Quasi-Measurable Spaces

A Convenient Foundation of Probability Theory

AI4Science Lab, AMLab, Informatics Institute, University of Amsterdam, The Netherlands

Patrick Forré

References

- The talk is based on the following papers:
 - Science (LICS), 2017.

 Patrick Forré, Quasi-Measurable Spaces, 2021, https://arxiv.org/abs/2109.11631.

Chris Heunen, Ohad Kammar, Sam Staton, Hongseok Yang. A convenient category for higher-order probability theory. 32nd Annual ACM/IEEE Symposium on Logic in Computer

Why Measure Theory to do Probability Theory?

Why Measure Theory in the first place? • The existence of the Lebesgue measure: • does not exist on whole power set $2^{\mathbb{R}}$. • but does exist on Borel σ -algebra $\mathscr{B}_{\mathbb{R}}$. like Banach-Tarski: • the orange is both a third and a half of the Poincaré disk / hyperbolic plane.

- To prevent set-theoretic paradoxa

Stan Wagon. The Banach Tarski Paradox. CUP 1985. https://demonstrations.wolfram.com/TheBanachTarskiParadox/

Discrete and continuous distributions are not expressive enough

- The uniform distribution on the diagonal $\Delta \subseteq [0,1]^2$
 - is neither discrete nor absolute continuous w.r.t. λ^2 .
 - so it can not be described with a probability mass function nor with a probability density w.r.t. λ^2 .

The Category of Measurable Spaces

• Let \mathscr{X} be a set. A σ -algebra on \mathscr{X} is a set of subsets $\mathscr{B} \subseteq 2^{\mathscr{X}}$ such that:

•
$$\emptyset \in \mathscr{B}$$
,

$$A_n \in \mathcal{B}, n \in \mathbb{N} \implies \bigcup_{n \in \mathbb{N}} A_n \in \mathcal{B}$$

- $A \in \mathscr{B} \implies \mathscr{X} \setminus A \in \mathscr{B}$

• A tuple $(\mathcal{X}, \mathcal{B}_{\mathcal{X}})$ of a set \mathcal{X} and a σ -algebra $\mathcal{B}_{\mathcal{X}}$ is called **measurable space**. • A map $f: \mathcal{X} \to \mathcal{Y}$ between measurable spaces $(\mathcal{X}, \mathcal{B}_{\mathcal{X}})$ and $(\mathcal{Y}, \mathcal{B}_{\mathcal{Y}})$ is called a measurable map if: $B \in \mathscr{B}_{\mathscr{U}} \implies f^{-1}(B) \in \mathscr{B}_{\mathscr{X}}$.

- Note that the compositions of two measurable maps is a measurable map.
- Meas denotes the category of measurable spaces and measurable maps.

ß

Kolmogorov's approach to Probability Theory (1933)

- Kolmogorov Axioms:
 - A probability distribution is just a normalized measure.

- Measure Theory as an expressive "safe space" of Probability Theory.
- Ihrer Grenzgebiete. 1. Folge, Nr. 2, Springer (1933).

Probability Theory can thus be viewed as a sub-field of Measure Theory.

• now allows for Lebesgue's theory of integration (measure integrals, etc.)

• Andrei Kolmogoroff. Grundbegriffe der Wahrscheinlichkeitsrechnung. Ergebnisse der Mathematik und

How to formalize Random Variables?

- Sample space is a measurable space: $(\Omega, \mathscr{B}_{\Omega})$
 - where \mathscr{B}_{Ω} is the σ -algebra/set of admissible outcome events on Ω .
- State space is a measurable space
 - where $\mathscr{B}_{\mathscr{X}}$ is another σ -algebra/set of admissible events on \mathscr{X} .
- Admissible random variables are all measurable maps:
 - $X \in \text{Meas}\left((\Omega, \mathscr{B}_{\Omega}), (\mathscr{X}, \mathscr{B}_{\mathcal{X}})\right)$
- For fixed probability measure P or
 - push-forward probability measure: X_*P on $\mathscr{B}_{\mathscr{Y}}$ (also written as: P(X)).

$$\mathfrak{e}:\left(\mathscr{X},\mathscr{B}_{\mathscr{X}}
ight)$$

$$(\Omega,\mathscr{B}_{\Omega})$$
)
on $(\Omega,\mathscr{B}_{\Omega})$ the distribution of X is:

What is a Stochastic Process?

Different realizations of one stochastic process

Text book definitions - stochastic process

• D. Revus, M. Yor - Continuous Martingales and Brownian Motion:

(1.1) Definition. Let T be a set, (E, \mathscr{E}) a measurable space. A stochastic process indexed by T, taking its values in (E, \mathscr{E}) , is a family of measurable mappings $X_t, t \in T$, from a probability space (Ω, \mathscr{F}, P) into (E, \mathscr{E}) . The space (E, \mathscr{E}) is *called the* state space.

For every $\omega \in \Omega$, the mapping $t \to X_t(\omega)$ is a "curve" in E which is referred to as a *trajectory* or a *path* of X. We may think of a path as a point chosen randomly in the space $\mathscr{F}(T, E)$ of all functions from T into E, or, as we shall see later, in a reasonable subset of this space.

Text book definitions - stochastic process

• D. Revus, M. Yor - Continuous Martingales and Brownian Motion:

Let (\mathscr{F}_t) be a filtration on (Ω, \mathscr{F}) and T a stopping time. For a process X, we define a new mapping X_T on the set { $\omega : T(\omega) < \infty$ } by

 $X_T(\omega) = X_t(\omega)$

(4.7) Definition. A process X is progressively measurable or simply progressive (with respect to the filtration (\mathscr{F}_t)) if for every t the map $(s, \omega) \rightarrow X_s(\omega)$ from $[0,t] \times \Omega$ into (E, \mathscr{E}) is $\mathscr{B}([0,t]) \otimes \mathscr{F}_t$ -measurable. A subset Γ of $\mathbb{R}_+ \times \Omega$ is progressive if the process $X = 1_{\Gamma}$ is progressive.

