantum machine learning: huge hype since ± 2015

▶ Often mentioned by startups and newspaper articles as
an obvious area where quantum computers are great

▶ What do we actually have?

▶ Hard-to-assess claims about speedups for natural problems
using variational circuits (“quantum neural networks”)

▶ Proven claims about quantum improvements in time/sample
complexity for problems with quantum data

▶ Proven but subsequently dequantized quantum ML algorithms
(Kerenidis-Prakash recommendation system by Ewin Tang)

6/ 19

Quantum machine learning

▶ Machine learning: huge success since ± 2012

▶ Quantum machine learning: huge hype since ± 2015

▶ Often mentioned by startups and newspaper articles as
an obvious area where quantum computers are great

▶ What do we actually have?

▶ Hard-to-assess claims about speedups for natural problems
using variational circuits (“quantum neural networks”)

▶ Proven claims about quantum improvements in time/sample
complexity for problems with quantum data

▶ Proven but subsequently dequantized quantum ML algorithms
(Kerenidis-Prakash recommendation system by Ewin Tang)

6/ 19

Quantum machine learning

▶ Machine learning: huge success since ± 2012

▶ Quantum machine learning: huge hype since ± 2015

▶ Often mentioned by startups and newspaper articles as
an obvious area where quantum computers are great

▶ What do we actually have?

▶ Hard-to-assess claims about speedups for natural problems
using variational circuits (“quantum neural networks”)

▶ Proven claims about quantum improvements in time/sample
complexity for problems with quantum data

▶ Proven but subsequently dequantized quantum ML algorithms
(Kerenidis-Prakash recommendation system by Ewin Tang)

6/ 19

Quantum machine learning

▶ Machine learning: huge success since ± 2012

▶ Quantum machine learning: huge hype since ± 2015

▶ Often mentioned by startups and newspaper articles as
an obvious area where quantum computers are great

▶ What do we actually have?

▶ Hard-to-assess claims about speedups for natural problems
using variational circuits (“quantum neural networks”)

▶ Proven claims about quantum improvements in time/sample
complexity for problems with quantum data

▶ Proven but subsequently dequantized quantum ML algorithms
(Kerenidis-Prakash recommendation system by Ewin Tang)

6/ 19

Quantum machine learning

▶ Machine learning: huge success since ± 2012

▶ Quantum machine learning: huge hype since ± 2015

▶ Often mentioned by startups and newspaper articles as
an obvious area where quantum computers are great

▶ What do we actually have?

▶ Hard-to-assess claims about speedups for natural problems
using variational circuits (“quantum neural networks”)

▶ Proven claims about quantum improvements in time/sample
complexity for problems with quantum data

▶ Proven but subsequently dequantized quantum ML algorithms
(Kerenidis-Prakash recommendation system by Ewin Tang)

7/ 19

This talk: theoretical aspects of quantum ML

▶ ML = data + optimization

Classical learner Quantum learner

Classical data Classical ML This talk

Quantum data ? This talk

▶ Subareas of ML:

1. Supervised learning: from labeled data
PAC learning from quantum data, positive & negative results

2. Unsupervised learning: from unlabeled data
Quantum linear algebra, e.g. Principal Component Analysis

3. Reinforcement learning: from interaction with the environment
Very interesting, but won’t cover it here

7/ 19

This talk: theoretical aspects of quantum ML

▶ ML = data + optimization

Classical learner Quantum learner

Classical data Classical ML This talk

Quantum data ? This talk

▶ Subareas of ML:

1. Supervised learning: from labeled data
PAC learning from quantum data, positive & negative results

2. Unsupervised learning: from unlabeled data
Quantum linear algebra, e.g. Principal Component Analysis

3. Reinforcement learning: from interaction with the environment
Very interesting, but won’t cover it here

7/ 19

This talk: theoretical aspects of quantum ML

▶ ML = data + optimization

Classical learner Quantum learner

Classical data Classical ML This talk

Quantum data ? This talk

▶ Subareas of ML:

1. Supervised learning: from labeled data
PAC learning from quantum data, positive & negative results

2. Unsupervised learning: from unlabeled data
Quantum linear algebra, e.g. Principal Component Analysis

3. Reinforcement learning: from interaction with the environment
Very interesting, but won’t cover it here

7/ 19

This talk: theoretical aspects of quantum ML

▶ ML = data + optimization

Classical learner Quantum learner

Classical data Classical ML This talk

Quantum data ? This talk

▶ Subareas of ML:

1. Supervised learning: from labeled data
PAC learning from quantum data, positive & negative results

2. Unsupervised learning: from unlabeled data
Quantum linear algebra, e.g. Principal Component Analysis

3. Reinforcement learning: from interaction with the environment
Very interesting, but won’t cover it here

7/ 19

This talk: theoretical aspects of quantum ML

▶ ML = data + optimization

Classical learner Quantum learner

Classical data Classical ML This talk

Quantum data ? This talk

▶ Subareas of ML:

1. Supervised learning: from labeled data
PAC learning from quantum data, positive & negative results

2. Unsupervised learning: from unlabeled data
Quantum linear algebra, e.g. Principal Component Analysis

3. Reinforcement learning: from interaction with the environment
Very interesting, but won’t cover it here

7/ 19

This talk: theoretical aspects of quantum ML

▶ ML = data + optimization

Classical learner Quantum learner

Classical data Classical ML This talk

Quantum data ? This talk

▶ Subareas of ML:

1. Supervised learning: from labeled data
PAC learning from quantum data, positive & negative results

2. Unsupervised learning: from unlabeled data
Quantum linear algebra, e.g. Principal Component Analysis

3. Reinforcement learning: from interaction with the environment
Very interesting, but won’t cover it here

8/ 19

A mathematical model for supervised learning: PAC

▶ Concept: some function f : X → {−1, 1} (think X = {0, 1}n)
Concept class C: set of concepts, e.g. small circuits, DNFs,. . .

▶ Want to learn unknown target concept f ∈ C from examples:
(x , f (x)), where x ∼ unknown distribution D on X

,+ ,− ,+ ,−
▶ Goal: using some i.i.d. examples, learner for C should output

hypothesis h that is probably approximately correct (PAC).

Error of h w.r.t. target f : errD(f , h) = Pr
x∼D

[f (x) ̸= h(x)]

▶ An algorithm (ε, δ)-PAC-learns C if:

∀f ∈ C ∀D : Pr[errD(f , h) ≤ ε︸ ︷︷ ︸
h is approximately correct

] ≥ 1− δ

8/ 19

A mathematical model for supervised learning: PAC

▶ Concept: some function f : X → {−1, 1} (think X = {0, 1}n)

Concept class C: set of concepts, e.g. small circuits, DNFs,. . .

▶ Want to learn unknown target concept f ∈ C from examples:
(x , f (x)), where x ∼ unknown distribution D on X

,+ ,− ,+ ,−
▶ Goal: using some i.i.d. examples, learner for C should output

hypothesis h that is probably approximately correct (PAC).

Error of h w.r.t. target f : errD(f , h) = Pr
x∼D

[f (x) ̸= h(x)]

▶ An algorithm (ε, δ)-PAC-learns C if:

∀f ∈ C ∀D : Pr[errD(f , h) ≤ ε︸ ︷︷ ︸
h is approximately correct

] ≥ 1− δ

8/ 19

A mathematical model for supervised learning: PAC

▶ Concept: some function f : X → {−1, 1} (think X = {0, 1}n)
Concept class C: set of concepts, e.g. small circuits, DNFs,. . .

▶ Want to learn unknown target concept f ∈ C from examples:
(x , f (x)), where x ∼ unknown distribution D on X

,+ ,− ,+ ,−
▶ Goal: using some i.i.d. examples, learner for C should output

hypothesis h that is probably approximately correct (PAC).

Error of h w.r.t. target f : errD(f , h) = Pr
x∼D

[f (x) ̸= h(x)]

▶ An algorithm (ε, δ)-PAC-learns C if:

∀f ∈ C ∀D : Pr[errD(f , h) ≤ ε︸ ︷︷ ︸
h is approximately correct

] ≥ 1− δ

8/ 19

A mathematical model for supervised learning: PAC

▶ Concept: some function f : X → {−1, 1} (think X = {0, 1}n)
Concept class C: set of concepts, e.g. small circuits, DNFs,. . .

▶ Want to learn unknown target concept f ∈ C

from examples:
(x , f (x)), where x ∼ unknown distribution D on X

,+ ,− ,+ ,−
▶ Goal: using some i.i.d. examples, learner for C should output

hypothesis h that is probably approximately correct (PAC).

Error of h w.r.t. target f : errD(f , h) = Pr
x∼D

[f (x) ̸= h(x)]

▶ An algorithm (ε, δ)-PAC-learns C if:

∀f ∈ C ∀D : Pr[errD(f , h) ≤ ε︸ ︷︷ ︸
h is approximately correct

] ≥ 1− δ

8/ 19

A mathematical model for supervised learning: PAC

▶ Concept: some function f : X → {−1, 1} (think X = {0, 1}n)
Concept class C: set of concepts, e.g. small circuits, DNFs,. . .

▶ Want to learn unknown target concept f ∈ C from examples:
(x , f (x)), where x ∼ unknown distribution D on X

,+ ,− ,+ ,−
▶ Goal: using some i.i.d. examples, learner for C should output

hypothesis h that is probably approximately correct (PAC).

