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Why Measure Theory to do Probability Theory?



Why Measure Theory in the first place?
• The existence of the Lebesgue measure:

• does not exist on whole power set .

• but does exist on Borel -algebra .

• To prevent set-theoretic paradoxa  
     like Banach-Tarski:

• the orange is both a third and a half  
of the Poincaré disk / hyperbolic plane.

2ℝ

σ ℬℝ

• Stan Wagon. The Banach Tarski Paradox. CUP 1985. https://demonstrations.wolfram.com/TheBanachTarskiParadox/



Discrete and continuous distributions are not expressive enough

• The uniform distribution on the 
diagonal 

• is neither discrete nor absolute 
continuous w.r.t. .

• so it can not be described with a 
probability mass function nor with 
a probability density w.r.t. .

Δ ⊆ [0,1]2

λ2

λ2



The Category of Measurable Spaces
• Let  be a set. A -algebra on  is a set of subsets  such that:

• ,

• ,  

•
• A tuple  of a set  and a -algebra  is called measurable space.

• A map  between measurable spaces  and  is called a 

measurable map if:                .

• Note that the compositions of two measurable maps is a measurable map.

•  denotes the category of measurable spaces and measurable maps.

𝒳 σ 𝒳 ℬ ⊆ 2𝒳

∅ ∈ ℬ

An ∈ ℬ n ∈ ℕ ⟹ ⋃
n∈ℕ

An ∈ ℬ

A ∈ ℬ ⟹ 𝒳∖A ∈ ℬ
(𝒳, ℬ𝒳) 𝒳 σ ℬ𝒳

f : 𝒳 → 𝒴 (𝒳, ℬ𝒳) (𝒴, ℬ𝒴)
B ∈ ℬ𝒴 ⟹ f −1(B) ∈ ℬ𝒳

Meas



Kolmogorov’s approach to Probability Theory (1933) 
• Kolmogorov Axioms: 

• A probability distribution is just a normalized measure.

• Probability Theory can thus be viewed as a sub-field of Measure Theory.

• now allows for Lebesgue’s theory of integration (measure integrals, etc.)

• Measure Theory as an expressive “safe space” of Probability Theory.

• Andrei Kolmogoroff. Grundbegriffe der Wahrscheinlichkeitsrechnung. Ergebnisse der Mathematik und 
Ihrer Grenzgebiete. 1. Folge, Nr. 2, Springer (1933).
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How to formalize Random Variables?
• Sample space is a measurable space: 

• where  is the -algebra/set of admissible outcome events on .

• State space is a measurable space:  

• where  is another -algebra/set of admissible events on .

• Admissible random variables are all measurable maps:

•
• For fixed probability measure  on  the distribution of  is:

• push-forward probability measure:   on     (also written as: ).

(Ω, ℬΩ)
ℬΩ σ Ω

(𝒳, ℬ𝒳)
ℬ𝒳 σ 𝒳

X ∈ Meas ((Ω, ℬΩ), (𝒳, ℬ𝒳))
P (Ω, ℬΩ) X

X*P ℬ𝒳 P(X)



What is a Stochastic Process?



Different realizations of one stochastic process
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Text book definitions - stochastic process
• D. Revus, M. Yor - Continuous Martingales and Brownian Motion:
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Text book definitions - stochastic process
• D. Revus, M. Yor - Continuous Martingales and Brownian Motion:
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Three Definitions of Stochastic Processes
• Let  be the sample space,  the state space,  

the time space, e.g.  or . 

• A stochastic process is what kind of random variable / measurable map?

1. ,                   ,

2. ,                 ,

3. ,                     .

(Ω, ℬΩ) (𝒳, ℬ𝒳) (𝒯, ℬ𝒯)
𝒯 = ℕ 𝒯 = ℝ≥0

(Xt)t∈𝒯 : Ω → ∏
t∈𝒯

𝒳 ω ↦ (Xt(ω))t∈𝒯

X : Ω → Meas(𝒯, 𝒳) ω ↦ (t ↦ X(ω)(t))
X : Ω × 𝒯 → 𝒳 (ω, t) ↦ X(ω, t)
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Problems
• Three different (partially inconsistent) definitions of stochastic processes

• mismatch between formalization and meaning.

• Not clear how to turn     into a measurable space in itself?

• existence of well-behaved -algebra unclear

• The measurability of       only guaranteed under additional 

assumptions.

Meas(𝒯, 𝒳)

σ

ω ↦ XT(ω)(ω)



Are Probabilistic Programs functional?
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A program that outputs a probabilistic program

• uncurried version:
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Another probabilistic program that outputs a probabilistic program

• Output:

• How can one 
mathematically describe 
such a (probabilistic) 
program that outputs a 
probabilistic program, 
possibly of different 
types?
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How to formalize Probabilistic Programs?
• Probabilistic programs:

• take input , 

• sample internal random number , 

• determine (stochastic) output ,

• so either:

• measurable map:  ,

• however,  not really an input, rather internal

• Markov kernels from input space  to output space ,

• measurable map  

• set of probabilistic programs:   .

x
ω

z

K : Ω × 𝒳 → 𝒵
ω ∈ Ω

𝒳 𝒵
K : 𝒳 → 𝒫(𝒵)

Meas (𝒳, 𝒫(𝒵))



Church’s Simply Typed -Calculus (1940)λ
• Functional Programming should satisfy “curry” / “uncurry” operations:

•       corresponds 1:1 to:      

•     corresponds 1:1 to:      

• This mean a program in two (or more) variables  can be expressed 
as iteratively defining a functions in one variable  and vice versa.