(4.8) Proposition. An adapted process with right or left continuous paths is progressively measurable.

if
$$T(\omega) = t$$
.

This is the position of the process X at time T, but it is not clear that X_T is a random variable on $\{T < \infty\}$. Moreover if X is adapted, we would like X_T

Three Definitions of Stochastic Processes

- Let $(\Omega, \mathscr{B}_{\Omega})$ be the sample space, $(\mathscr{X}, \mathscr{B}_{\mathscr{X}})$ the state space, $(\mathscr{T}, \mathscr{B}_{\mathscr{T}})$ the time space, e.g. $\mathscr{T} = \mathbb{N}$ or $\mathscr{T} = \mathbb{R}_{\geq 0}$.
- A stochastic process is what kind of random variable / measurable map?

1.
$$(X_t)_{t\in\mathcal{T}}: \Omega \to \prod_{t\in\mathcal{T}} \mathcal{X},$$

- 2. $X: \Omega \to Meas(\mathcal{T}, \mathcal{X}),$
- 3. $X: \Omega \times \mathcal{T} \to \mathcal{X}$,

$$\omega \mapsto (X_t(\omega))_{t \in \mathcal{T}},$$

$$\omega \mapsto (t \mapsto X(\omega)(t)),$$
$$(\omega, t) \mapsto X(\omega, t).$$

Problems

- - mismatch between formalization and meaning.
- - existence of well-behaved σ -algebra unclear

assumptions.

Three different (partially inconsistent) definitions of stochastic processes

• Not clear how to turn $Meas(\mathcal{T}, \mathcal{X})$ into a measurable space in itself?

• The measurability of $\omega \mapsto X_{T(\omega)}(\omega)$ only guaranteed under additional

Are Probabilistic Programs functional?

A program that outputs a probabilistic program

def prog_prob_prog(a): return lambda m,s: [Z:=np.random.uniform(), a*m+s*Z][-1]

print(prog_prob_prog(a=1))

<function prog_prob_prog.<locals>.<lambda>

for n in range(5): print(prog_prob_prog(a=n)(m=5,s=2))

1.8106662116099772 6.762509413168864 10.365457994333775 15.884402920590935 21.48676872656254

• uncurried version:

def prob_prog(a,m,s): Z=np.random.uniform() return a*m+s*Z

for n in range(5): print(prob_prog(a=n,m=5,s=2))

1.5413066059310134 6.248544376268809 10.923467140491365 16.8296978388216 20.72122425243884

Another probabilistic program that outputs a probabilistic program

```
import numpy as np
def prob_prog_1(m=0,s=1):
    Z = np.random.normal()
    X = m + s \times Z
    return(X)
```

• Output:

```
for n in range(10):
    print(prob_prog_2(7,3,2))
```

```
('output', 13.334218167868446)
('output', 11.471183953689039)
('det fct', <function prob_prog_2.<locals>.<lambda> at 0x7<sup>-</sup>
('prob_prog_1', <function prob_prog_1 at 0x7fd4f2820550>)
('prob_prog_1', <function prob_prog_1 at 0x7fd4f2820550>)
('prob_prog_1', <function prob_prog_1 at 0x7fd4f2820550>)
<prob_prog_1', <function prob_prog_1 at 0x7fd4f2820550>)
('output', 8.377835031430754)
('prob_prog_1', <function prob_prog_1 at 0x7fd4f2820550>)
('output', 11.669097814447499)
```

```
def prob_prog_2(m=0,s=1,b=0):
    U = np.random.uniform()
    if U <= 0.33:
        return 'det fct', lambda x: x**2
    elif U <= 0.66:
        return 'output', b+prob_prog_1(m,s)
    else:
        return 'prob_prog_1', prob_prog_1
```

• How can one mathematically describe such a (probabilistic) program that outputs a probabilistic program, possibly of different types?

How to formalize Probabilistic Programs?

- Probabilistic programs:
 - take input x,
 - sample internal random number ω ,
 - determine (stochastic) output z,
- so either:
 - measurable map: $K: \Omega \times \mathcal{X} \to \mathcal{X}$,
 - however, $\omega \in \Omega$ not really an input, rather internal
 - Markov kernels from input space \mathscr{X} to output space \mathscr{X} ,
 - measurable map $K: \mathcal{X} \to \mathcal{P}(\mathcal{Z})$
 - set of probabilistic programs: Meas $(\mathcal{X}, \mathcal{P}(\mathcal{Z}))$.

Church's Simply Typed λ -Calculus (1940)

- Functional Programming should satisfy "curry" / "uncurry" operations:
 - $(x, y) \mapsto f(x, y)$ corresponds 1:1 to: $x \mapsto (y \mapsto f(x, y))$
 - $(x, y) \mapsto g(x)(y)$ corresponds 1:1 to: $x \mapsto g(x) = (y \mapsto g(x)(y))$
- This mean a program in two (or more) variables f(x, y) can be expressed as iteratively defining a functions in one variable g(x)(y) and vice versa.
- Requires program-valued programs / function-valued functions.
- Realized in functional programming language Haskell.
- Mathematically corresponds to cartesian closed categories.

• Alonzo Church. A formulation of the simple theory of types. The Journal of Symbolic Logic 5.2 (1940): 56-68.

Can we Curry / Uncurry Probabilistic Programs?