Error of h w.r.t. target f : errD(f , h) = Pr
x∼D

[f (x) ̸= h(x)]

▶ An algorithm (ε, δ)-PAC-learns C if:

∀f ∈ C ∀D : Pr[errD(f , h) ≤ ε︸ ︷︷ ︸
h is approximately correct

] ≥ 1− δ

8/ 19

A mathematical model for supervised learning: PAC

▶ Concept: some function f : X → {−1, 1} (think X = {0, 1}n)
Concept class C: set of concepts, e.g. small circuits, DNFs,. . .

▶ Want to learn unknown target concept f ∈ C from examples:
(x , f (x)), where x ∼ unknown distribution D on X

,+

,− ,+ ,−
▶ Goal: using some i.i.d. examples, learner for C should output

hypothesis h that is probably approximately correct (PAC).

Error of h w.r.t. target f : errD(f , h) = Pr
x∼D

[f (x) ̸= h(x)]

▶ An algorithm (ε, δ)-PAC-learns C if:

∀f ∈ C ∀D : Pr[errD(f , h) ≤ ε︸ ︷︷ ︸
h is approximately correct

] ≥ 1− δ

8/ 19

A mathematical model for supervised learning: PAC

▶ Concept: some function f : X → {−1, 1} (think X = {0, 1}n)
Concept class C: set of concepts, e.g. small circuits, DNFs,. . .

▶ Want to learn unknown target concept f ∈ C from examples:
(x , f (x)), where x ∼ unknown distribution D on X

,+ ,−

,+ ,−
▶ Goal: using some i.i.d. examples, learner for C should output

hypothesis h that is probably approximately correct (PAC).

Error of h w.r.t. target f : errD(f , h) = Pr
x∼D

[f (x) ̸= h(x)]

▶ An algorithm (ε, δ)-PAC-learns C if:

∀f ∈ C ∀D : Pr[errD(f , h) ≤ ε︸ ︷︷ ︸
h is approximately correct

] ≥ 1− δ

8/ 19

A mathematical model for supervised learning: PAC

▶ Concept: some function f : X → {−1, 1} (think X = {0, 1}n)
Concept class C: set of concepts, e.g. small circuits, DNFs,. . .

▶ Want to learn unknown target concept f ∈ C from examples:
(x , f (x)), where x ∼ unknown distribution D on X

,+ ,− ,+

,−
▶ Goal: using some i.i.d. examples, learner for C should output

hypothesis h that is probably approximately correct (PAC).

Error of h w.r.t. target f : errD(f , h) = Pr
x∼D

[f (x) ̸= h(x)]

▶ An algorithm (ε, δ)-PAC-learns C if:

∀f ∈ C ∀D : Pr[errD(f , h) ≤ ε︸ ︷︷ ︸
h is approximately correct

] ≥ 1− δ

8/ 19

A mathematical model for supervised learning: PAC

▶ Concept: some function f : X → {−1, 1} (think X = {0, 1}n)
Concept class C: set of concepts, e.g. small circuits, DNFs,. . .

▶ Want to learn unknown target concept f ∈ C from examples:
(x , f (x)), where x ∼ unknown distribution D on X

,+ ,− ,+ ,−

▶ Goal: using some i.i.d. examples, learner for C should output
hypothesis h that is probably approximately correct (PAC).

Error of h w.r.t. target f : errD(f , h) = Pr
x∼D

[f (x) ̸= h(x)]

▶ An algorithm (ε, δ)-PAC-learns C if:

∀f ∈ C ∀D : Pr[errD(f , h) ≤ ε︸ ︷︷ ︸
h is approximately correct

] ≥ 1− δ

8/ 19

A mathematical model for supervised learning: PAC

▶ Concept: some function f : X → {−1, 1} (think X = {0, 1}n)
Concept class C: set of concepts, e.g. small circuits, DNFs,. . .

▶ Want to learn unknown target concept f ∈ C from examples:
(x , f (x)), where x ∼ unknown distribution D on X

,+ ,− ,+ ,−
▶ Goal: using some i.i.d. examples, learner for C should output

hypothesis h that is probably approximately correct (PAC).

Error of h w.r.t. target f : errD(f , h) = Pr
x∼D

[f (x) ̸= h(x)]

▶ An algorithm (ε, δ)-PAC-learns C if:

∀f ∈ C ∀D : Pr[errD(f , h) ≤ ε︸ ︷︷ ︸
h is approximately correct

] ≥ 1− δ

8/ 19

A mathematical model for supervised learning: PAC

▶ Concept: some function f : X → {−1, 1} (think X = {0, 1}n)
Concept class C: set of concepts, e.g. small circuits, DNFs,. . .

▶ Want to learn unknown target concept f ∈ C from examples:
(x , f (x)), where x ∼ unknown distribution D on X

,+ ,− ,+ ,−
▶ Goal: using some i.i.d. examples, learner for C should output

hypothesis h that is probably approximately correct (PAC).

Error of h w.r.t. target f : errD(f , h) = Pr
x∼D

[f (x) ̸= h(x)]

▶ An algorithm (ε, δ)-PAC-learns C if:

∀f ∈ C ∀D : Pr[errD(f , h) ≤ ε︸ ︷︷ ︸
h is approximately correct

] ≥ 1− δ

8/ 19

A mathematical model for supervised learning: PAC

▶ Concept: some function f : X → {−1, 1} (think X = {0, 1}n)
Concept class C: set of concepts, e.g. small circuits, DNFs,. . .

▶ Want to learn unknown target concept f ∈ C from examples:
(x , f (x)), where x ∼ unknown distribution D on X

,+ ,− ,+ ,−
▶ Goal: using some i.i.d. examples, learner for C should output

hypothesis h that is probably approximately correct (PAC).

Error of h w.r.t. target f : errD(f , h) = Pr
x∼D

[f (x) ̸= h(x)]

▶ An algorithm (ε, δ)-PAC-learns C if:

∀f ∈ C ∀D : Pr[errD(f , h) ≤ ε︸ ︷︷ ︸
h is approximately correct

] ≥ 1− δ

9/ 19

PAC learning from quantum examples

▶ Much interesting quantum ML assumes classical data can be
turned into quantum superposition.

But this is expensive. . .

▶ Let’s try to circumvent the problem of putting classical data
in superposition, by assuming we start from quantum data

▶ Bshouty-Jackson’95: suppose example is a superposition∑
x∈X

√
D(x) |x , f (x)⟩

Measuring this quantum state gives classical example ∼ D
so quantum examples are at least as powerful as classical

▶ Next slides: some cases where quantum examples are more
powerful than classical for a fixed distribution D

9/ 19

PAC learning from quantum examples

▶ Much interesting quantum ML assumes classical data can be
turned into quantum superposition. But this is expensive. . .

▶ Let’s try to circumvent the problem of putting classical data
in superposition, by assuming we start from quantum data

▶ Bshouty-Jackson’95: suppose example is a superposition∑
x∈X

√
D(x) |x , f (x)⟩

Measuring this quantum state gives classical example ∼ D
so quantum examples are at least as powerful as classical

▶ Next slides: some cases where quantum examples are more
powerful than classical for a fixed distribution D

9/ 19

PAC learning from quantum examples

▶ Much interesting quantum ML assumes classical data can be
turned into quantum superposition. But this is expensive. . .

▶ Let’s try to circumvent the problem of putting classical data
in superposition, by assuming we start from quantum data

▶ Bshouty-Jackson’95: suppose example is a superposition∑
x∈X

√
D(x) |x , f (x)⟩

Measuring this quantum state gives classical example ∼ D
so quantum examples are at least as powerful as classical

▶ Next slides: some cases where quantum examples are more
powerful than classical for a fixed distribution D

9/ 19

PAC learning from quantum examples

▶ Much interesting quantum ML assumes classical data can be
turned into quantum superposition. But this is expensive. . .

▶ Let’s try to circumvent the problem of putting classical data
in superposition, by assuming we start from quantum data

▶ Bshouty-Jackson’95: suppose example is a superposition∑
x∈X

√
D(x) |x , f (x)⟩

Measuring this quantum state gives classical example ∼ D
so quantum examples are at least as powerful as classical

▶ Next slides: some cases where quantum examples are more
powerful than classical for a fixed distribution D

9/ 19

PAC learning from quantum examples

▶ Much interesting quantum ML assumes classical data can be
turned into quantum superposition. But this is expensive. . .

▶ Let’s try to circumvent the problem of putting classical data
in superposition, by assuming we start from quantum data

▶ Bshouty-Jackson’95: suppose example is a superposition∑
x∈X

√
D(x) |x , f (x)⟩

Measuring this quantum state gives classical example ∼ D
so quantum examples are at least as powerful as classical

▶ Next slides: some cases where quantum examples are more
powerful than classical for a fixed distribution D

9/ 19

PAC learning from quantum examples

▶ Much interesting quantum ML assumes classical data can be
turned into quantum superposition. But this is expensive. . .