• Requires program-valued programs / function-valued functions.

• Realized in functional programming language Haskell.

• Mathematically corresponds to cartesian closed categories.

(x, y) ↦ f(x, y) x ↦ (y ↦ f(x, y))
(x, y) ↦ g(x)(y) x ↦ g(x) = (y ↦ g(x)(y))

f(x, y)
g(x)(y)

• Alonzo Church. A formulation of the simple theory of types. The Journal of Symbolic Logic 5.2 (1940): 56-68.
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Can we Curry / Uncurry Probabilistic Programs?
• Curry / Uncurry operations would translate to isomorphism:

• .

• This means we need to be able to mathematically describe programs 
whose outputs are probabilistic programs.

• Furthermore, we need the operation  to be well-behaved:

• functorial, respects product structure

• strong probability monad

Meas (𝒳 × 𝒴, 𝒫 (𝒵)) ≅ Meas (𝒳, Meas (𝒴, 𝒫(𝒵)))

𝒫



21

Remark - Monad
• Monad 

• theory of functional programming with side effects

• equivalent to category-theoretical construction in mathematics

• strong monad:

• well-behaved w.r.t. products
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Definition - Monad
• A Monad on a category  is a triple  consisting of:

• a functor ,

• a natural transformation ,

• a natural transformation ,

• such that:

•  as natural transformations ,

•  as natural transformations .

• A monad is called strong, if it is also “well-behaved” w.r.t. finite products .

𝒞 (𝒫, δ, 𝕄)

𝒫 : 𝒞 → 𝒞

δ : id𝒞 → 𝒫

𝕄 : 𝒫2 := 𝒫 ∘ 𝒫 → 𝒫

𝕄 ∘ 𝒫𝕄 = 𝕄 ∘ 𝕄𝒫 𝒫3 → 𝒫

𝕄 ∘ 𝒫δ = 𝕄 ∘ δ𝒫 = id𝒫 𝒫 → 𝒫

×
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Problems
• Define strong probability monad 

• Giry monad defined on category of measurable spaces .

• The set of all programs that output probabilistic programs should be:

•
• Not clear how to turn    into a measurable space in itself

• existence of well-behaved -algebra unclear

• Is is possible to do more complicated constructions, e.g. dependent products, etc,?

• Can we get a dependent type theory together with higher-order probability theory?

(𝒫, δ, 𝕄)

Meas

Meas (𝒳, Meas (𝒴, 𝒫(𝒵)))
Meas (𝒴, 𝒫(𝒵))

σ



Can we do Graphical Reasoning between 
Random Variables and Mechanisms?



25

Conditional Independence in Probabilistic Graphical Models

• Consider a Markov chain:

• We have:

• factorization:   

• tells us that  is only dependent on , and, independent of  when 
conditioned on , but then also of the choice of  and .

• We want to be able to:

• formalize conditional independence:    

• including non-random variables  and 

• read this off a graph via d-separation (or similar).

P(X, Y, Z) = P(Z |Y) ⊗ P(Y |X) ⊗ P(X)
Z Y X

Y P(Y |X) P(X)

Z ⊥⊥ X, Q(Y |X), Q(X) |Y
Q(X) Q(Y |X)
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Including Non-Random Variables

•  is non-random and takes values in  

• Then  is determined by the new mechanism:

• ,    .

• similarly for .

Q(Y |X) ℒ := Meas (𝒳, 𝒫(𝒴))
Y

ℒ × 𝒳 → 𝒫(𝒴) (Q(Y |X), x) ↦ Q(Y |X = x)

X
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Problems

• Problems:

• Not clear how to deal with non-random variables.

• Not clear how to turn  into a measurable space

• Not clear how to define conditional independence with the two problems 
above.

• Not clear if this corresponds to graphical conditional independence criteria.

ℒ := Meas (𝒳, 𝒫(𝒴))



How to formalize standard 
Causal Assumptions?
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Causal Inference - Estimating Treatment Effects
• For estimating treatment effect, in the typical case, we have the variables:

•  = observed treatment variable,

•  = observed outcome,

•  = potential outcome variable under (forced) treatment ,

•  = all other relevant features of the patient.

• Estimation is not possible without further assumptions. 

• Typical assumptions made are:

• Strong Ignorability:    ,

• Consistency:   a.s.

X
Y
Yx X = x
Z

X ⊥⊥ (Yx)x∈𝒳 |Z

Y = YX
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Problems
• Here,  is used as a vector of random variables from which we can 

pick components:  .

• However, the following map is, in general, not measurable:

• ,     .

• So Strong Ignorability does formally not go well with Consistency.

• Not immediate clear how to fix this.

(Yx)x∈𝒳

(x̃, (Yx)x∈𝒳) ↦ Yx̃

𝒳 × ∏
x∈𝒳

𝒴 → 𝒴 (x̃, (yx)x∈𝒳) ↦ yx̃
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Explanation
• Let ,  , then the following map is not measurable:

• ,     .

• Otherwise, we had:      .