Curry / Uncurry operations would translate to isomorphism:

• Meas
$$(\mathscr{X} \times \mathscr{Y}, \mathscr{P}(\mathscr{Z})) \cong$$
 Meas $(\mathscr{Y}, Meas(\mathscr{Y}, \mathscr{P}(\mathscr{Z}))).$

- This means we need to be able to mathematically describe programs whose outputs are probabilistic programs.
- Furthermore, we need the operation \mathscr{P} to be well-behaved:
 - functorial, respects product structure
 - strong probability monad

Remark - Monad

Monad

- theory of functional programming with side effects
- equivalent to category-theoretical construction in mathematics
- strong monad:
 - well-behaved w.r.t. products

Definition - Monad

- A **Monad** on a category \mathscr{C} is a triple $(\mathscr{P}, \delta, \mathbb{M})$ consisting of:
 - a functor $\mathscr{P}: \mathscr{C} \to \mathscr{C}$,
 - a natural transformation δ : $\mathrm{id}_{\mathscr{C}} \to \mathscr{P}$,
 - a natural transformation \mathbb{M} : $\mathscr{P}^2 := \mathscr{P} \circ \mathscr{P} \to \mathscr{P}$,
 - such that:
 - $\mathbb{M} \circ \mathscr{P}\mathbb{M} = \mathbb{M} \circ \mathbb{M}\mathscr{P}$ as natural transformations $\mathscr{P}^3 \to \mathscr{P}$,
 - $\mathbb{M} \circ \mathscr{P}\delta = \mathbb{M} \circ \delta \mathscr{P} = \mathrm{id}_{\mathscr{P}}$ as natural transformations $\mathscr{P} \to \mathscr{P}$.
- A monad is called **strong**, if it is also "well-behaved" w.r.t. finite products X.

Problems

- Define strong probability monad $(\mathscr{P}, \delta, \mathbb{M})$
 - Giry monad defined on category of measurable spaces Meas.
- The set of all programs that output probabilistic programs should be:

• Meas
$$(\mathcal{X}, \text{Meas}(\mathcal{Y}, \mathcal{P}(\mathcal{Z})))$$

- Not clear how to turn $\operatorname{Meas}\left(\mathscr{Y},\mathscr{P}(\mathscr{Z})\right)$ into a measurable space in itself
 - existence of well-behaved σ -algebra unclear
- Is is possible to do more complicated constructions, e.g. dependent products, etc,?
 - Can we get a dependent type theory together with higher-order probability theory?

Can we do Graphical Reasoning between Random Variables and Mechanisms?

Conditional Independence in Probabilistic Graphical Models

- Consider a Markov chain:
- We have:
 - factorization: $P(X, Y, Z) = P(Z | Y) \otimes P(Y | X) \otimes P(X)$
 - tells us that Z is only dependent on Y, and, independent of X when conditioned on Y, but then also of the choice of P(Y|X) and P(X).
- We want to be able to:
 - formalize conditional independence: $Z \perp X, Q(Y|X), Q(X)|Y$
 - including non-random variables Q(X) and Q(Y|X)
 - read this off a graph via d-separation (or similar).

- Q(Y|X) is non-random and takes values in $\mathscr{L} := \text{Meas}(\mathscr{X}, \mathscr{P}(\mathscr{Y}))$
 - Then Y is determined by the new mechanism:

•
$$\mathscr{L} \times \mathscr{X} \to \mathscr{P}(\mathscr{Y}), \quad (\mathcal{Q}(Y))$$

• similarly for X.

 $(|X), x) \mapsto Q(Y|X = x).$

- Problems:
 - Not clear how to deal with non-random variables.

 - above.

• Not clear how to turn $\mathscr{L} := Meas(\mathscr{X}, \mathscr{P}(\mathscr{Y}))$ into a measurable space

Not clear how to define conditional independence with the two problems

Not clear if this corresponds to graphical conditional independence criteria.

How to formalize standard Causal Assumptions?

Causal Inference - Estimating Treatment Effects

- For estimating treatment effect, in the typical case, we have the variables:
 - X = observed treatment variable,
 - Y = observed outcome,
 - Y_x = potential outcome variable under (forced) treatment X = x,
 - Z = all other relevant features of the patient.
- Estimation is not possible without further assumptions.
- Typical assumptions made are:
 - Strong Ignorability: $X \perp (Y_{y})_{y \in Y}$
 - Consistency: $Y = Y_X$ a.s.

$$\chi | Z$$

Problems

- Here, $(Y_x)_{x \in \mathcal{X}}$ is used as a vector of random variables from which we can pick components: $(\tilde{x}, (Y_x)_{x \in \mathcal{X}}) \mapsto Y_{\tilde{x}}$.
 - However, the following map is, in general, not measurable:

$$\mathscr{X} \times \prod_{x \in \mathscr{X}} \mathscr{Y} \to \mathscr{Y}, \quad \left(\widetilde{x}, (y_x)_{x \in \mathscr{X}} \right) \mapsto y_{\widetilde{x}}.$$

- So Strong Ignorability does formally not go well with Consistency.
- Not immediate clear how to fix this.

Explanation

- Let $\mathscr{X} = \mathbb{R}$, $\mathscr{Y}_{r} := \mathscr{Y} := \{0,1\}$, then the following map is **not measurable**: $e: \mathcal{X} \times \qquad \mathcal{Y} \to \mathcal{Y}, \quad (\tilde{x}, (y_x))$ $x \in \mathcal{X}$
- Otherwise, we had: $D := e^{-1}(1) \in \mathscr{B}_{\mathscr{X}} \otimes$
- Then D lies in a sub- σ -algebra generated by only countably many cylinder sets. So there exists countable subset: $\mathscr{C} \subseteq \mathscr{X}$ s.t.:
- But then: $(x,0_{\mathscr{C}},0,..,0,0_x,0,..,0) \in D = e^{-1}(1)$ and thus: $e(x,0_{\mathscr{C}},0,..,0,0_x,0,..,0) = 1$.
- but clearly: $e(x,0_{\mathscr{C}},0,..,0,0_{x},0,..,0) = 0$, which is a contradiction.

$$(x)_{x\in\mathcal{X}} \mapsto y_{\tilde{x}}.$$

$$\sum_{x \in \mathcal{X}} \mathcal{B}_{\mathcal{Y}_x}.$$

$$D = B \times \prod_{x \in \mathcal{X} \setminus \mathcal{C}} \mathcal{Y}_x \quad \text{with} \quad B \subseteq \mathcal{X} \times \prod_{x \in \mathcal{C}} \mathcal{Y}_x.$$

• For $x \in \mathcal{X} \setminus \mathscr{C}$: $e(x, 0_{\mathscr{C}}, 0, .., 0, 1_{Y}, 0, .., 0) = 1$, so $(x, 0_{\mathscr{C}}, 0, .., 0, 1_{Y}, 0, .., 0) \in D$, so $(x, 0_{\mathscr{C}}) \in B$.