▶ Let’s try to circumvent the problem of putting classical data
in superposition, by assuming we start from quantum data

▶ Bshouty-Jackson’95: suppose example is a superposition∑
x∈X

√
D(x) |x , f (x)⟩

Measuring this quantum state gives classical example ∼ D
so quantum examples are at least as powerful as classical

▶ Next slides: some cases where quantum examples are more
powerful than classical for a fixed distribution D

10/ 19

Uniform quantum examples can help sometimes

▶ Quantum example for target concept f under uniform D:

1√
2n

∑
x∈{0,1}n

|x , f (x)⟩

▶ Key subroutine: Fourier sampling (Bernstein-Vazirani’93):
Can convert (with probability 1/2) quantum example to

1√
2n

∑
x∈{0,1}n

f (x)|x⟩

Hadamard transform turns this into
∑

s∈{0,1}n
f̂ (s)|s⟩,

f̂ (s) = 1
2n

∑
x f (x)(−1)s·x are the Fourier coefficients of f

▶ This allows us to sample s from distribution f̂ (s)2

10/ 19

Uniform quantum examples can help sometimes

▶ Quantum example for target concept f under uniform D:

1√
2n

∑
x∈{0,1}n

|x , f (x)⟩

▶ Key subroutine: Fourier sampling (Bernstein-Vazirani’93):
Can convert (with probability 1/2) quantum example to

1√
2n

∑
x∈{0,1}n

f (x)|x⟩

Hadamard transform turns this into
∑

s∈{0,1}n
f̂ (s)|s⟩,

f̂ (s) = 1
2n

∑
x f (x)(−1)s·x are the Fourier coefficients of f

▶ This allows us to sample s from distribution f̂ (s)2

10/ 19

Uniform quantum examples can help sometimes

▶ Quantum example for target concept f under uniform D:

1√
2n

∑
x∈{0,1}n

|x , f (x)⟩

▶ Key subroutine: Fourier sampling (Bernstein-Vazirani’93)

:
Can convert (with probability 1/2) quantum example to

1√
2n

∑
x∈{0,1}n

f (x)|x⟩

Hadamard transform turns this into
∑

s∈{0,1}n
f̂ (s)|s⟩,

f̂ (s) = 1
2n

∑
x f (x)(−1)s·x are the Fourier coefficients of f

▶ This allows us to sample s from distribution f̂ (s)2

10/ 19

Uniform quantum examples can help sometimes

▶ Quantum example for target concept f under uniform D:

1√
2n

∑
x∈{0,1}n

|x , f (x)⟩

▶ Key subroutine: Fourier sampling (Bernstein-Vazirani’93):
Can convert (with probability 1/2) quantum example to

1√
2n

∑
x∈{0,1}n

f (x)|x⟩

Hadamard transform turns this into
∑

s∈{0,1}n
f̂ (s)|s⟩,

f̂ (s) = 1
2n

∑
x f (x)(−1)s·x are the Fourier coefficients of f

▶ This allows us to sample s from distribution f̂ (s)2

10/ 19

Uniform quantum examples can help sometimes

▶ Quantum example for target concept f under uniform D:

1√
2n

∑
x∈{0,1}n

|x , f (x)⟩

▶ Key subroutine: Fourier sampling (Bernstein-Vazirani’93):
Can convert (with probability 1/2) quantum example to

1√
2n

∑
x∈{0,1}n

f (x)|x⟩

Hadamard transform turns this into
∑

s∈{0,1}n
f̂ (s)|s⟩,

f̂ (s) = 1
2n

∑
x f (x)(−1)s·x are the Fourier coefficients of f

▶ This allows us to sample s from distribution f̂ (s)2

10/ 19

Uniform quantum examples can help sometimes

▶ Quantum example for target concept f under uniform D:

1√
2n

∑
x∈{0,1}n

|x , f (x)⟩

▶ Key subroutine: Fourier sampling (Bernstein-Vazirani’93):
Can convert (with probability 1/2) quantum example to

1√
2n

∑
x∈{0,1}n

f (x)|x⟩

Hadamard transform turns this into
∑

s∈{0,1}n
f̂ (s)|s⟩,

f̂ (s) = 1
2n

∑
x f (x)(−1)s·x are the Fourier coefficients of f

▶ This allows us to sample s from distribution f̂ (s)2

11/ 19

Two cases where Fourier sampling helps learning

▶ Concept class C of linear functions (mod 2):
f (x) = (−1)a·x for fixed a ∈ {0, 1}n.
Linear functions have very simple Fourier coefficients:

f̂ (s) = 1
2n

∑
x f (x)(−1)s·x = 1

2n
∑

x(−1)(a⊕s)·x =

{
1 if s = a
0 otherwise

We can learn a (and hence f) from one Fourier sample!

▶ Bshouty-Jackson’95: learn Disjunctive Normal Form (DNF)
formulas in poly-time under uniform D:
Fourier sampling gives a parity-function that’s weakly
correlated with target DNF function f , can combine this with
classical “boosting” to find good hypothesis h.

Best known classical learner takes time nO(log n)

▶ But what about learners that work for all D?

11/ 19

Two cases where Fourier sampling helps learning

▶ Concept class C of linear functions (mod 2):
f (x) = (−1)a·x for fixed a ∈ {0, 1}n.

Linear functions have very simple Fourier coefficients:

f̂ (s) = 1
2n

∑
x f (x)(−1)s·x = 1

2n
∑

x(−1)(a⊕s)·x =

{
1 if s = a
0 otherwise

We can learn a (and hence f) from one Fourier sample!

▶ Bshouty-Jackson’95: learn Disjunctive Normal Form (DNF)
formulas in poly-time under uniform D:
Fourier sampling gives a parity-function that’s weakly
correlated with target DNF function f , can combine this with
classical “boosting” to find good hypothesis h.

Best known classical learner takes time nO(log n)

▶ But what about learners that work for all D?

11/ 19

Two cases where Fourier sampling helps learning

▶ Concept class C of linear functions (mod 2):
f (x) = (−1)a·x for fixed a ∈ {0, 1}n.
Linear functions have very simple Fourier coefficients:

f̂ (s)

= 1
2n

∑
x f (x)(−1)s·x = 1

2n
∑

x(−1)(a⊕s)·x =

{
1 if s = a
0 otherwise

We can learn a (and hence f) from one Fourier sample!

▶ Bshouty-Jackson’95: learn Disjunctive Normal Form (DNF)
formulas in poly-time under uniform D:
Fourier sampling gives a parity-function that’s weakly
correlated with target DNF function f , can combine this with
classical “boosting” to find good hypothesis h.

Best known classical learner takes time nO(log n)

▶ But what about learners that work for all D?

11/ 19

Two cases where Fourier sampling helps learning

▶ Concept class C of linear functions (mod 2):
f (x) = (−1)a·x for fixed a ∈ {0, 1}n.
Linear functions have very simple Fourier coefficients:

f̂ (s) = 1
2n

∑
x f (x)(−1)s·x

= 1
2n

∑
x(−1)(a⊕s)·x =

{
1 if s = a
0 otherwise

We can learn a (and hence f) from one Fourier sample!

▶ Bshouty-Jackson’95: learn Disjunctive Normal Form (DNF)
formulas in poly-time under uniform D:
Fourier sampling gives a parity-function that’s weakly
correlated with target DNF function f , can combine this with
classical “boosting” to find good hypothesis h.

Best known classical learner takes time nO(log n)

▶ But what about learners that work for all D?

11/ 19

Two cases where Fourier sampling helps learning

▶ Concept class C of linear functions (mod 2):
f (x) = (−1)a·x for fixed a ∈ {0, 1}n.
Linear functions have very simple Fourier coefficients:

f̂ (s) = 1
2n

∑
x f (x)(−1)s·x = 1

2n
∑

x(−1)(a⊕s)·x

=

{
1 if s = a
0 otherwise

We can learn a (and hence f) from one Fourier sample!

▶ Bshouty-Jackson’95: learn Disjunctive Normal Form (DNF)
formulas in poly-time under uniform D:
Fourier sampling gives a parity-function that’s weakly
correlated with target DNF function f , can combine this with
classical “boosting” to find good hypothesis h.

Best known classical learner takes time nO(log n)

▶ But what about learners that work for all D?

11/ 19

Two cases where Fourier sampling helps learning

▶ Concept class C of linear functions (mod 2):
f (x) = (−1)a·x for fixed a ∈ {0, 1}n.
Linear functions have very simple Fourier coefficients:

f̂ (s) = 1
2n

∑
x f (x)(−1)s·x = 1

2n
∑

x(−1)(a⊕s)·x =

{
1 if s = a
0 otherwise

We can learn a (and hence f) from one Fourier sample!

▶ Bshouty-Jackson’95: learn Disjunctive Normal Form (DNF)
formulas in poly-time under uniform D:
Fourier sampling gives a parity-function that’s weakly
correlated with target DNF function f , can combine this with
classical “boosting” to find good hypothesis h.

Best known classical learner takes time nO(log n)

▶ But what about learners that work for all D?

11/ 19

Two cases where Fourier sampling helps learning

▶ Concept class C of linear functions (mod 2):
f (x) = (−1)a·x for fixed a ∈ {0, 1}n.
Linear functions have very simple Fourier coefficients:

f̂ (s) = 1
2n

∑
x f (x)(−1)s·x = 1

2n
∑

x(−1)(a⊕s)·x =

{
1 if s = a
0 otherwise

We can learn a (and hence f) from one Fourier sample!

