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Richard Feynman, David Deutsch )
in early 1980s:
Harness those quantum effects for useful computations!
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> Qubit is superposition of 0 and 1:  ap|0) + a1 |1) € C?

P> n-qubit system: superposition of all n-bit strings:

Z axlx) e C%

xe{0,1}"

> Measurement: see outcome x € {0,1}” with probability |a|?

» Unitary transformation: matrix that preserves the length of
the vector of amplitudes. Gates: unitaries on 1 qubit

0 1 1 0 10 1 /1 1
~(0)7=(o 2) 7= (0w ) m- 5 (5 )

or on 2 qubits, CNOT: |a, b) — |a,a ® b)

» Combine simultaneous gates via tensor product,
combine sequential gates via matrix product
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Quantum algorithms

Q algorithms work by interplay of superposition and interference:

1. Start with qubits in some simple state (e.g. all |0))

2. Run circuit of gates to create the Ui = 0 [} R
the right interference, so final state "% : :
has most of its weight on solutions " -

to your computational problem o

3. Measuring final state then gives solution to your problem

Two important questions:

» Can we build such a computer?
» What can it do?
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>

Shor’s algorithm’94: can factor large integers and find discrete
logarithms efficiently (runtime quadratic in number input bits)

Grover's algorithm’96: search through an unstructured search
space of size N in time vV N

Quantum walks'00ff: for more structured search problems on
graphs, typically quadratic quantum speed-up or less

HHL algorithm'09: can solve a sparse, well-conditioned linear
system Ax = b very efficiently, but provides the answer as a
quantum state ) . x;|i) (when is this useful?)

Hamiltonian simulation'96ff: given classical description

of a local Hamiltonian H = Zj H;, implement the unitary

evolution e~Ht as a small circuit of gates
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» Machine learning: huge success since £+ 2012
» Quantum machine learning: huge hype since 4+ 2015

» Often mentioned by startups and newspaper articles as
an obvious area where quantum computers are great

» What do we actually have?

» Hard-to-assess claims about speedups for natural problems
using variational circuits (“quantum neural networks")

> Proven claims about quantum improvements in time/sample
complexity for problems with quantum data

» Proven but subsequently dequantized quantum ML algorithms
(Kerenidis-Prakash recommendation system by Ewin Tang)
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» ML = data + optimization

Classical learner | Quantum learner
Classical data Classical ML This talk
Quantum data ? This talk

» Subareas of ML:

1. Supervised learning: from labeled data
PAC learning from quantum data, positive & negative results

2. Unsupervised learning: from unlabeled data
Quantum linear algebra, e.g. Principal Component Analysis

3. Reinforcement learning: from interaction with the environment
Very interesting, but won't cover it here
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A mathematical model for supervised learning: PAC

» Concept: some function f : X — {—1,1} (think X ={0,1}")
Concept class C: set of concepts, e.g. small circuits, DNFs,. ..

> Want to learn unknown target concept f € C from examples:
(x, , where x ~ unknown distribution D on X

+H Kl -

» Goal: using some i.i.d. examples, learner for C should output
hypothesis h that is probably approximately correct (PAC).

Error of h w.r.t. target f: errp(f, h) = PrD[f(x) # h(x)]

> An algorithm (e, ¢)-PAC-learns C if:

VfeC VYD: Pr[ errp(f,h)<e ] >1-96
—_————

h is approximately correct
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» Much interesting quantum ML assumes classical data can be
turned into quantum superposition. But this is expensive. . .

P> Let's try to circumvent the problem of putting classical data
in superposition, by assuming we start from quantum data

» Bshouty-Jackson'95: suppose example is a superposition
> VD) [x. f(x)
xeX

Measuring this quantum state gives classical example ~ D
so quantum examples are at least as powerful as classical

> Next slides: some cases where quantum examples are more
powerful than classical for a fixed distribution D
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» Quantum example for target concept f under uniform D:

\/127 S %, £(x)

x€{0,1}"

> Key subroutine: Fourier sampling (Bernstein-Vazirani'93):
Can convert (with probability 1/2) quantum example to

\/127 S )

xe{0,1}"

Hadamard transform turns this into Z f(s)|s>
s€{0,1}"

?(s) = 2—1n >, F(x)(—=1)** are the Fourier coefficients of f

o~

» This allows us to sample s from distribution f(s)?
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Two cases where Fourier sampling helps learning

» Concept class C of linear functions (mod 2):
f(x) = (—1)7 for fixed a € {0,1}".
Linear functions have very simple Fourier coefficients:
~ 1 ifs=a
=1 —1)5x =1L —1)(a®s)x —
F(s) = 2 2 (1) 2 2x(=1) { 0 otherwise
We can learn a (and hence f) from one Fourier sample!