How to formalize Counterfactual Probabilities?

Counterfactual Probabilities

- For reasonsing about treatment effect we consider the variables:
 - X = observed treatment variable,
 - Y = observed outcome,
- Y_x = potential outcome variable under (forced) treatment X = x. Conditional counterfactual probabilities:
 - $C(A | x, x') := P(Y_x \in A | X = x')$
 - "What would have happened (with which probability) under treatment X = x given that the patient was actually treated with X = x'?"

Problems

in A and/or measurable in x, x' or jointly.

•
$$C(A \mid x, x') := P(Y_x \in A \mid X =$$

 $x \mapsto Y_x$

Not clear if conditional counterfactual probabilities are probability measures

= x')

Not clear if conditioning is well-defined here, dependent on how to view

If we are going to change all of this are we still able to do standard thing in **Probability Theory and (Bayesian) Statistics?**

Random Functions do not exist in Meas

- <u>Theorem</u> (Aumann, 1961):
 - There is no σ -algebra $\mathscr{B}_{\mathscr{L}}$ on $\mathscr{L} := Meas(\mathbb{R}, \mathbb{R})$ such that the evaluation map is measurable:

• ev :
$$\mathscr{L} \times \mathbb{R} \to \mathbb{F}$$

- where $\mathbb R$ carries the Borel- σ -algebra and $\mathscr L$ is the space of all measurable maps from $\mathbb R$ to $\mathbb R$, and the product carries the product- σ -algebra.
- So there is no well-behaved way to define a probability distribution over all measurable functions in a fully non-parametric way.
- Robert J. Aumann. *Borel structures for function spaces*. Illinois Journal of Mathematics 5.4 (1961): 614-630.

 $\mathbb{R}, \quad (f, x) \mapsto f(x),$

Quasi-Measurable Spaces

Recall: Usual measure-theoretic approach

- Sample space is a measurable space: $(\Omega, \mathscr{B}_{\Omega})$
 - where \mathscr{B}_{Ω} is the σ -algebra/set of admissible outcome events on $\Omega.$
- State space is a measurable space
 - where $\mathscr{B}_{\mathscr{X}}$ is another σ -algebra/set of admissible events on \mathscr{X} .
- Admissible random variables are all measurable maps:
 - $X \in \text{Meas}\left((\Omega, \mathscr{B}_{\Omega}), (\mathscr{X}, \mathscr{B}_{\mathscr{X}})\right)$
- For fixed **probability measure** P on
 - push-forward probability measure

$$\mathbf{e}$$
: $(\mathcal{X}, \mathcal{B}_{\mathcal{X}})$

$$(\Omega, \mathscr{B}_\Omega)$$
 the distribution of X is:
re: X_*P on $\mathscr{B}_{\mathscr{X}}$ (also written as: $P(X)$).

Main Idea behind Quasi-Measurable Spaces

- Main idea: Exchange the role of σ -algebras and random variables!!!
- Sample space is a measurable space: $(\Omega, \mathscr{B}_{\Omega})$
 - where \mathscr{B}_{Ω} is the σ -algebra/set of admissible outcome events on Ω .
- State space is a "quasi-measurable space": $(\mathcal{X}, \mathcal{X}^{\Omega})$
 - where \mathscr{X}^{Ω} is a set of admissible **random variables**.
- σ -algebra of admissible events is:

•
$$\mathscr{B}_{\mathscr{X}} := \mathscr{B}(\mathscr{X}^{\Omega}) := \left\{ A \subseteq \mathscr{X} \mid \forall X \in \mathscr{X}^{\Omega} . X^{-1}(A) \in \mathscr{B}_{\Omega} \right\}$$

- For fixed **probability measure** P on $(\Omega, \mathscr{B}_{\Omega})$ the distribution of X is:
 - push-forward probability measure: X_*P on $\mathscr{B}_{\mathscr{X}}$ (also written as: P(X)).

The Sample Space - Act 1 - Random Variables

- The **Sample Space** $(\Omega, \Omega^{\Omega})$ consists of:
 - a set: Ω
 - a set of maps: $\Omega^{\Omega} \subseteq \{ \Phi : \Omega \to \Omega \}$
 - such that:
 - $\operatorname{id}_{\Omega} \in \Omega^{\Omega}$,
 - Ω^{Ω} contains all constant maps,
 - Ω^{Ω} is closed under composition:
 - $\Phi_1, \Phi_2 \in \Omega^{\Omega} \implies \Phi_2 \circ \Phi_1 \in \Omega^{\Omega}$.
- Standard example:
 - $\Omega^{\Omega} := \text{Meas}\left((\Omega, \mathscr{B}_{\Omega}), (\Omega, \mathscr{B}_{\Omega})\right)$ for some carefully chosen σ -algebra: \mathscr{B}_{Ω} .