▶ Bshouty-Jackson’95: learn Disjunctive Normal Form (DNF)
formulas in poly-time under uniform D:
Fourier sampling gives a parity-function that’s weakly
correlated with target DNF function f , can combine this with
classical “boosting” to find good hypothesis h.

Best known classical learner takes time nO(log n)

▶ But what about learners that work for all D?

11/ 19

Two cases where Fourier sampling helps learning

▶ Concept class C of linear functions (mod 2):
f (x) = (−1)a·x for fixed a ∈ {0, 1}n.
Linear functions have very simple Fourier coefficients:

f̂ (s) = 1
2n

∑
x f (x)(−1)s·x = 1

2n
∑

x(−1)(a⊕s)·x =

{
1 if s = a
0 otherwise

We can learn a (and hence f) from one Fourier sample!

▶ Bshouty-Jackson’95: learn Disjunctive Normal Form (DNF)
formulas in poly-time under uniform D:

Fourier sampling gives a parity-function that’s weakly
correlated with target DNF function f , can combine this with
classical “boosting” to find good hypothesis h.

Best known classical learner takes time nO(log n)

▶ But what about learners that work for all D?

11/ 19

Two cases where Fourier sampling helps learning

▶ Concept class C of linear functions (mod 2):
f (x) = (−1)a·x for fixed a ∈ {0, 1}n.
Linear functions have very simple Fourier coefficients:

f̂ (s) = 1
2n

∑
x f (x)(−1)s·x = 1

2n
∑

x(−1)(a⊕s)·x =

{
1 if s = a
0 otherwise

We can learn a (and hence f) from one Fourier sample!

▶ Bshouty-Jackson’95: learn Disjunctive Normal Form (DNF)
formulas in poly-time under uniform D:
Fourier sampling gives a parity-function that’s weakly
correlated with target DNF function f ,

can combine this with
classical “boosting” to find good hypothesis h.

Best known classical learner takes time nO(log n)

▶ But what about learners that work for all D?

11/ 19

Two cases where Fourier sampling helps learning

▶ Concept class C of linear functions (mod 2):
f (x) = (−1)a·x for fixed a ∈ {0, 1}n.
Linear functions have very simple Fourier coefficients:

f̂ (s) = 1
2n

∑
x f (x)(−1)s·x = 1

2n
∑

x(−1)(a⊕s)·x =

{
1 if s = a
0 otherwise

We can learn a (and hence f) from one Fourier sample!

▶ Bshouty-Jackson’95: learn Disjunctive Normal Form (DNF)
formulas in poly-time under uniform D:
Fourier sampling gives a parity-function that’s weakly
correlated with target DNF function f , can combine this with
classical “boosting” to find good hypothesis h.

Best known classical learner takes time nO(log n)

▶ But what about learners that work for all D?

11/ 19

Two cases where Fourier sampling helps learning

▶ Concept class C of linear functions (mod 2):
f (x) = (−1)a·x for fixed a ∈ {0, 1}n.
Linear functions have very simple Fourier coefficients:

f̂ (s) = 1
2n

∑
x f (x)(−1)s·x = 1

2n
∑

x(−1)(a⊕s)·x =

{
1 if s = a
0 otherwise

We can learn a (and hence f) from one Fourier sample!

▶ Bshouty-Jackson’95: learn Disjunctive Normal Form (DNF)
formulas in poly-time under uniform D:
Fourier sampling gives a parity-function that’s weakly
correlated with target DNF function f , can combine this with
classical “boosting” to find good hypothesis h.

Best known classical learner takes time nO(log n)

▶ But what about learners that work for all D?

11/ 19

Two cases where Fourier sampling helps learning

▶ Concept class C of linear functions (mod 2):
f (x) = (−1)a·x for fixed a ∈ {0, 1}n.
Linear functions have very simple Fourier coefficients:

f̂ (s) = 1
2n

∑
x f (x)(−1)s·x = 1

2n
∑

x(−1)(a⊕s)·x =

{
1 if s = a
0 otherwise

We can learn a (and hence f) from one Fourier sample!

▶ Bshouty-Jackson’95: learn Disjunctive Normal Form (DNF)
formulas in poly-time under uniform D:
Fourier sampling gives a parity-function that’s weakly
correlated with target DNF function f , can combine this with
classical “boosting” to find good hypothesis h.

Best known classical learner takes time nO(log n)

▶ But what about learners that work for all D?

12/ 19

VC-dimension determines sample complexity in PAC model

▶ Cornerstone of classical sample complexity: VC-dimension

VC-dim(C) = max{d : ∃S ⊆ X of size d shattered by C}

Set S = {s1, . . . , sd} ⊆ X is shattered by C if
for all ℓ ∈ {0, 1}d , there is an f ∈ C s.t. ∀i ∈ [d] : f (si) = ℓi

▶ Classical sample complexity of (ε, δ)-PAC-learner for C:

Θ

(
d

ε
+

log(1/δ)

ε

)
examples

▶ Arunachalam & dW’17: same bound for quantum sample
complexity! Hence in distribution-independent PAC learning
quantum examples are not significantly better than classical

12/ 19

VC-dimension determines sample complexity in PAC model

▶ Cornerstone of classical sample complexity: VC-dimension

VC-dim(C) = max{d : ∃S ⊆ X of size d shattered by C}

Set S = {s1, . . . , sd} ⊆ X is shattered by C if
for all ℓ ∈ {0, 1}d , there is an f ∈ C s.t. ∀i ∈ [d] : f (si) = ℓi

▶ Classical sample complexity of (ε, δ)-PAC-learner for C:

Θ

(
d

ε
+

log(1/δ)

ε

)
examples

▶ Arunachalam & dW’17: same bound for quantum sample
complexity! Hence in distribution-independent PAC learning
quantum examples are not significantly better than classical

12/ 19

VC-dimension determines sample complexity in PAC model

▶ Cornerstone of classical sample complexity: VC-dimension

VC-dim(C) = max{d : ∃S ⊆ X of size d shattered by C}

Set S = {s1, . . . , sd} ⊆ X is shattered by C if
for all ℓ ∈ {0, 1}d , there is an f ∈ C s.t. ∀i ∈ [d] : f (si) = ℓi

▶ Classical sample complexity of (ε, δ)-PAC-learner for C:

Θ

(
d

ε
+

log(1/δ)

ε

)
examples

▶ Arunachalam & dW’17: same bound for quantum sample
complexity! Hence in distribution-independent PAC learning
quantum examples are not significantly better than classical

12/ 19

VC-dimension determines sample complexity in PAC model

▶ Cornerstone of classical sample complexity: VC-dimension

VC-dim(C) = max{d : ∃S ⊆ X of size d shattered by C}

Set S = {s1, . . . , sd} ⊆ X is shattered by C if
for all ℓ ∈ {0, 1}d , there is an f ∈ C s.t. ∀i ∈ [d] : f (si) = ℓi

▶ Classical sample complexity of (ε, δ)-PAC-learner for C:

Θ

(
d

ε
+

log(1/δ)

ε

)
examples

▶ Arunachalam & dW’17: same bound for quantum sample
complexity! Hence in distribution-independent PAC learning
quantum examples are not significantly better than classical

12/ 19

VC-dimension determines sample complexity in PAC model

▶ Cornerstone of classical sample complexity: VC-dimension

VC-dim(C) = max{d : ∃S ⊆ X of size d shattered by C}

Set S = {s1, . . . , sd} ⊆ X is shattered by C if
for all ℓ ∈ {0, 1}d , there is an f ∈ C s.t. ∀i ∈ [d] : f (si) = ℓi

▶ Classical sample complexity of (ε, δ)-PAC-learner for C:

Θ

(
d

ε
+

log(1/δ)

ε

)
examples

▶ Arunachalam & dW’17: same bound for quantum sample
complexity! Hence in distribution-independent PAC learning
quantum examples are not significantly better than classical

12/ 19

VC-dimension determines sample complexity in PAC model

▶ Cornerstone of classical sample complexity: VC-dimension

VC-dim(C) = max{d : ∃S ⊆ X of size d shattered by C}

Set S = {s1, . . . , sd} ⊆ X is shattered by C if
for all ℓ ∈ {0, 1}d , there is an f ∈ C s.t. ∀i ∈ [d] : f (si) = ℓi

▶ Classical sample complexity of (ε, δ)-PAC-learner for C:

Θ

(
d

ε
+

log(1/δ)

ε

)
examples

▶ Arunachalam & dW’17: same bound for quantum sample
complexity!

Hence in distribution-independent PAC learning
quantum examples are not significantly better than classical

12/ 19

VC-dimension determines sample complexity in PAC model

▶ Cornerstone of classical sample complexity: VC-dimension

VC-dim(C) = max{d : ∃S ⊆ X of size d shattered by C}

Set S = {s1, . . . , sd} ⊆ X is shattered by C if
for all ℓ ∈ {0, 1}d , there is an f ∈ C s.t. ∀i ∈ [d] : f (si) = ℓi

▶ Classical sample complexity of (ε, δ)-PAC-learner for C:

Θ

(
d

ε
+

log(1/δ)

ε

)
examples

▶ Arunachalam & dW’17: same bound for quantum sample
complexity! Hence in distribution-independent PAC learning
quantum examples are not significantly better than classical

13/ 19

Quantum linear algebra

▶ View data-vector as amplitudes of quantum state
(d dimensions → log(d) qubits), manipulate with unitaries

▶ Early example: HHL algorithm to solve linear system Ax = b:
given ability to prepare |b⟩ and implement e iA, we can
efficiently compute solution-vector as quantum state |x⟩

▶ Modern approach: block-encoding of a matrix A into a unitary

U =

(
A ·
· ·

)
U|0⟩|ψ⟩ = |0⟩A|ψ⟩+ |1⟩|?⟩

▶ Singular-value transformation (Gilyén, Su ao): can efficiently
apply low-degree polynomial to A. Can recover most known
quantum algorithms this way, and design new algorithms

▶ Problems: (1) usually assumes quantum input, (2) usually
produces quantum output, (3) sometimes “dequantizable”. . .