• Then  lies in a sub- -algebra generated by only countably many cylinder sets.

• So there exists countable subset:  s.t.:         with    .

• For :    ,   so   ,   so    .

• But then:         and thus:   .

• but clearly:   ,   which is a contradiction.

𝒳 = ℝ 𝒴x := 𝒴 := {0,1}

e : 𝒳 × ∏
x∈𝒳

𝒴 → 𝒴 (x̃, (yx)x∈𝒳) ↦ yx̃

D := e−1(1) ∈ ℬ𝒳 ⊗ ⨂
x∈𝒳

ℬ𝒴x

D σ

𝒞 ⊆ 𝒳 D = B × ∏
x∈𝒳∖𝒞

𝒴x B ⊆ 𝒳 × ∏
x∈𝒞

𝒴x

x ∈ 𝒳∖𝒞 e(x,0𝒞,0,.,0,1x,0,.,0) = 1 (x,0𝒞,0,.,0,1x,0,.,0) ∈ D (x,0𝒞) ∈ B

(x,0𝒞,0,.,0,0x,0,.,0) ∈ D = e−1(1) e(x,0𝒞,0,.,0,0x,0,.,0) = 1
e(x,0𝒞,0,.,0,0x,0,.,0) = 0



How to formalize 
Counterfactual Probabilities?
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Counterfactual Probabilities
• For reasonsing about treatment effect we consider the variables:

•  = observed treatment variable,

•  = observed outcome,

•  = potential outcome variable under (forced) treatment .

• Conditional counterfactual probabilities:

•
• “What would have happened (with which probability) under treatment 

 given that the patient was actually treated with ?”

X
Y
Yx X = x

C(A |x, x′ ) := P(Yx ∈ A |X = x′ )

X = x X = x′ 
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Problems
• Not clear if conditional counterfactual probabilities are probability measures 

in  and/or measurable in ,  or jointly.

•
• Not clear if conditioning is well-defined here, dependent on how to view 

.

A x x′ 

C(A |x, x′ ) := P(Yx ∈ A |X = x′ )

x ↦ Yx



If we are going to change all of this  
are we still able to do standard thing in 

Probability Theory and  (Bayesian) Statistics? 



Bad News



Random Functions do not exist in Meas
• Theorem (Aumann, 1961):

• There is no -algebra  on  such that the 
evaluation map is measurable:

• ,   ,

• where  carries the Borel- -algebra and  is the space of all 
measurable maps from  to , and the product carries the product-
-algebra.

• So there is no well-behaved way to define a probability distribution over all 
measurable functions in a fully non-parametric way.

σ ℬℒ ℒ := Meas (ℝ, ℝ)

ev : ℒ × ℝ → ℝ ( f, x) ↦ f(x)
ℝ σ ℒ

ℝ ℝ σ

• Robert J. Aumann. Borel structures for function spaces. Illinois Journal of Mathematics 5.4 (1961): 614-630.



Quasi-Measurable Spaces



39

Recall: Usual measure-theoretic approach
• Sample space is a measurable space: 

• where  is the -algebra/set of admissible outcome events on .

• State space is a measurable space:  

• where  is another -algebra/set of admissible events on .

• Admissible random variables are all measurable maps:

•
• For fixed probability measure  on  the distribution of  is:

• push-forward probability measure:   on     (also written as: ).

(Ω, ℬΩ)
ℬΩ σ Ω

(𝒳, ℬ𝒳)
ℬ𝒳 σ 𝒳

X ∈ Meas ((Ω, ℬΩ), (𝒳, ℬ𝒳))
P (Ω, ℬΩ) X

X*P ℬ𝒳 P(X)
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Main Idea behind Quasi-Measurable Spaces
• Main idea: Exchange the role of -algebras and random variables!!!

• Sample space is a measurable space: 

• where  is the -algebra/set of admissible outcome events on .

• State space is a “quasi-measurable space”:  

• where  is a set of admissible random variables.

• -algebra of admissible events is:

•
• For fixed probability measure  on  the distribution of  is:

• push-forward probability measure:   on  (also written as:  ).

σ

(Ω, ℬΩ)
ℬΩ σ Ω

(𝒳, 𝒳Ω)
𝒳Ω

σ

ℬ𝒳 := ℬ (𝒳Ω) := {A ⊆ 𝒳 | ∀X ∈ 𝒳Ω . X−1(A) ∈ ℬΩ}
P (Ω, ℬΩ) X

X*P ℬ𝒳 P(X)
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The Sample Space - Act 1 - Random Variables
• The Sample Space  consists of:

• a set:  

• a set of maps: 

• such that:

• ,

•  contains all constant maps,

•  is closed under composition:

• .

• Standard example:

•   for some carefully chosen -algebra:  .

(Ω, ΩΩ)
Ω

ΩΩ ⊆ {Φ : Ω → Ω}

idΩ ∈ ΩΩ

ΩΩ

ΩΩ

Φ1, Φ2 ∈ ΩΩ ⟹ Φ2 ∘ Φ1 ∈ ΩΩ

ΩΩ := Meas ((Ω, ℬΩ), (Ω, ℬΩ)) σ ℬΩ
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Quasi-Measurable Spaces
• A Quasi-Measurable Space  w.r.t. sample space  - per 

definition - consists of:

• a set: 

• a set of admissible random variables: , 

• i.e. a set of maps:   ,  such that:

• all constant maps   are in ,

•  is closed under pre-composition with :

• .