Quasi-Measurable Spaces

- definition consists of:
 - a set: ${\mathcal X}$
 - a set of admissible random variables: \mathscr{X}^{Ω} ,
 - i.e. a set of maps: $X : \Omega \to \mathcal{X}$, such that:
 - all constant maps $\Omega \to \mathcal{X}$ are in \mathcal{X}^{Ω} ,
 - \mathscr{X}^{Ω} is closed under pre-composition with Ω^{Ω} :
 - $X \in \mathcal{X}^{\Omega}, \Phi \in \Omega^{\Omega} \implies X \circ \Phi \in \mathcal{X}^{\Omega}.$

- A Quasi-Measurable Space $(\mathscr{X},\mathscr{X}^\Omega)$ w.r.t. sample space (Ω,Ω^Ω) - per

Quasi-Measurable Maps

- Let $(\mathscr{Z},\mathscr{Z}^\Omega)$ and $(\mathscr{X},\mathscr{X}^\Omega)$ two quasi-measurable spaces.
- A map $g: \mathcal{X} \to \mathcal{X}$ is called **quasi-measurable** if

•
$$Z \in \mathscr{Z}^{\Omega} \implies g(Z) := g \circ Z$$

• The set of all quasi-measurable maps is abbreviated:

• QMS
$$\left((\mathcal{Z}, \mathcal{Z}^{\Omega}), (\mathcal{X}, \mathcal{X}^{\Omega}) \right)$$

- Note that the *composition* of two quasi-measurable maps is again *quasi-measurable*.
- The class of all quasi-measuable spaces (w.r.t. a fixed sample space) together with all quasi-measurable maps builds a category: QMS.

 $\in \mathscr{X}^{\Omega}$

or
$$QMS(\mathcal{Z}, \mathcal{X})$$
 for short.

The Product Space

- Let $(\mathcal{X}_i, \mathcal{X}_i^{\Omega})$ be a family of quasi-measurable spaces, $i \in I$.
- Then we turn the product space: \mathscr{X}_i

• product random variables on the product are of the form:

•
$$X(\omega) = (X_i(\omega))_{i \in I}$$
 with $X_i \in I$

 $\in \mathscr{X}^{\Omega}_{i}$ for all $i \in I$.

The Function Space

- Let $(\mathscr{X}, \mathscr{X}^{\Omega})$ and $(\mathscr{X}, \mathscr{Z}^{\Omega})$ two quasi-measurable spaces. We put:
 - $\mathscr{X}^{\mathscr{I}} := \text{QMS}\left((\mathscr{Z}, \mathscr{Z}^{\Omega}), (\mathscr{X}, \mathscr{X}^{\Omega})\right)$

•
$$(\mathscr{X}^{\mathscr{Z}})^{\Omega} := \Big\{ X : \Omega \to \mathscr{X}^{\mathscr{Z}} |$$

- Then $\left(\mathscr{X}^{\mathscr{X}}, \left(\mathscr{X}^{\mathscr{X}}\right)^{\Omega}\right)$ is a quasi-measurable space.

$$\mathcal{X}^{\Omega}$$

$((\omega, z) \mapsto X(\omega)(z)) \in QMS(\Omega \times \mathcal{Z}, \mathcal{X})$

• function-valued random variables are defined via the product structure

Note that such a construction was not possible for measurable spaces!!!

Currying, Uncurrying and the Evaluation Map • Let $(\mathcal{X}, \mathcal{X}^{\Omega})$, $(\mathcal{Y}, \mathcal{Y}^{\Omega})$ and $(\mathcal{Z}, \mathcal{Z}^{\Omega})$ be quasi-measurable spaces.

- We can then **curry** and **uncurry**:
 - QMS $(\mathcal{Z} \times \mathcal{Y}, \mathcal{X}) \cong$ QMS $(\mathcal{Z}$
- In particular, the evaluation map is quasi-measurable:
 - ev : $\mathcal{X}^{\mathcal{X}} \times \mathcal{Z} \to \mathcal{X}$, ev(g, z)

Note that this was not possible in Meas for measurable spaces!!!

$$\mathcal{Y}, \mathcal{X}^{\mathcal{X}} = \text{QMS}\left(\mathcal{Y}, \text{QMS}\left(\mathcal{Z}, \mathcal{X}\right)\right)$$

$$z) := g(z).$$

More Category-theoretical Constructions

- Similary, we can define the following in QMS:
 - coproducts, equalizers, coequalizers, thus:
 - all small limits and all small colimits
- even more, we get in QMS:
 - fibre products: $\mathscr{X} \times_{\mathscr{S}} \mathscr{Y} \to \mathscr{S}$,
 - internal homs: $Q_{\mathcal{S}}(\mathcal{X}, \mathcal{Y}) \to \mathcal{S}$

- Note that the latter was not possible in Meas for measurable spaces!!!
- $QMS_{\mathcal{S}}(\mathcal{X} \times_{\mathcal{S}} \mathcal{Y}, \mathcal{Z}) = QMS_{\mathcal{S}}(\mathcal{X}, \mathcal{Q}_{\mathcal{S}}(\mathcal{Y}, \mathcal{Z})).$

47

Main Theorems

- particular, locally cartesian closed.
- obtained inside QMS in a theorem prover like Lean, Agda or Coq, etc.
- <u>Remark</u>: QMS has thus an internal logic of a (typed) intuitionistic first-order logic.

• <u>Theorem</u>: The category of quasi-measurable spaces QMS forms a **quasitopos**, and, is in

• <u>Remark</u>: This means that, besides simply typed λ -calculus, we get a dependent type theory for QMS. Roughly speaking, this means that we can model programs that can vary the output type/space dependent on the input. This makes it easy to implement all result

• <u>Theorem</u>: The category of quasi-measurable spaces QMS forms a **Heyting category**.

• <u>Remark</u>: Note that most of this is not true for the category of measurable spaces Meas!!!

- A quasitopos is a category that:
 - has all finite limits,
 - has all finite colimits,
 - is locally cartesian closed,
 - has a subobject classifier for strong monomorphisms.

Definition - Quasitopos

Peter T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium. Oxford University Press, 2002.

The Sample Space - Act 2 - The σ -Algebra

 \mathscr{B}_{O} such that:

•
$$\Omega^{\Omega} \subseteq \text{Meas}\left((\Omega, \mathscr{B}_{\Omega}), (\Omega, \mathcal{B}_{\Omega})\right)$$

• The **Sample Space** is now the triple: $(\Omega, \Omega^{\Omega}, \mathscr{B}_{\Omega})$.