13/ 19

Quantum linear algebra

▶ View data-vector as amplitudes of quantum state
(d dimensions → log(d) qubits), manipulate with unitaries

▶ Early example: HHL algorithm to solve linear system Ax = b:
given ability to prepare |b⟩ and implement e iA, we can
efficiently compute solution-vector as quantum state |x⟩

▶ Modern approach: block-encoding of a matrix A into a unitary

U =

(
A ·
· ·

)
U|0⟩|ψ⟩ = |0⟩A|ψ⟩+ |1⟩|?⟩

▶ Singular-value transformation (Gilyén, Su ao): can efficiently
apply low-degree polynomial to A. Can recover most known
quantum algorithms this way, and design new algorithms

▶ Problems: (1) usually assumes quantum input, (2) usually
produces quantum output, (3) sometimes “dequantizable”. . .

13/ 19

Quantum linear algebra

▶ View data-vector as amplitudes of quantum state
(d dimensions → log(d) qubits), manipulate with unitaries

▶ Early example: HHL algorithm to solve linear system Ax = b

:
given ability to prepare |b⟩ and implement e iA, we can
efficiently compute solution-vector as quantum state |x⟩

▶ Modern approach: block-encoding of a matrix A into a unitary

U =

(
A ·
· ·

)
U|0⟩|ψ⟩ = |0⟩A|ψ⟩+ |1⟩|?⟩

▶ Singular-value transformation (Gilyén, Su ao): can efficiently
apply low-degree polynomial to A. Can recover most known
quantum algorithms this way, and design new algorithms

▶ Problems: (1) usually assumes quantum input, (2) usually
produces quantum output, (3) sometimes “dequantizable”. . .

13/ 19

Quantum linear algebra

▶ View data-vector as amplitudes of quantum state
(d dimensions → log(d) qubits), manipulate with unitaries

▶ Early example: HHL algorithm to solve linear system Ax = b:
given ability to prepare |b⟩ and implement e iA, we can
efficiently compute solution-vector as quantum state |x⟩

▶ Modern approach: block-encoding of a matrix A into a unitary

U =

(
A ·
· ·

)
U|0⟩|ψ⟩ = |0⟩A|ψ⟩+ |1⟩|?⟩

▶ Singular-value transformation (Gilyén, Su ao): can efficiently
apply low-degree polynomial to A. Can recover most known
quantum algorithms this way, and design new algorithms

▶ Problems: (1) usually assumes quantum input, (2) usually
produces quantum output, (3) sometimes “dequantizable”. . .

13/ 19

Quantum linear algebra

▶ View data-vector as amplitudes of quantum state
(d dimensions → log(d) qubits), manipulate with unitaries

▶ Early example: HHL algorithm to solve linear system Ax = b:
given ability to prepare |b⟩ and implement e iA, we can
efficiently compute solution-vector as quantum state |x⟩

▶ Modern approach: block-encoding of a matrix A into a unitary

U =

(
A ·
· ·

)

U|0⟩|ψ⟩ = |0⟩A|ψ⟩+ |1⟩|?⟩

▶ Singular-value transformation (Gilyén, Su ao): can efficiently
apply low-degree polynomial to A. Can recover most known
quantum algorithms this way, and design new algorithms

▶ Problems: (1) usually assumes quantum input, (2) usually
produces quantum output, (3) sometimes “dequantizable”. . .

13/ 19

Quantum linear algebra

▶ View data-vector as amplitudes of quantum state
(d dimensions → log(d) qubits), manipulate with unitaries

▶ Early example: HHL algorithm to solve linear system Ax = b:
given ability to prepare |b⟩ and implement e iA, we can
efficiently compute solution-vector as quantum state |x⟩

▶ Modern approach: block-encoding of a matrix A into a unitary

U =

(
A ·
· ·

)
U|0⟩|ψ⟩ = |0⟩A|ψ⟩+ |1⟩|?⟩

▶ Singular-value transformation (Gilyén, Su ao): can efficiently
apply low-degree polynomial to A. Can recover most known
quantum algorithms this way, and design new algorithms

▶ Problems: (1) usually assumes quantum input, (2) usually
produces quantum output, (3) sometimes “dequantizable”. . .

13/ 19

Quantum linear algebra

▶ View data-vector as amplitudes of quantum state
(d dimensions → log(d) qubits), manipulate with unitaries

▶ Early example: HHL algorithm to solve linear system Ax = b:
given ability to prepare |b⟩ and implement e iA, we can
efficiently compute solution-vector as quantum state |x⟩

▶ Modern approach: block-encoding of a matrix A into a unitary

U =

(
A ·
· ·

)
U|0⟩|ψ⟩ = |0⟩A|ψ⟩+ |1⟩|?⟩

▶ Singular-value transformation (Gilyén, Su ao): can efficiently
apply low-degree polynomial to A.

Can recover most known
quantum algorithms this way, and design new algorithms

▶ Problems: (1) usually assumes quantum input, (2) usually
produces quantum output, (3) sometimes “dequantizable”. . .

13/ 19

Quantum linear algebra

▶ View data-vector as amplitudes of quantum state
(d dimensions → log(d) qubits), manipulate with unitaries

▶ Early example: HHL algorithm to solve linear system Ax = b:
given ability to prepare |b⟩ and implement e iA, we can
efficiently compute solution-vector as quantum state |x⟩

▶ Modern approach: block-encoding of a matrix A into a unitary

U =

(
A ·
· ·

)
U|0⟩|ψ⟩ = |0⟩A|ψ⟩+ |1⟩|?⟩

▶ Singular-value transformation (Gilyén, Su ao): can efficiently
apply low-degree polynomial to A. Can recover most known
quantum algorithms this way, and design new algorithms

▶ Problems: (1) usually assumes quantum input, (2) usually
produces quantum output, (3) sometimes “dequantizable”. . .

13/ 19

Quantum linear algebra

▶ View data-vector as amplitudes of quantum state
(d dimensions → log(d) qubits), manipulate with unitaries

▶ Early example: HHL algorithm to solve linear system Ax = b:
given ability to prepare |b⟩ and implement e iA, we can
efficiently compute solution-vector as quantum state |x⟩

▶ Modern approach: block-encoding of a matrix A into a unitary

U =

(
A ·
· ·

)
U|0⟩|ψ⟩ = |0⟩A|ψ⟩+ |1⟩|?⟩

▶ Singular-value transformation (Gilyén, Su ao): can efficiently
apply low-degree polynomial to A. Can recover most known
quantum algorithms this way, and design new algorithms

▶ Problems: (1) usually assumes quantum input

, (2) usually
produces quantum output, (3) sometimes “dequantizable”. . .

13/ 19

Quantum linear algebra

▶ View data-vector as amplitudes of quantum state
(d dimensions → log(d) qubits), manipulate with unitaries

▶ Early example: HHL algorithm to solve linear system Ax = b:
given ability to prepare |b⟩ and implement e iA, we can
efficiently compute solution-vector as quantum state |x⟩

▶ Modern approach: block-encoding of a matrix A into a unitary

U =

(
A ·
· ·

)
U|0⟩|ψ⟩ = |0⟩A|ψ⟩+ |1⟩|?⟩

▶ Singular-value transformation (Gilyén, Su ao): can efficiently
apply low-degree polynomial to A. Can recover most known
quantum algorithms this way, and design new algorithms

▶ Problems: (1) usually assumes quantum input, (2) usually
produces quantum output

, (3) sometimes “dequantizable”. . .

13/ 19

Quantum linear algebra

▶ View data-vector as amplitudes of quantum state
(d dimensions → log(d) qubits), manipulate with unitaries

▶ Early example: HHL algorithm to solve linear system Ax = b:
given ability to prepare |b⟩ and implement e iA, we can
efficiently compute solution-vector as quantum state |x⟩

▶ Modern approach: block-encoding of a matrix A into a unitary

U =

(
A ·
· ·

)
U|0⟩|ψ⟩ = |0⟩A|ψ⟩+ |1⟩|?⟩

▶ Singular-value transformation (Gilyén, Su ao): can efficiently
apply low-degree polynomial to A. Can recover most known
quantum algorithms this way, and design new algorithms

▶ Problems: (1) usually assumes quantum input, (2) usually
produces quantum output, (3) sometimes “dequantizable”. . .