» Bshouty-Jackson'95: learn Disjunctive Normal Form (DNF)
formulas in poly-time under uniform D:
Fourier sampling gives a parity-function that's weakly
correlated with target DNF function f, can combine this with
classical “boosting” to find good hypothesis h.

Best known classical learner takes time n©(logn)

» But what about learners that work for all D?
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VC-dimension determines sample complexity in PAC model

» Cornerstone of classical sample complexity: VC-dimension
VC-dim(C) = max{d : 35S C X of size d shattered by C}

Set S = {s1,...,54} C X is shattered by C if
for all £ € {0,1}9, thereis an f € C s.t. Vi € [d] : f(s;) = ¢;

» Classical sample complexity of (g, d)-PAC-learner for C:

o (¢4 sl
3

) examples
€

» Arunachalam & dW'17: same bound for quantum sample
complexity! Hence in distribution-independent PAC learning
quantum examples are not significantly better than classical
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Quantum linear algebra

>

| 2

View data-vector as amplitudes of quantum state

(d dimensions — log(d) qubits), manipulate with unitaries
Early example: HHL algorithm to solve linear system Ax = b:
given ability to prepare |b) and implement eA, we can
efficiently compute solution-vector as quantum state |x)

Modern approach: block-encoding of a matrix A into a unitary

u=(4 ) vl = A+

Singular-value transformation (Gilyén, Su ao): can efficiently
apply low-degree polynomial to A. Can recover most known
quantum algorithms this way, and design new algorithms

Problems: (1) usually assumes quantum input, (2) usually
produces quantum output, (3) sometimes “dequantizable”. ..
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Unsupervised learning: quantum PCA (LMR'14)

» Principal Component Analysis: given vectors vy, ..., vy € RY,
reduce dimension to k by projecting on top-k eigenvectors of

m
A= E viv;"
i=1

» Suppose we can efficiently prepare log(d)-qubit state |v;).
Doing this for a random i gives “mixed” quantum state

1 & 1
= — i) (vil = —A
Pl = o

This quantum state has the same eigenvectors as A

» Quantum PCA: extract top-k eigenvectors as quantum states
via “phase estimation” on a copy of p. For that we want to
implement (powers of) the unitary e’?. We can implement
e/P® with error O(82) using one copy of p. Doing this O(t/d)
times with § = ¢/t implements e?* with error ¢.
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Quantum speedups for optimization problems

» ML = data + optimization.
If data is classical, we can still try to speed up optimization

» Discrete optimization: for graph problems (shortest paths,
sparsification), string problems, backtracking, dynamic
programming. Often uses amplitude amplification/estimation

» Continuous optimization: for linear programs, semidefinite
programs, matrix scaling and balancing, linear regression. ..

J(w)

Gradient descent: common iterative method
to find local minimum of f : R" — R

Move current point along the direction of steepest descent
(=—gradient of f at current point).

Jordan's algorithm can compute gradient more efficiently
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One example of a quantum optimization algorithm for ML

Linear Fit Function

» Given m points "

(Xl7yl)7"'a(xmaym)
with x; € R9,y; € R,

100

‘Welght

fit line through them: w0
find coefficient-vector § € R o
s.t. linear function x,-TG is a e
. . 50 55 0 65 70
good predictor of y-variable Height
1 m
» Find 0 to minmze least-squares loss L(0) = - Z(x,-TO —yi)?

i=1
Closed-form solution for the minimizer: 0* = (X7 X)*X Ty

» Problems: this tends to overfit and yield very dense 6-vectors

d
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Quantum algorithm for Lasso

d
» Lasso: minimize least-squares L(f) subject to Z 6;] <1
j=1
» Finding the exact minimizer is a hard problem, so we typically
try to find a vector 6 whose loss is not much worse:

d
L(0) < Lmin +¢  subject to Z 0;] <1
j=1
P Best classical algorithm runs in time @(d/gz)

» Chen & dW'21: quantum algorithm that in time O (\/5/52>

by speeding up Frank-Wolfe algorithm using various quantum
tricks (min-finding, amplitude estimation, data structures)

» Also proved \fd/51'5 lower bound for all quantum algorithms.
The true bound is still unknown!
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» Variational methods:
use classical methods
to optimize over some
parametrized circuits

Objective

https://dkopczyk.quantee. co.uk/wp-content/uploads/2019/05/vc4.png
» For instance angles in a fixed circuit, or “classical shadows”

P This is similar to neural networks:
you have some parametrized model where you optimize the
parameters (the weights of the NN) in some feedback loop

» Like with NN, it's hard to prove things about such methods

> Worse, unlike classical NN we can't run big experiments yet
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Summary

» Machine learning = data + optimization

» Quantum data (superposition of classical data) can sometimes
be useful, but not in distribution-independent PAC learning

» “Quantum linear algebra” can be useful to efficiently extract
properties of data as quantum states

> There's a growing body of quantum speedups for optimization
problems, some rigorous and some heuristic.
Much of this could be applied to ML problems