- Standard example:
 - $\Omega^{\Omega} = \text{Meas}\left((\Omega, \mathscr{B}_{\Omega}), (\Omega, \mathscr{B}_{\Omega})\right)$

• We now endow the Sample Space $(\Omega, \Omega^{\Omega})$ with an additional σ -algebra

 $(\Omega, \mathscr{B}_{\Omega})).$

Topological and Measurable Spaces as Quasi-Measurable Spaces

• If $(\mathscr{X}, \mathscr{E}_{\mathscr{X}})$ is a measurable space or a topological space, etc., then we can turn this into a quasi-measurable space via allowing for the following random variables:

•
$$\mathscr{X}^{\Omega} := \mathscr{F}(\mathscr{E}_{\mathscr{X}}) := \left\{ X : \Omega \to \mathscr{X} \mid \forall A \in \mathscr{E}_{\mathscr{X}} . X^{-1}(A) \in \mathscr{B}_{\Omega} \right\}$$

• Note that the later introduced σ -algebra $\mathscr{B}_{\mathscr{X}}$ might be strictly bigger than the one we started with to turn $(\mathscr{X}, \mathscr{E}_{\mathscr{X}})$ into quasi-measurable space $(\mathscr{X}, \mathscr{X}^{\Omega})$:

•
$$\mathscr{E}_{\mathscr{X}} \subsetneq \mathscr{B}_{\mathscr{X}} := \mathscr{B}\left(\mathscr{X}^{\Omega}\right)$$

The *o*-Algebra

- Let $(\mathcal{X}, \mathcal{X}^{\Omega})$ be a quasi-measurable space.
- Then the induced σ-algebra is:

•
$$\mathscr{B}_{\mathscr{X}} := \left\{ A \subseteq \mathscr{X} \mid \forall X \in \mathscr{X}^{\Omega} . X^{-1}(A) \in \mathscr{B}_{\Omega} \right\}$$

$$\begin{array}{l} \bullet \ \left(\mathscr{B}_{\mathscr{X}} \right)^{\Omega} := \left\{ \Psi : \ \Omega \to \mathscr{B}_{\mathscr{X}} \, | \, \exists D \in \mathscr{B}_{\Omega \times \mathscr{X}} \, \forall \omega \in \Omega \, . \, \Psi(\omega) = D_{\omega} \right\} \end{array} \cong \mathscr{B}_{\Omega \times \mathscr{X}} \\ \bullet \text{ where } \ D_{\omega} := \left\{ x \in \mathscr{X} \, | \, (\omega, x) \in D \right\} \end{array}$$

- Then $\left(\mathscr{B}_{\mathscr{X}}, \left(\mathscr{B}_{\mathscr{X}}\right)^{\Omega}\right)$ is a quasi-measurable space.
- Note that this was not possible in the category of measurable spaces!!!

• We can then define the set of admissible random variables with values in $\mathscr{B}_{\mathscr{X}}$ via:

Theorem - The Adjunction

• A map $g: \mathcal{X} \to \mathcal{Y}$ from a quasi-measurable space $(\mathcal{X}, \mathcal{X}^{\Omega})$ to a measurable space $(\mathcal{Y}, \mathcal{B}_{\mathcal{Y}})$ is

• measurable if and only if it is quasi-measurable,

- *provided* we use the corresponding choices:
 - $\mathscr{B}_{\mathscr{X}} := \mathscr{B}(\mathscr{X}^{\Omega}) := \{ A \subseteq \mathscr{X} \mid \forall X \in \mathscr{X}^{\Omega} . X^{-1}(A) \in \mathscr{B}_{\Omega} \},\$
 - $\mathscr{Y}^{\Omega} := \mathscr{F}(\mathscr{B}_{\mathscr{U}}) := \{Y : \Omega \to \mathscr{Y} \mid \forall B \in \mathscr{B}_{\mathscr{U}} . Y^{-1}(B) \in \mathscr{B}_{\Omega} \}.$
- In other words, we have the natural identification of sets of maps:
 - Meas $((\mathcal{X}, \mathcal{B}(\mathcal{X}^{\Omega})), (\mathcal{Y}, \mathcal{B}_{\mathcal{Y}}))$

$$(Y) = QMS\left((\mathcal{X}, \mathcal{X}^{\Omega}), (\mathcal{Y}, \mathcal{F}(\mathcal{B}_{\mathcal{Y}}))\right).$$

The Sample Space - Act 3 - Probability Measures

- We now endow the Sample Space $(\Omega, \Omega^{\Omega}, \mathscr{B}_{\Omega})$ with some additional set of product compatible probability measures \mathscr{P} on \mathscr{B}_{Ω} , i.e. such that:
 - for all $P \in \mathscr{P}$ and $D \in \mathscr{B}_{O \times O}$ the map:
 - $\Omega \rightarrow [0,1], \quad \omega \mapsto P(D^{\omega}), \quad \text{is (quasi-)measurable,}$

- where $D^{\omega} := \{ \tilde{\omega} \in \Omega \mid (\tilde{\omega}, \omega) \in D \},\$ • for all $P_1, P_2 \in \mathscr{P}$ there exist $\Phi_1, \Phi_2 \in \Omega^{\Omega}$ and $P \in \mathscr{P}$ such that:
 - i.e. for all $D \in \mathscr{B}_{\Omega \times \Omega}$ we have: • $P_1 \otimes P_2 = P(\Phi_1, \Phi_2)$ on $\mathscr{B}_{\Omega \times \Omega}$,

•
$$(P_1 \otimes P_2)(D) := \int P_1(D^{\omega}) P_1(D^{\omega}) P_1(D^{\omega})$$

• The Sample Space is now the quadruple: $(\Omega, \Omega^{\Omega}, \mathscr{B}_{\Omega}, \mathscr{P})$.