14/ 19

Unsupervised learning: quantum PCA (LMR’14)

▶ Principal Component Analysis: given vectors v1, . . . , vm ∈ Rd ,
reduce dimension to k by projecting on top-k eigenvectors of

A =
m∑
i=1

viv
T
i

▶ Suppose we can efficiently prepare log(d)-qubit state |vi ⟩.
Doing this for a random i gives “mixed” quantum state

ρ =
1

m

m∑
i=1

|vi ⟩⟨vi | =
1

m
A

This quantum state has the same eigenvectors as A

▶ Quantum PCA: extract top-k eigenvectors as quantum states
via “phase estimation” on a copy of ρ. For that we want to
implement (powers of) the unitary e iρ. We can implement
e iρδ with error O(δ2) using one copy of ρ. Doing this O(t/δ)
times with δ = ε/t implements e iρt with error ε.

14/ 19

Unsupervised learning: quantum PCA (LMR’14)

▶ Principal Component Analysis: given vectors v1, . . . , vm ∈ Rd ,
reduce dimension to k

by projecting on top-k eigenvectors of

A =
m∑
i=1

viv
T
i

▶ Suppose we can efficiently prepare log(d)-qubit state |vi ⟩.
Doing this for a random i gives “mixed” quantum state

ρ =
1

m

m∑
i=1

|vi ⟩⟨vi | =
1

m
A

This quantum state has the same eigenvectors as A

▶ Quantum PCA: extract top-k eigenvectors as quantum states
via “phase estimation” on a copy of ρ. For that we want to
implement (powers of) the unitary e iρ. We can implement
e iρδ with error O(δ2) using one copy of ρ. Doing this O(t/δ)
times with δ = ε/t implements e iρt with error ε.

14/ 19

Unsupervised learning: quantum PCA (LMR’14)

▶ Principal Component Analysis: given vectors v1, . . . , vm ∈ Rd ,
reduce dimension to k by projecting on top-k eigenvectors of

A =
m∑
i=1

viv
T
i

▶ Suppose we can efficiently prepare log(d)-qubit state |vi ⟩.
Doing this for a random i gives “mixed” quantum state

ρ =
1

m

m∑
i=1

|vi ⟩⟨vi | =
1

m
A

This quantum state has the same eigenvectors as A

▶ Quantum PCA: extract top-k eigenvectors as quantum states
via “phase estimation” on a copy of ρ. For that we want to
implement (powers of) the unitary e iρ. We can implement
e iρδ with error O(δ2) using one copy of ρ. Doing this O(t/δ)
times with δ = ε/t implements e iρt with error ε.

14/ 19

Unsupervised learning: quantum PCA (LMR’14)

▶ Principal Component Analysis: given vectors v1, . . . , vm ∈ Rd ,
reduce dimension to k by projecting on top-k eigenvectors of

A =
m∑
i=1

viv
T
i

▶ Suppose we can efficiently prepare log(d)-qubit state |vi ⟩.
Doing this for a random i gives “mixed” quantum state

ρ =
1

m

m∑
i=1

|vi ⟩⟨vi |

=
1

m
A

This quantum state has the same eigenvectors as A

▶ Quantum PCA: extract top-k eigenvectors as quantum states
via “phase estimation” on a copy of ρ. For that we want to
implement (powers of) the unitary e iρ. We can implement
e iρδ with error O(δ2) using one copy of ρ. Doing this O(t/δ)
times with δ = ε/t implements e iρt with error ε.

14/ 19

Unsupervised learning: quantum PCA (LMR’14)

▶ Principal Component Analysis: given vectors v1, . . . , vm ∈ Rd ,
reduce dimension to k by projecting on top-k eigenvectors of

A =
m∑
i=1

viv
T
i

▶ Suppose we can efficiently prepare log(d)-qubit state |vi ⟩.
Doing this for a random i gives “mixed” quantum state

ρ =
1

m

m∑
i=1

|vi ⟩⟨vi | =
1

m
A

This quantum state has the same eigenvectors as A

▶ Quantum PCA: extract top-k eigenvectors as quantum states
via “phase estimation” on a copy of ρ. For that we want to
implement (powers of) the unitary e iρ. We can implement
e iρδ with error O(δ2) using one copy of ρ. Doing this O(t/δ)
times with δ = ε/t implements e iρt with error ε.

14/ 19

Unsupervised learning: quantum PCA (LMR’14)

▶ Principal Component Analysis: given vectors v1, . . . , vm ∈ Rd ,
reduce dimension to k by projecting on top-k eigenvectors of

A =
m∑
i=1

viv
T
i

▶ Suppose we can efficiently prepare log(d)-qubit state |vi ⟩.
Doing this for a random i gives “mixed” quantum state

ρ =
1

m

m∑
i=1

|vi ⟩⟨vi | =
1

m
A

This quantum state has the same eigenvectors as A

▶ Quantum PCA: extract top-k eigenvectors as quantum states
via “phase estimation” on a copy of ρ. For that we want to
implement (powers of) the unitary e iρ. We can implement
e iρδ with error O(δ2) using one copy of ρ. Doing this O(t/δ)
times with δ = ε/t implements e iρt with error ε.

14/ 19

Unsupervised learning: quantum PCA (LMR’14)

▶ Principal Component Analysis: given vectors v1, . . . , vm ∈ Rd ,
reduce dimension to k by projecting on top-k eigenvectors of

A =
m∑
i=1

viv
T
i

▶ Suppose we can efficiently prepare log(d)-qubit state |vi ⟩.
Doing this for a random i gives “mixed” quantum state

ρ =
1

m

m∑
i=1

|vi ⟩⟨vi | =
1

m
A

This quantum state has the same eigenvectors as A

▶ Quantum PCA: extract top-k eigenvectors as quantum states
via “phase estimation” on a copy of ρ.

For that we want to
implement (powers of) the unitary e iρ. We can implement
e iρδ with error O(δ2) using one copy of ρ. Doing this O(t/δ)
times with δ = ε/t implements e iρt with error ε.

14/ 19

Unsupervised learning: quantum PCA (LMR’14)

▶ Principal Component Analysis: given vectors v1, . . . , vm ∈ Rd ,
reduce dimension to k by projecting on top-k eigenvectors of

A =
m∑
i=1

viv
T
i

▶ Suppose we can efficiently prepare log(d)-qubit state |vi ⟩.
Doing this for a random i gives “mixed” quantum state

ρ =
1

m

m∑
i=1

|vi ⟩⟨vi | =
1

m
A

This quantum state has the same eigenvectors as A

▶ Quantum PCA: extract top-k eigenvectors as quantum states
via “phase estimation” on a copy of ρ. For that we want to
implement (powers of) the unitary e iρ.

We can implement
e iρδ with error O(δ2) using one copy of ρ. Doing this O(t/δ)
times with δ = ε/t implements e iρt with error ε.

14/ 19

Unsupervised learning: quantum PCA (LMR’14)

▶ Principal Component Analysis: given vectors v1, . . . , vm ∈ Rd ,
reduce dimension to k by projecting on top-k eigenvectors of

A =
m∑
i=1

viv
T
i

▶ Suppose we can efficiently prepare log(d)-qubit state |vi ⟩.
Doing this for a random i gives “mixed” quantum state

ρ =
1

m

m∑
i=1

|vi ⟩⟨vi | =
1

m
A

This quantum state has the same eigenvectors as A

▶ Quantum PCA: extract top-k eigenvectors as quantum states
via “phase estimation” on a copy of ρ. For that we want to
implement (powers of) the unitary e iρ. We can implement
e iρδ with error O(δ2) using one copy of ρ.

Doing this O(t/δ)
times with δ = ε/t implements e iρt with error ε.

14/ 19

Unsupervised learning: quantum PCA (LMR’14)

▶ Principal Component Analysis: given vectors v1, . . . , vm ∈ Rd ,
reduce dimension to k by projecting on top-k eigenvectors of

A =
m∑
i=1

viv
T
i

▶ Suppose we can efficiently prepare log(d)-qubit state |vi ⟩.
Doing this for a random i gives “mixed” quantum state

ρ =
1

m

m∑
i=1

|vi ⟩⟨vi | =
1

m
A

This quantum state has the same eigenvectors as A

▶ Quantum PCA: extract top-k eigenvectors as quantum states
via “phase estimation” on a copy of ρ. For that we want to
implement (powers of) the unitary e iρ. We can implement
e iρδ with error O(δ2) using one copy of ρ. Doing this O(t/δ)
times with δ = ε/t implements e iρt with error ε.

15/ 19

Quantum speedups for optimization problems

▶ ML = data + optimization.
If data is classical, we can still try to speed up optimization

▶ Discrete optimization: for graph problems (shortest paths,
sparsification), string problems, backtracking, dynamic
programming. Often uses amplitude amplification/estimation

▶ Continuous optimization: for linear programs, semidefinite
programs, matrix scaling and balancing, linear regression. . .

Gradient descent: common iterative method
to find local minimum of f : Rn → R

Move current point along the direction of steepest descent
(=−gradient of f at current point).

Jordan’s algorithm can compute gradient more efficiently

15/ 19

Quantum speedups for optimization problems

▶ ML = data + optimization.
If data is classical, we can still try to speed up optimization

▶ Discrete optimization: for graph problems (shortest paths,
sparsification), string problems, backtracking, dynamic
programming. Often uses amplitude amplification/estimation

▶ Continuous optimization: for linear programs, semidefinite
programs, matrix scaling and balancing, linear regression. . .

Gradient descent: common iterative method
to find local minimum of f : Rn → R

Move current point along the direction of steepest descent
(=−gradient of f at current point).