(𝒳, 𝒳Ω) (Ω, ΩΩ)

𝒳
𝒳Ω

X : Ω → 𝒳
Ω → 𝒳 𝒳Ω

𝒳Ω ΩΩ

X ∈ 𝒳Ω, Φ ∈ ΩΩ ⟹ X ∘ Φ ∈ 𝒳Ω



43

Quasi-Measurable Maps
• Let  and  two quasi-measurable spaces.

• A map  is called quasi-measurable if

•
• The set of all quasi-measurable maps is abbreviated:

•      or     for short.

• Note that the composition of two quasi-measurable maps is again quasi-
measurable.

• The class of all quasi-measuable spaces (w.r.t. a fixed sample space) together with 
all quasi-measurable maps builds a category: .

(𝒵, 𝒵Ω) (𝒳, 𝒳Ω)
g : 𝒵 → 𝒳
Z ∈ 𝒵Ω ⟹ g(Z) := g ∘ Z ∈ 𝒳Ω

QMS ((𝒵, 𝒵Ω), (𝒳, 𝒳Ω)) QMS (𝒵, 𝒳)

QMS
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The Product Space
• Let  be a family of quasi-measurable spaces, .

• Then we turn the product space:    

• into a quasi-measurable space by putting:     

• product random variables on the product are of the form:

•   with   for all .

(𝒳i, 𝒳Ω
i ) i ∈ I

∏
i∈I

𝒳i

(∏
i∈I

𝒳i)
Ω

:= ∏
i∈I

𝒳Ω
i

X(ω) = (Xi(ω))i∈I
Xi ∈ 𝒳Ω

i i ∈ I
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The Function Space
• Let  and  two quasi-measurable spaces. We put:

•

•
• function-valued random variables are defined via the product structure

• Then  is a quasi-measurable space.

• Note that such a construction was not possible for measurable spaces!!!

(𝒳, 𝒳Ω) (𝒵, 𝒵Ω)
𝒳𝒵 := QMS ((𝒵, 𝒵Ω), (𝒳, 𝒳Ω))
(𝒳𝒵)Ω := {X : Ω → 𝒳𝒵 | ((ω, z) ↦ X(ω)(z)) ∈ QMS(Ω × 𝒵, 𝒳)}

(𝒳𝒵, (𝒳𝒵)Ω)
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Currying, Uncurrying and the Evaluation Map
• Let ,  and  be quasi-measurable spaces.

• We can then curry and uncurry:

•
• In particular, the evaluation map is quasi-measurable:

• ,     .

• Note that this was not possible in  for measurable spaces!!!

(𝒳, 𝒳Ω) (𝒴, 𝒴Ω) (𝒵, 𝒵Ω)

QMS (𝒵 × 𝒴, 𝒳) ≅ QMS (𝒴, 𝒳𝒵) = QMS (𝒴, QMS (𝒵, 𝒳))

ev : 𝒳𝒵 × 𝒵 → 𝒳 ev(g, z) := g(z)

Meas
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More Category-theoretical Constructions
• Similary, we can define the following in :

• coproducts, equalizers, coequalizers, thus:

• all small limits and all small colimits

• even more, we get in :

• fibre products:   ,

• internal homs:   

• .

• Note that the latter was not possible in  for measurable spaces!!!

QMS

QMS
𝒳 ×𝒮 𝒴 → 𝒮
𝒬𝒮(𝒳, 𝒴) → 𝒮

QMS𝒮(𝒳 ×𝒮 𝒴, 𝒵) = QMS𝒮(𝒳, 𝒬𝒮(𝒴, 𝒵))
Meas
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Main Theorems
• Theorem: The category of quasi-measurable spaces  forms a quasitopos, and, is in 

particular, locally cartesian closed.

• Remark: This means that, besides simply typed -calculus, we get a dependent type 
theory for . Roughly speaking, this means that we can model programs that can vary 
the output type/space dependent on the input. This makes it easy to implement all result 
obtained inside  in a theorem prover like Lean, Agda or Coq, etc.

• Theorem: The category of quasi-measurable spaces  forms a Heyting category.

• Remark:  has thus an internal logic of a (typed) intuitionistic first-order logic.

• Remark: Note that most of this is not true for the category of measurable spaces !!!

QMS

λ
QMS

QMS

QMS
QMS

Meas



Definition - Quasitopos
• A quasitopos is a category that: 

• has all finite limits,

• has all finite colimits,

• is locally cartesian closed, 

• has a subobject classifier for strong monomorphisms.

• Peter T.  Johnstone. Sketches of an Elephant: A Topos Theory Compendium. Oxford University Press, 2002.
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The Sample Space - Act 2 - The -Algebraσ
• We now endow the Sample Space  with an additional -algebra  

 such that:

• .

• The Sample Space is now the triple:  .