 $P_{2}(d\omega) = P(\{\omega \in \Omega \mid (\Phi_{1}(\omega), \Phi_{2}(\omega)) \in D\}).$

The Space of Push-forward Probability Measures

- Let $(\mathcal{X}, \mathcal{X}^{\Omega})$ be a quasi-measurable space. Define:
 - $\mathcal{P}(\mathcal{X}) := \mathcal{P}(\mathcal{X}, \mathcal{X}^{\Omega}) := \left\{ P(X) : \mathcal{B}_{\mathcal{X}} \to [0,1] \, | \, X \in \mathcal{X}^{\Omega}, P \in \mathcal{P} \right\}$ • $\mathscr{P}(\mathscr{X})^{\Omega} := \mathscr{P}(\mathscr{X}, \mathscr{X}^{\Omega})^{\Omega} := \left\{ P(X|I) \, | \, X \in (\mathscr{X}^{\Omega})^{\Omega}, P \in \mathscr{P} \right\}$ $\left\{\tilde{\omega}\in\Omega\,|\,X(\omega)(\tilde{\omega})\in A\right\}\right) \text{ for }A\in\mathscr{B}_{\mathscr{X}}$

•
$$P(X \in A \mid I = \omega) := P\left(\left\{c\right\}\right)$$

• Lemma: $(\mathscr{P}(\mathscr{X}), \mathscr{P}(\mathscr{X})^{\Omega})$ is also a quasi-measurable space.

The Spaces of Markov Kernels and Random Functions

• Let $(\mathcal{X}, \mathcal{X}^{\Omega})$ and $(\mathcal{X}, \mathcal{X}^{\Omega})$ be quasi-measurable spaces.

• 1

Then the **space of Markov kernels** from
$$(\mathcal{Z}, \mathcal{Z}^{\Omega})$$
 to $(\mathcal{X}, \mathcal{X}^{\Omega})$:
• $\mathcal{P}(\mathcal{X})^{\mathcal{Z}} = \text{QMS}\left((\mathcal{Z}, \mathcal{Z}^{\Omega}), (\mathcal{P}(\mathcal{X}), \mathcal{P}(\mathcal{X})^{\Omega})\right)$

- is again a quasi-measurable space.
- Also the space of probability distribution over functions:

• $\mathscr{P}(\mathscr{X}^{\mathscr{X}})$ is again a quasi-measurable space.

spaces!!!

Note that these construction were not possible in the category of measurable

Some surprising Lemmata

- Let $(\mathcal{X}, \mathcal{X}^{\Omega})$ and $(\mathcal{Y}, \mathcal{Y}^{\Omega})$ be quasi-measurable spaces.
- Then the following maps are all quasi-measurable:
 - $\mathscr{Y}^{\mathscr{X}} \times \mathscr{B}_{\mathscr{Y}} \to \mathscr{B}_{\mathscr{X}}, \qquad (f, B) \mapsto f^{-1}(B).$
 - $\mathscr{P}(\mathscr{X}) \times \mathscr{B}_{\mathscr{X}} \to [0,1], \qquad (P,A) \mapsto P(A).$
 - $\mathcal{Y}^{\mathcal{X}} \times \mathcal{P}(\mathcal{X}) \to \mathcal{P}(\mathcal{Y}), \quad (f, P)$
 - $[0,\infty]^{\mathscr{X}} \times \mathscr{P}(\mathscr{X}) \to [0,\infty], \quad (h,$
- Note that such statements were not k measurable spaces!!!

$$P \mapsto f_*P.$$

$$P \mapsto \int h(x) P(dx).$$

Note that such statements were not known or even possible in the category of

Theorem: The Product of Markov Kernels

- - $\Omega \times \Omega \simeq \Omega$.
- Then for all quasi-measurable space product of Markov kernels:

•
$$\otimes$$
 : $\mathcal{P}(\mathcal{X})^{\mathcal{Y} \times \mathcal{I}} \times \mathcal{P}(\mathcal{Y})^{\mathcal{Y}}$

 $(P(X|Y,Z) \otimes Q(Y|Z))(D|z) := \int P(X \in D^y | Y = y, Z = z) Q(Y \in dy | Z = z)$

• is a well-defined quasi-measurable map.

• Assume that there exists an isomorphism of quasi-measurable spaces:

ces
$$(\mathcal{X},\mathcal{X}^\Omega)$$
, $(\mathcal{Y},\mathcal{Y}^\Omega)$, $(\mathcal{Z},\mathcal{Z}^\Omega)$ the

 $\mathcal{I} \to \mathcal{P}(\mathcal{X} \times \mathcal{Y})^{\mathcal{I}}$

Theorem: Strong Probability Monad

the cartesian closed category QMS, where:

•
$$\delta: \mathcal{X} \to \mathcal{P}(\mathcal{X}),$$

•
$$\mathbb{M}: \mathscr{P}(\mathscr{P}(\mathscr{X})) \to \mathscr{P}(\mathscr{X}),$$

- typed λ -calculus.
- programming language.

• If $\Omega \times \Omega \cong \Omega$ then the triple $(\mathcal{P}, \delta, \mathbb{M})$ is a strong probability monad on

$$\delta_x(A) := \mathbb{1}_A(x),$$
$$\mathbb{M}(\Pi)(A) := \int P(A) \, d\Pi(P).$$

This thus allows for a notion of computation of monadic type and simply

We thus get semantics for higher-order probability theory for probabilistic

Construction of well-behaved Sample Spaces

- <u>Theorem</u>: Let Ω_0 be a set, and:
 - \mathscr{C}_0 a countable set of subsets of Ω_0 that separates the points of Ω_0 .

$$\Omega := \prod_{n \in \mathbb{N}} \Omega_0, \text{ and } \mathscr{E} := \{ \operatorname{pr}_n^{-1}(A) \}$$

- $\tilde{\mathscr{P}} := \{P \text{ complete perfect probability measure on } \Omega, \mathscr{E} \subseteq \mathscr{B}_P\},\$
- $\mathscr{B}_{\Omega} := \bigcap \mathscr{B}_{P}$, the perfect-universal completion of \mathscr{E} , P∈Ĩ
- $\Omega^{\Omega} := \text{Meas}\left((\Omega, \mathscr{B}_{\Omega}), (\Omega, \mathscr{B}_{\Omega})\right)$
- Then $(\Omega, \Omega^{\Omega}, \mathscr{B}_{\Omega}, \mathscr{P})$ satisfies all points of act 1-3 and $\Omega \times \Omega \cong \Omega$.