Jordan’s algorithm can compute gradient more efficiently

15/ 19

Quantum speedups for optimization problems

▶ ML = data + optimization.
If data is classical, we can still try to speed up optimization

▶ Discrete optimization: for graph problems (shortest paths,
sparsification), string problems, backtracking, dynamic
programming.

Often uses amplitude amplification/estimation

▶ Continuous optimization: for linear programs, semidefinite
programs, matrix scaling and balancing, linear regression. . .

Gradient descent: common iterative method
to find local minimum of f : Rn → R

Move current point along the direction of steepest descent
(=−gradient of f at current point).

Jordan’s algorithm can compute gradient more efficiently

15/ 19

Quantum speedups for optimization problems

▶ ML = data + optimization.
If data is classical, we can still try to speed up optimization

▶ Discrete optimization: for graph problems (shortest paths,
sparsification), string problems, backtracking, dynamic
programming. Often uses amplitude amplification/estimation

▶ Continuous optimization: for linear programs, semidefinite
programs, matrix scaling and balancing, linear regression. . .

Gradient descent: common iterative method
to find local minimum of f : Rn → R

Move current point along the direction of steepest descent
(=−gradient of f at current point).

Jordan’s algorithm can compute gradient more efficiently

15/ 19

Quantum speedups for optimization problems

▶ ML = data + optimization.
If data is classical, we can still try to speed up optimization

▶ Discrete optimization: for graph problems (shortest paths,
sparsification), string problems, backtracking, dynamic
programming. Often uses amplitude amplification/estimation

▶ Continuous optimization: for linear programs, semidefinite
programs, matrix scaling and balancing, linear regression. . .

Gradient descent: common iterative method
to find local minimum of f : Rn → R

Move current point along the direction of steepest descent
(=−gradient of f at current point).

Jordan’s algorithm can compute gradient more efficiently

15/ 19

Quantum speedups for optimization problems

▶ ML = data + optimization.
If data is classical, we can still try to speed up optimization

▶ Discrete optimization: for graph problems (shortest paths,
sparsification), string problems, backtracking, dynamic
programming. Often uses amplitude amplification/estimation

▶ Continuous optimization: for linear programs, semidefinite
programs, matrix scaling and balancing, linear regression. . .

Gradient descent: common iterative method
to find local minimum of f : Rn → R

Move current point along the direction of steepest descent
(=−gradient of f at current point).

Jordan’s algorithm can compute gradient more efficiently

15/ 19

Quantum speedups for optimization problems

▶ ML = data + optimization.
If data is classical, we can still try to speed up optimization

▶ Discrete optimization: for graph problems (shortest paths,
sparsification), string problems, backtracking, dynamic
programming. Often uses amplitude amplification/estimation

▶ Continuous optimization: for linear programs, semidefinite
programs, matrix scaling and balancing, linear regression. . .

Gradient descent: common iterative method
to find local minimum of f : Rn → R

Move current point along the direction of steepest descent
(=−gradient of f at current point).

Jordan’s algorithm can compute gradient more efficiently

15/ 19

Quantum speedups for optimization problems

▶ ML = data + optimization.
If data is classical, we can still try to speed up optimization

▶ Discrete optimization: for graph problems (shortest paths,
sparsification), string problems, backtracking, dynamic
programming. Often uses amplitude amplification/estimation

▶ Continuous optimization: for linear programs, semidefinite
programs, matrix scaling and balancing, linear regression. . .

Gradient descent: common iterative method
to find local minimum of f : Rn → R

Move current point along the direction of steepest descent
(=−gradient of f at current point).

Jordan’s algorithm can compute gradient more efficiently

16/ 19

One example of a quantum optimization algorithm for ML

▶ Given m points
(x1, y1), . . . , (xm, ym)
with xi ∈ Rd , yi ∈ R,
fit line through them:
find coefficient-vector θ ∈ Rd

s.t. linear function xTi θ is a
good predictor of y -variable

▶ Find θ to minmze least-squares loss L(θ) =
1

m

m∑
i=1

(xTi θ − yi)
2

Closed-form solution for the minimizer: θ∗ = (XTX)+XT y

▶ Problems: this tends to overfit and yield very dense θ-vectors

▶ Lasso adds “ℓ1-regularizer”: min L(θ) subject to
d∑

j=1

|θj | ≤ 1

16/ 19

One example of a quantum optimization algorithm for ML

▶ Given m points
(x1, y1), . . . , (xm, ym)
with xi ∈ Rd , yi ∈ R,
fit line through them

:
find coefficient-vector θ ∈ Rd

s.t. linear function xTi θ is a
good predictor of y -variable

▶ Find θ to minmze least-squares loss L(θ) =
1

m

m∑
i=1

(xTi θ − yi)
2

Closed-form solution for the minimizer: θ∗ = (XTX)+XT y

▶ Problems: this tends to overfit and yield very dense θ-vectors

▶ Lasso adds “ℓ1-regularizer”: min L(θ) subject to
d∑

j=1

|θj | ≤ 1

16/ 19

One example of a quantum optimization algorithm for ML

▶ Given m points
(x1, y1), . . . , (xm, ym)
with xi ∈ Rd , yi ∈ R,
fit line through them:
find coefficient-vector θ ∈ Rd

s.t. linear function xTi θ is a
good predictor of y -variable

▶ Find θ to minmze least-squares loss L(θ) =
1

m

m∑
i=1

(xTi θ − yi)
2

Closed-form solution for the minimizer: θ∗ = (XTX)+XT y

▶ Problems: this tends to overfit and yield very dense θ-vectors

▶ Lasso adds “ℓ1-regularizer”: min L(θ) subject to
d∑

j=1

|θj | ≤ 1

16/ 19

One example of a quantum optimization algorithm for ML

▶ Given m points
(x1, y1), . . . , (xm, ym)
with xi ∈ Rd , yi ∈ R,
fit line through them:
find coefficient-vector θ ∈ Rd

s.t. linear function xTi θ is a
good predictor of y -variable

▶ Find θ to minmze least-squares loss L(θ) =
1

m

m∑
i=1

(xTi θ − yi)
2

Closed-form solution for the minimizer: θ∗ = (XTX)+XT y

▶ Problems: this tends to overfit and yield very dense θ-vectors

▶ Lasso adds “ℓ1-regularizer”: min L(θ) subject to
d∑

j=1

|θj | ≤ 1

16/ 19

One example of a quantum optimization algorithm for ML

▶ Given m points
(x1, y1), . . . , (xm, ym)
with xi ∈ Rd , yi ∈ R,
fit line through them:
find coefficient-vector θ ∈ Rd

s.t. linear function xTi θ is a
good predictor of y -variable

▶ Find θ to minmze least-squares loss L(θ) =
1

m

m∑
i=1

(xTi θ − yi)
2

Closed-form solution for the minimizer: θ∗ = (XTX)+XT y

▶ Problems: this tends to overfit and yield very dense θ-vectors

▶ Lasso adds “ℓ1-regularizer”: min L(θ) subject to
d∑

j=1

|θj | ≤ 1

16/ 19

One example of a quantum optimization algorithm for ML

▶ Given m points
(x1, y1), . . . , (xm, ym)
with xi ∈ Rd , yi ∈ R,
fit line through them:
find coefficient-vector θ ∈ Rd

s.t. linear function xTi θ is a
good predictor of y -variable

▶ Find θ to minmze least-squares loss L(θ) =
1

m

m∑
i=1

(xTi θ − yi)
2

Closed-form solution for the minimizer: θ∗ = (XTX)+XT y

▶ Problems: this tends to overfit and yield very dense θ-vectors

▶ Lasso adds “ℓ1-regularizer”: min L(θ) subject to
d∑

j=1

|θj | ≤ 1

16/ 19

One example of a quantum optimization algorithm for ML

▶ Given m points
(x1, y1), . . . , (xm, ym)
with xi ∈ Rd , yi ∈ R,
fit line through them:
find coefficient-vector θ ∈ Rd

s.t. linear function xTi θ is a
good predictor of y -variable

▶ Find θ to minmze least-squares loss L(θ) =
1

m

m∑
i=1

(xTi θ − yi)
2

Closed-form solution for the minimizer: θ∗ = (XTX)+XT y

▶ Problems: this tends to overfit and yield very dense θ-vectors

▶ Lasso adds “ℓ1-regularizer”: min L(θ) subject to
d∑

j=1

|θj | ≤ 1

16/ 19

One example of a quantum optimization algorithm for ML

▶ Given m points
(x1, y1), . . . , (xm, ym)
with xi ∈ Rd , yi ∈ R,
fit line through them:
find coefficient-vector θ ∈ Rd

s.t. linear function xTi θ is a
good predictor of y -variable

▶ Find θ to minmze least-squares loss L(θ) =
1

m

m∑
i=1

(xTi θ − yi)
2

Closed-form solution for the minimizer: θ∗ = (XTX)+XT y

▶ Problems: this tends to overfit and yield very dense θ-vectors

▶ Lasso adds “ℓ1-regularizer”: min L(θ) subject to
d∑

j=1

|θj | ≤ 1

17/ 19

Quantum algorithm for Lasso

▶ Lasso: minimize least-squares L(θ) subject to
d∑

j=1

|θj | ≤ 1

▶ Finding the exact minimizer is a hard problem, so we typically
try to find a vector θ whose loss is not much worse:

L(θ) ≤ Lmin + ε subject to
d∑

j=1

|θj | ≤ 1

▶ Best classical algorithm runs in time Õ(d/ε2)

▶ Chen & dW’21: quantum algorithm that in time Õ
(√

d/ε2
)

by speeding up Frank-Wolfe algorithm using various quantum
tricks (min-finding, amplitude estimation, data structures)

▶ Also proved
√
d/ε1.5 lower bound for all quantum algorithms.