• Standard example:

•  

(Ω, ΩΩ) σ
ℬΩ

ΩΩ ⊆ Meas ((Ω, ℬΩ), (Ω, ℬΩ))

(Ω, ΩΩ, ℬΩ)

ΩΩ = Meas ((Ω, ℬΩ), (Ω, ℬΩ))
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Topological and Measurable Spaces as Quasi-Measurable Spaces

• If  is a measurable space or a topological space, etc., then we can 
turn this into a quasi-measurable space via allowing for the following random 
variables:

•

• Note that the later introduced -algebra  might be strictly bigger than the 
one we started with to turn  into quasi-measurable space :

•

(𝒳, ℰ𝒳)

𝒳Ω := ℱ(ℰ𝒳) := {X : Ω → 𝒳 | ∀A ∈ ℰ𝒳 . X−1(A) ∈ ℬΩ}

σ ℬ𝒳

(𝒳, ℰ𝒳) (𝒳, 𝒳Ω)

ℰ𝒳 ⊊ ℬ𝒳 := ℬ (𝒳Ω)
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The -Algebraσ
• Let  be a quasi-measurable space. 

• Then the induced -algebra is:

•
• We can then define the set of admissible random variables with values in  via:

•  

• where  

• Then  is a quasi-measurable space.

• Note that this was not possible in the category of measurable spaces!!!

(𝒳, 𝒳Ω)
σ

ℬ𝒳 := {A ⊆ 𝒳 | ∀X ∈ 𝒳Ω . X−1(A) ∈ ℬΩ}
ℬ𝒳

(ℬ𝒳)Ω := {Ψ : Ω → ℬ𝒳 | ∃D ∈ ℬΩ×𝒳 ∀ω ∈ Ω . Ψ(ω) = Dω} ≅ ℬΩ×𝒳

Dω := {x ∈ 𝒳 | (ω, x) ∈ D}
(ℬ𝒳, (ℬ𝒳)Ω)
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Theorem - The Adjunction
• A map  from a quasi-measurable space  to a 

measurable space  is  

• measurable if and only if it is quasi-measurable,

• provided we use the corresponding choices:

• ,

• .

• In other words, we have the natural identification of sets of maps:

• .

g : 𝒳 → 𝒴 (𝒳, 𝒳Ω)
(𝒴, ℬ𝒴)

ℬ𝒳 := ℬ(𝒳Ω) := {A ⊆ 𝒳 | ∀X ∈ 𝒳Ω . X−1(A) ∈ ℬΩ}

𝒴Ω := ℱ(ℬ𝒴) := {Y : Ω → 𝒴 | ∀B ∈ ℬ𝒴 . Y−1(B) ∈ ℬΩ}

Meas ((𝒳, ℬ(𝒳Ω)), (𝒴, ℬ𝒴)) = QMS ((𝒳, 𝒳Ω), (𝒴, ℱ(ℬ𝒴)))
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The Sample Space - Act 3 - Probability Measures
• We now endow the Sample Space  with some additional set of 

 product compatible probability measures  on , i.e. such that:

• for all  and  the map:

• ,    ,    is (quasi-)measurable,

• where ,

• for all  there exist  and  such that:

•    on ,           i.e. for all  we have:

• .

• The Sample Space is now the quadruple:  .

(Ω, ΩΩ, ℬΩ)
𝒫 ℬΩ

P ∈ 𝒫 D ∈ ℬΩ×Ω

Ω → [0,1] ω ↦ P(Dω)
Dω := {ω̃ ∈ Ω | (ω̃, ω) ∈ D}

P1, P2 ∈ 𝒫 Φ1, Φ2 ∈ ΩΩ P ∈ 𝒫
P1 ⊗ P2 = P(Φ1, Φ2) ℬΩ×Ω D ∈ ℬΩ×Ω

(P1 ⊗ P2)(D) := ∫ P1(Dω) P2(dω) = P({ω ∈ Ω | (Φ1(ω), Φ2(ω)) ∈ D})

(Ω, ΩΩ, ℬΩ, 𝒫)
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The Space of Push-forward Probability Measures
• Let  be a quasi-measurable space. Define:

•
•

•    for 

• Lemma:  is also a quasi-measurable space.

(𝒳, 𝒳Ω)
𝒫(𝒳) := 𝒫(𝒳, 𝒳Ω) := {P(X) : ℬ𝒳 → [0,1] | X ∈ 𝒳Ω, P ∈ 𝒫}
𝒫(𝒳)Ω := 𝒫(𝒳, 𝒳Ω)Ω := {P(X | I) | X ∈ (𝒳Ω)Ω, P ∈ 𝒫}

P(X ∈ A | I = ω) := P ({ω̃ ∈ Ω | X(ω)(ω̃) ∈ A}) A ∈ ℬ𝒳

(𝒫(𝒳), 𝒫(𝒳)Ω)
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The Spaces of Markov Kernels and Random Functions

• Let  and  be quasi-measurable spaces. 

• Then the space of Markov kernels from  to :

•
• is again a quasi-measurable space.

• Also the space of probability distribution over functions:

•  is again a quasi-measurable space.

• Note that these construction were not possible in the category of measurable 
spaces!!! 

(𝒳, 𝒳Ω) (𝒵, 𝒵Ω)
(𝒵, 𝒵Ω) (𝒳, 𝒳Ω)

𝒫(𝒳)𝒵 = QMS ((𝒵, 𝒵Ω), (𝒫(𝒳), 𝒫(𝒳)Ω))

𝒫 (𝒳𝒵)
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Some surprising Lemmata
• Let  and  be quasi-measurable spaces. 

• Then the following maps are all quasi-measurable:

• ,             .

• ,         .

• ,      .

• ,    .

• Note that such statements were not known or even possible in the category of 
measurable spaces!!!

(𝒳, 𝒳Ω) (𝒴, 𝒴Ω)

𝒴𝒳 × ℬ𝒴 → ℬ𝒳 ( f, B) ↦ f −1(B)

𝒫(𝒳) × ℬ𝒳 → [0,1] (P, A) ↦ P(A)

𝒴𝒳 × 𝒫(𝒳) → 𝒫(𝒴) ( f, P) ↦ f*P

[0,∞]𝒳 × 𝒫(𝒳) → [0,∞] (h, P) ↦ ∫ h(x) P(dx)
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Theorem: The Product of Markov Kernels
• Assume that there exists an isomorphism of quasi-measurable spaces: 

• .

• Then for all quasi-measurable spaces , ,  the 
product of Markov kernels:

•

• is a well-defined quasi-measurable map. 

Ω × Ω ≅ Ω
(𝒳, 𝒳Ω) (𝒴, 𝒴Ω) (𝒵, 𝒵Ω)

⊗ : 𝒫(𝒳)𝒴×𝒵 × 𝒫(𝒴)𝒵 → 𝒫(𝒳 × 𝒴)𝒵

(P(X |Y, Z) ⊗ Q(Y |Z))(D |z) := ∫ P(X ∈ Dy |Y = y, Z = z) Q(Y ∈ dy |Z = z)
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Theorem: Strong Probability Monad
• If  then the triple  is a strong probability monad on 

the cartesian closed category , where:

• ,                                    ,

• ,            .

• This thus allows for a notion of computation of monadic type and simply 
typed -calculus.

• We thus get semantics for higher-order probability theory for probabilistic 
programming language.

Ω × Ω ≅ Ω (𝒫, δ, 𝕄)
QMS

δ : 𝒳 → 𝒫(𝒳) δx(A) := 11A(x)

𝕄 : 𝒫 (𝒫(𝒳)) → 𝒫(𝒳) 𝕄(Π)(A) := ∫ P(A) dΠ(P)

λ
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Construction of well-behaved Sample Spaces 
• Theorem:   Let  be a set, and: 

•  a countable set of subsets of  that separates the points of .

• ,    and   ,

• ,

• ,  the perfect-universal completion of ,

• ,     

• Then  satisfies all points of act 1-3 and .

Ω0

ℰ0 Ω0 Ω0

Ω := ∏
n∈ℕ

Ω0 ℰ := {pr−1
n (A) | A ∈ ℰ0, n ∈ ℕ}

�̃� := {P complete perfect probability measure on Ω, ℰ ⊆ ℬP}

ℬΩ := ⋂
P∈�̃�

ℬP ℰ

ΩΩ := Meas ((Ω, ℬΩ), (Ω, ℬΩ)) 𝒫 := �̃� |ℬΩ

(Ω, ΩΩ, ℬΩ, 𝒫) Ω × Ω ≅ Ω
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Fubini Theorem
• Let  be the sample space from the last slide.

• Let  and  be quasi-measurable spaces and:

•  ,     and  .

• Then we have the equality:

• .

(Ω, ΩΩ, ℬΩ, 𝒫)

(𝒳, 𝒳Ω) (𝒴, 𝒴Ω)
f ∈ [0,∞]𝒳×𝒴 P ∈ 𝒫(𝒳) Q ∈ 𝒫(𝒴)

∫ ∫ f(x, y) P(dx) Q(dy) = ∫ ∫ f(x, y) Q(dy) P(dx)
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The Sample Space - Act 4 - The Universal Hilbert Cube

• ,  the Hilbert Cube,

• set of all universally measurable subsets of . 

• Note that this is bigger than the Borel -algebra on .

• all probability measures on ,          .

• We call this Sample Space  the Universal Hilbert Cube.

• Interpretation: Countably infinite sequence of uniformly distributed samples (e.g. 
from a (pseudo-)random number generator).

• Note that it satisfies act 1-3 and the iso:    (via “Hilbert’s Hotel”).

Ω = [0,1]ℕ = ∏
n∈ℕ

[0,1]

ℬΩ = Ω
σ Ω

𝒫 = ℬΩ ΩΩ = Meas ((Ω, ℬΩ), (Ω, ℬΩ))
(Ω, ΩΩ, ℬΩ, 𝒫)

Ω × Ω ≅ Ω
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The Category of Quasi-Universal Spaces
• Definition: A quasi-universal space  is - per definition - just a 

quasi-measurable space where the sample space  is the universal 
Hilbert cube.

• We abbreviate the category of quasi-universal spaces as .

(𝒳, 𝒳Ω)
Ω

QUS
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Countably Separated and Standard Quasi-Measurable Spaces

• Definition: A quasi-measurable space  is called:

• countably separated if there exists a countable subset  that 
separates the points of .

• standard quasi-measurable space if there are quasi-measurable maps:

•     and       s.t.:

• .

(𝒳, 𝒳Ω)
ℰ ⊆ ℬ𝒳

𝒳

ι : (𝒳, 𝒳Ω) → (Ω, ΩΩ) r : (Ω, ΩΩ) → (𝒳, 𝒳Ω)
r ∘ ι = id𝒳
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Theorem: Disintegration of Markov Kernels
• Let  and  and  be quasi-universal spaces.