The true bound is still unknown!

17/ 19

Quantum algorithm for Lasso

▶ Lasso: minimize least-squares L(θ) subject to
d∑

j=1

|θj | ≤ 1

▶ Finding the exact minimizer is a hard problem, so we typically
try to find a vector θ whose loss is not much worse:

L(θ) ≤ Lmin + ε subject to
d∑

j=1

|θj | ≤ 1

▶ Best classical algorithm runs in time Õ(d/ε2)

▶ Chen & dW’21: quantum algorithm that in time Õ
(√

d/ε2
)

by speeding up Frank-Wolfe algorithm using various quantum
tricks (min-finding, amplitude estimation, data structures)

▶ Also proved
√
d/ε1.5 lower bound for all quantum algorithms.

The true bound is still unknown!

17/ 19

Quantum algorithm for Lasso

▶ Lasso: minimize least-squares L(θ) subject to
d∑

j=1

|θj | ≤ 1

▶ Finding the exact minimizer is a hard problem, so we typically
try to find a vector θ whose loss is not much worse:

L(θ) ≤ Lmin + ε subject to
d∑

j=1

|θj | ≤ 1

▶ Best classical algorithm runs in time Õ(d/ε2)

▶ Chen & dW’21: quantum algorithm that in time Õ
(√

d/ε2
)

by speeding up Frank-Wolfe algorithm using various quantum
tricks (min-finding, amplitude estimation, data structures)

▶ Also proved
√
d/ε1.5 lower bound for all quantum algorithms.

The true bound is still unknown!

17/ 19

Quantum algorithm for Lasso

▶ Lasso: minimize least-squares L(θ) subject to
d∑

j=1

|θj | ≤ 1

▶ Finding the exact minimizer is a hard problem, so we typically
try to find a vector θ whose loss is not much worse:

L(θ) ≤ Lmin + ε subject to
d∑

j=1

|θj | ≤ 1

▶ Best classical algorithm runs in time Õ(d/ε2)

▶ Chen & dW’21: quantum algorithm that in time Õ
(√

d/ε2
)

by speeding up Frank-Wolfe algorithm using various quantum
tricks (min-finding, amplitude estimation, data structures)

▶ Also proved
√
d/ε1.5 lower bound for all quantum algorithms.

The true bound is still unknown!

17/ 19

Quantum algorithm for Lasso

▶ Lasso: minimize least-squares L(θ) subject to
d∑

j=1

|θj | ≤ 1

▶ Finding the exact minimizer is a hard problem, so we typically
try to find a vector θ whose loss is not much worse:

L(θ) ≤ Lmin + ε subject to
d∑

j=1

|θj | ≤ 1

▶ Best classical algorithm runs in time Õ(d/ε2)

▶ Chen & dW’21: quantum algorithm that in time Õ
(√

d/ε2
)

by speeding up Frank-Wolfe algorithm using various quantum
tricks (min-finding, amplitude estimation, data structures)

▶ Also proved
√
d/ε1.5 lower bound for all quantum algorithms.

The true bound is still unknown!

17/ 19

Quantum algorithm for Lasso

▶ Lasso: minimize least-squares L(θ) subject to
d∑

j=1

|θj | ≤ 1

▶ Finding the exact minimizer is a hard problem, so we typically
try to find a vector θ whose loss is not much worse:

L(θ) ≤ Lmin + ε subject to
d∑

j=1

|θj | ≤ 1

▶ Best classical algorithm runs in time Õ(d/ε2)

▶ Chen & dW’21: quantum algorithm that in time Õ
(√

d/ε2
)

by speeding up Frank-Wolfe algorithm using various quantum
tricks (min-finding, amplitude estimation, data structures)

▶ Also proved
√
d/ε1.5 lower bound for all quantum algorithms.

The true bound is still unknown!

18/ 19

Heuristic methods

▶ Variational methods:
use classical methods
to optimize over some
parametrized circuits

https://dkopczyk.quantee.co.uk/wp-content/uploads/2019/05/vc4.png

▶ For instance angles in a fixed circuit, or “classical shadows”

▶ This is similar to neural networks:
you have some parametrized model where you optimize the
parameters (the weights of the NN) in some feedback loop

▶ Like with NN, it’s hard to prove things about such methods

▶ Worse, unlike classical NN we can’t run big experiments yet

18/ 19

Heuristic methods

▶ Variational methods:
use classical methods
to optimize over some
parametrized circuits

https://dkopczyk.quantee.co.uk/wp-content/uploads/2019/05/vc4.png

▶ For instance angles in a fixed circuit, or “classical shadows”

▶ This is similar to neural networks:
you have some parametrized model where you optimize the
parameters (the weights of the NN) in some feedback loop

▶ Like with NN, it’s hard to prove things about such methods

▶ Worse, unlike classical NN we can’t run big experiments yet

18/ 19

Heuristic methods

▶ Variational methods:
use classical methods
to optimize over some
parametrized circuits

https://dkopczyk.quantee.co.uk/wp-content/uploads/2019/05/vc4.png

▶ For instance angles in a fixed circuit, or “classical shadows”

▶ This is similar to neural networks:
you have some parametrized model where you optimize the
parameters (the weights of the NN) in some feedback loop

▶ Like with NN, it’s hard to prove things about such methods

▶ Worse, unlike classical NN we can’t run big experiments yet

18/ 19

Heuristic methods

▶ Variational methods:
use classical methods
to optimize over some
parametrized circuits

https://dkopczyk.quantee.co.uk/wp-content/uploads/2019/05/vc4.png

▶ For instance angles in a fixed circuit, or “classical shadows”

▶ This is similar to neural networks:
you have some parametrized model where you optimize the
parameters (the weights of the NN) in some feedback loop

▶ Like with NN, it’s hard to prove things about such methods

▶ Worse, unlike classical NN we can’t run big experiments yet

18/ 19

Heuristic methods

▶ Variational methods:
use classical methods
to optimize over some
parametrized circuits

https://dkopczyk.quantee.co.uk/wp-content/uploads/2019/05/vc4.png

▶ For instance angles in a fixed circuit, or “classical shadows”

▶ This is similar to neural networks:
you have some parametrized model where you optimize the
parameters (the weights of the NN) in some feedback loop

▶ Like with NN, it’s hard to prove things about such methods

▶ Worse, unlike classical NN we can’t run big experiments yet

18/ 19

Heuristic methods

▶ Variational methods:
use classical methods
to optimize over some
parametrized circuits

https://dkopczyk.quantee.co.uk/wp-content/uploads/2019/05/vc4.png

▶ For instance angles in a fixed circuit, or “classical shadows”

▶ This is similar to neural networks:
you have some parametrized model where you optimize the
parameters (the weights of the NN) in some feedback loop

▶ Like with NN, it’s hard to prove things about such methods

▶ Worse, unlike classical NN we can’t run big experiments yet

18/ 19

Heuristic methods

▶ Variational methods:
use classical methods
to optimize over some
parametrized circuits

https://dkopczyk.quantee.co.uk/wp-content/uploads/2019/05/vc4.png

▶ For instance angles in a fixed circuit, or “classical shadows”

▶ This is similar to neural networks:
you have some parametrized model where you optimize the
parameters (the weights of the NN) in some feedback loop

▶ Like with NN, it’s hard to prove things about such methods

▶ Worse, unlike classical NN we can’t run big experiments yet

19/ 19

Summary

▶ Machine learning = data + optimization

▶ Quantum data (superposition of classical data) can sometimes
be useful, but not in distribution-independent PAC learning

▶ “Quantum linear algebra” can be useful to efficiently extract
properties of data as quantum states

▶ There’s a growing body of quantum speedups for optimization
problems, some rigorous and some heuristic.
Much of this could be applied to ML problems

19/ 19

Summary

▶ Machine learning = data + optimization

▶ Quantum data (superposition of classical data) can sometimes
be useful, but not in distribution-independent PAC learning

▶ “Quantum linear algebra” can be useful to efficiently extract
properties of data as quantum states

▶ There’s a growing body of quantum speedups for optimization
problems, some rigorous and some heuristic.
Much of this could be applied to ML problems

19/ 19

Summary

▶ Machine learning = data + optimization

▶ Quantum data (superposition of classical data) can sometimes
be useful, but not in distribution-independent PAC learning

▶ “Quantum linear algebra” can be useful to efficiently extract
properties of data as quantum states

▶ There’s a growing body of quantum speedups for optimization
problems, some rigorous and some heuristic.
Much of this could be applied to ML problems

19/ 19

Summary

▶ Machine learning = data + optimization

▶ Quantum data (superposition of classical data) can sometimes
be useful, but not in distribution-independent PAC learning

▶ “Quantum linear algebra” can be useful to efficiently extract
properties of data as quantum states

▶ There’s a growing body of quantum speedups for optimization
problems, some rigorous and some heuristic.
Much of this could be applied to ML problems