• Let  be countably separated. and:

• either  or  be a standard quasi-universal space.

• Then the product of Markov kernels:

•
• is a (surjective) quotient map of quasi-universal spaces.

• More concretely, for every  there exists 
 such that:  .

(𝒳, 𝒳Ω) (𝒴, 𝒴Ω) (𝒵, 𝒵Ω)
(𝒴, 𝒴Ω)

(𝒳, 𝒳Ω) (𝒵, 𝒵Ω)

⊗ : 𝒫(𝒳)𝒴×𝒵 × 𝒫(𝒴)𝒵 → 𝒫(𝒳 × 𝒴)𝒵

P(X, Y |Z) ∈ 𝒫(𝒳 × 𝒴)𝒵

P(X |Y, Z) ∈ 𝒫(𝒴)𝒴×𝒵 P(X, Y |Z) = P(X |Y, Z) ⊗ P(Y |Z)
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Conditional Kolmogorov Extension Theorem
• Let , , a sequence of standard quasi-universal spaces and 

 be any quasi-universal space. 

• Assume we have  such that for every :

• .

• Then there exists a unique  such that:

•      for all ,

• where .

(𝒳n, 𝒳Ω
n ) n ∈ ℕ

(𝒵, 𝒵Ω)
Qn(X0:n |Z) ∈ 𝒫 (𝒳0:n)𝒵 n ∈ ℕ

pr0:n,*Qn+1(X0:n+1 |Z) = Qn(X0:n |Z)

Q(Xℕ |Z) ∈ 𝒫 (𝒳ℕ)𝒵

pr0:n,*Q(X0:n+1 |Z) = Qn(X0:n |Z) n ∈ ℕ

𝒳ℕ := ∏
n∈ℕ

𝒳n



Conditional De Finetti Theorem
•  standard quasi-universal spaces,  any quasi-universal space.

• For a Markov kernel  the following is equivalent: 

•  is exchangable, i.e. invariant under all finite permuations:  .

• There exists a quasi-universal space  and  and  
 such that :

• .

• In this case we can w.l.o.g. take:   and  .

(𝒳, 𝒳Ω) (𝒵, 𝒵Ω)
Q(Xℕ |Z) ∈ 𝒫 (𝒳ℕ)𝒵

Q(Xℕ |Z) ρ : ℕ ≅ ℕ

𝒴 K(X |Y) ∈ 𝒫(𝒳)𝒴

P(Y |Z) ∈ 𝒫(𝒴)𝒵

Q(Xℕ |Z) = (⨂
n∈ℕ

K(Xn |Y)) ∘ P(Y |Z)

𝒴 = 𝒫(𝒳) K(X ∈ A |Y = P) := P(A)
Tobias Fritz, Tomáš Gonda, Paolo Perrone, De Finetti's Theorem in Categorical Probability, 2021, https://arxiv.org/abs/2105.02639.



Transitional Conditional Independence
• Consider a Markov kernel:  .

• We say that  is conditional independent of  given  w.r.t. 
, 

• in symbols:                 if:

• there exists a Markov kernel    such that:

• .

P(X, Y, Z |T) ∈ 𝒫(𝒳 × 𝒴 × 𝒵)𝒯

X Y Z
P(X, Y, Z |T)

X ⊥⊥ Y |Z

Q(X |Z) ∈ 𝒫(𝒳)𝒵

P(X, Y, Z |T) = Q(X |Z) ⊗ P(Y, Z |T)

Patrick Forré, Transitional Conditional Independence, 2021, https://arxiv.org/abs/2104.11547.
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Partially Generic Causal Bayesian Networks
• A partially generic causal Baysian network - per definition - consists of:

• a conditional directed acyclic graph (CDAG): ,

• an input variable  on a quasi-universal space  for each , 

• an output variable  on a standard quasi-universal space  for each 
,

• an exceptional set:  ,

• a Markov kernel:    for .

G = (J, V, E)
Xj 𝒳j j ∈ J

Xv 𝒳v
v ∈ V

W ⊆ V

Pv(Xv |XPaG(v)) ∈ 𝒫(𝒳v)
𝒳PaG(v) v ∈ V∖W
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Partially Generic Causal Bayesian Networks
• For a partially generic causal Baysian network with exceptional set  we 

introduce for :

• an indicator variable: ,

• a quasi-universal space: ,

• a “generic” Markov kernel: 

• .

• So we get a joint Markov kernel:   .

W
w ∈ W

Iw → w

𝒳Iw
:= 𝒫(𝒳w)𝒳PaG(w)

Pw (Xw ∈ A XPaG(w) = x, XIw
= Q) := Q (Xw ∈ A XPaG(w) = x)

P(XV, XJ, XIW
|XJ, XIW

)
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Theorem: Global Markov Property
• For every partially generic causal Bayesian network with exceptional set  

and any subsets:         we have the implication:

•     .

W

A, B, C ⊆ V ∪ IW ∪ J

A ⊥ B |C ⟹ XA ⊥⊥ XB |XC



(Proposed) 
Answers
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Answers - Stochastic Process
• Definition: A stochastic process is a quasi-measurable map:

• ,       .

• Lemma: This is equivalent to a quasi-measurable map:  ,   .

• Lemma: The map: ,     ,    is quasi-measurable.

• Lemma: If  is quasi-measurable (random time) then the map:

• ,     is again quasi-measurable.

X : Ω → 𝒳𝒯 ω ↦ (t ↦ X(ω)(t))
X : Ω × 𝒯 → 𝒳 (ω, t) ↦ X(ω, t)

𝒳𝒯 → ∏
t∈𝒯

𝒳 X ↦ (X(t))t∈𝒯

T : Ω → 𝒯

Ω → 𝒳 ω ↦ X(ω)(T(ω))
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Answers - Probabilistic Programs
• Definition: A probabilistic program with input  and output  is quasi-

measurable map:  .

• Theorem: We have the natural curry / uncurry isomorphism:

•

• Theorem:  is a quasitopos, thus allows for dependent type theory.

• Theorem: The triple  forms a strong probability monad on the category 
of quasi-measurable spaces  (for certain sample spaces, e.g. the universal 
Hilbert cube).    Thus allows for higher-order probabilistic programs.

x ∈ 𝒳 z ∈ 𝒵
𝒳 → 𝒫(𝒵)

QMS (𝒳 × 𝒴, 𝒫 (𝒵)) ≅ QMS (𝒳, QMS (𝒴, 𝒫(𝒵)))
QMS

(𝒫, δ, 𝕄)
QMS
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Answers - Graphical Models

• Partially generic causal Bayesian networks can model graphical models with non-random input variables.

• Transitional conditional independence also works with non-random input variables.

• Theorem: Global Markov Property:  For    we have:

•     .

• Example: Here  is a non-random input variable with values in  

• Then  is determined by the new quasi-measurable mechanism:

• ,    .

• We can now read off the graph:        .

A, B, C ⊆ V ∪ IW ∪ J

A ⊥ B |C ⟹ XA ⊥⊥ XB |XC

Q(Y |X) ℒ := QUS (𝒳, 𝒫(𝒴))
Y

ℒ × 𝒳 → 𝒫(𝒴) (Q(Y |X), x) ↦ Q(Y |X = x)

Z ⊥⊥ X, Q(Y |X), Q(X) |Y
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Answers - Causal Assumptions
• Model potential outcome as quasi-measurable map / random function:

•
• Potential outcome under treatment  then:    .

• Rephrase causal assumptions:

• Strong Ignorability:    ,

• Consistency:             .

• Everything is well-defined and quasi-measurable.

G : Ω → 𝒴𝒳

X = x Yx := G(x)

X ⊥⊥ G |Z
Y = G(X)
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Answers - Counterfactual Probabilities
• Theorem: Disintegration of Markov kernels.

• Model potential outcome as: 

• Assume that  to countably separated quasi-universal space.

• Then via the disintegration theorem there exists conditional:

•     such that    .

• Evaluation maps and push-forwards are quasi-measurable, which implies:

•   defines:

• well-defined and quasi-measurable  

• So, conditional counterfactual probabilities are well-defined and quasi-measurable.

G ∈ (𝒴𝒳)Ω

𝒳

P(G |X) ∈ 𝒫(𝒢)𝒳 P(G, X) = P(G |X) ⊗ P(X)

C(A |x, x′ ) := P(G(x) ∈ A |X = x′ )

C ∈ 𝒫(𝒴)𝒳×𝒳
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Answers - Statistics and Probability Theory
• For (standard) quasi-universal spaces we at least can do the following:

• Theorem: Disintegration of Markov kernels.

• Remark: This allows for Bayes’ Rule and thus Bayesian Statistics. 

• Theorem: Fubini Theorem.

• Theorem: Conditional de Finetti Theorem.

• Theorem: Kolmogorov Extension Theorem.

• Theorem: Global Markov Property for graphical models like partially generic 

causal Bayesian networks.



Recommendation
• For probabilistic programming, graphical models, causality, statistics, etc.

• use for:

• sample space —> the universal Hilbert cube

• replace:

• measurable spaces —> quasi-measurable spaces

• measurable maps —> quasi-measurable maps

• categorical construction in  —> categorical construction in 

• study more of the (classical) theory in this framework (e.g. martingales).

Meas QMS

• Patrick Forré, Quasi-Measurable Spaces, 2021, https://arxiv.org/abs/2109.11631.
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More about Convenient Categories
• Probability Theory

• Quasi-Borel Spaces - by Chris Heunen, Ohad Kammar, Sam Staton, Hongseok Yang

• Quasi-Measurable Spaces - by Patrick Forré, https://arxiv.org/abs/2109.11631

• Topology

• Compactly Generated Weakly Hausdorff Spaces (CGWH) - by Witold Hurewicz, David Gale, Norman Steenrod, John 

C. Moore, Michael C. McCord, Neil Strickland, et al (script)

• Condensed Sets - by Peter Scholz, Dustin Clausen (script)

• Differential Geometry

• Diffeological Spaces - by Kuo Tsai Chen, Jean-Marie Souriau, Patrick Iglesias-Zemmour, John Baez, Alexander 

Hoffnung, Andrew Stacey, et al.

https://arxiv.org/abs/2109.11631
http://neil-strickland.staff.shef.ac.uk/courses/homotopy/cgwh.pdf
https://www.math.uni-bonn.de/people/scholze/Condensed.pdf


Thank you for your attention!