 $A) \mid A \in \mathscr{C}_0, n \in \mathbb{N} \},\$

,
$$\mathscr{P} := \widetilde{\mathscr{P}}|_{\mathscr{B}_{\mathcal{S}}}$$

- Let $(\Omega, \Omega^{\Omega}, \mathscr{B}_{\Omega}, \mathscr{P})$ be the sample space from the last slide.
- Let $(\mathcal{X}, \mathcal{X}^{\Omega})$ and $(\mathcal{Y}, \mathcal{Y}^{\Omega})$ be quasi-measurable spaces and:
 - $f \in [0,\infty]^{\mathcal{X} \times \mathcal{Y}}$, $P \in \mathcal{P}(\mathcal{X})$ and $Q \in \mathcal{P}(\mathcal{Y})$.
- Then we have the equality:

•
$$\iint f(x,y) P(dx) Q(dy) = \iint f(x,y) Q(dy) P(dx).$$

Fubini Theorem

The Sample Space - Act 4 - The Universal Hilbert Cube

- $\Omega = [0,1]^{\mathbb{N}} = [0,1], \text{ the Hilbert Cube},$ $n \in \mathbb{N}$
- \mathscr{B}_{Ω} = set of all *universally measurable* subsets of Ω .
 - Note that this is bigger than the Borel σ -algebra on Ω .
- $\mathscr{P} = all probability measures on <math>\mathscr{B}_{C}$
- We call this Sample Space $(\Omega, \Omega^{\Omega}, \mathscr{B}_{\Omega}, \mathscr{P})$ the **Universal Hilbert Cube**.
- from a (pseudo-)random number generator).

$$\Omega^{\Omega} = \text{Meas}\left((\Omega, \mathscr{B}_{\Omega}), (\Omega, \mathscr{B}_{\Omega})\right)$$

Interpretation: Countably infinite sequence of uniformly distributed samples (e.g.

• Note that it satisfies act 1-3 and the iso: $\Omega \times \Omega \cong \Omega$ (via "Hilbert's Hotel").

The Category of Quasi-Universal Spaces

- Hilbert cube.
- We abbreviate the category of quasi-universal spaces as QUS.

• Definition: A quasi-universal space $(\mathcal{X}, \mathcal{X}^{\Omega})$ is - per definition - just a

quasi-measurable space where the sample space Ω is the **universal**

Countably Separated and Standard Quasi-Measurable Spaces

- <u>Definition</u>: A quasi-measurable space $(\mathcal{X}, \mathcal{X}^{\Omega})$ is called:
 - separates the points of \mathcal{X} .

•
$$\iota: (\mathscr{X}, \mathscr{X}^{\Omega}) \to (\Omega, \Omega^{\Omega})$$

•
$$r \circ \iota = \mathrm{id}_{\mathcal{X}}$$
.

• countably separated if there exists a countable subset $\mathscr{E} \subseteq \mathscr{B}_{\mathscr{Y}}$ that

• standard quasi-measurable space if there are quasi-measurable maps: and $r: (\Omega, \Omega^{\Omega}) \to (\mathcal{X}, \mathcal{X}^{\Omega})$ s.t.:

Theorem: Disintegration of Markov Kernels

- - Let $(\mathcal{Y}, \mathcal{Y}^{\Omega})$ be countably separated. and:
 - either $(\mathcal{X}, \mathcal{X}^{\Omega})$ or $(\mathcal{X}, \mathcal{X}^{\Omega})$ be a *standard* quasi-universal space.
- Then the product of Markov kernels:

•
$$\otimes: \mathscr{P}(\mathscr{X})^{\mathscr{Y} \times \mathscr{X}} \times \mathscr{P}(\mathscr{Y})^{\mathscr{I}}$$

- is a (surjective) quotient map of quasi-universal spaces.

• Let $(\mathscr{X}, \mathscr{X}^{\Omega})$ and $(\mathscr{Y}, \mathscr{Y}^{\Omega})$ and $(\mathscr{Z}, \mathscr{Z}^{\Omega})$ be quasi-universal spaces.

 $\rightarrow \mathcal{P}(\mathcal{X} \times \mathcal{Y})^{\mathcal{I}}$

• More concretely, for every $P(X, Y | Z) \in \mathscr{P}(\mathscr{X} \times \mathscr{Y})^{\mathscr{X}}$ there exists $P(X|Y,Z) \in \mathscr{P}(\mathscr{Y})^{\mathscr{Y} \times \mathscr{X}}$ such that: $P(X,Y|Z) = P(X|Y,Z) \otimes P(Y|Z)$.

Conditional Kolmogorov Extension Theorem

- Let $(\mathcal{X}_n, \mathcal{X}_n^{\Omega})$, $n \in \mathbb{N}$, a sequence of *standard* quasi-universal spaces and $(\mathcal{X}, \mathcal{X}^{\Omega})$ be any quasi-universal space.
 - Assume we have $Q_n(X_{0\cdot n} | Z) \in$
 - $\operatorname{pr}_{0:n} * Q_{n+1}(X_{0:n+1} | Z) =$
- Then there exists a unique $Q(X_{\mathbb{N}} | Z)$
 - $\operatorname{pr}_{0:n} Q(X_{0:n+1} | Z) = Q_{n}$
 - where $\mathscr{X}_{\mathbb{N}} := \prod \mathscr{X}_{n}$. $n \in \mathbb{N}$

$$\mathcal{P}\left(\mathcal{X}_{0:n}\right)^{\mathcal{X}} \text{ such that for every } n \in \mathbb{N}:$$

$$\mathcal{Q}_{n}(X_{0:n} | Z).$$

$$Z) \in \mathcal{P}\left(\mathcal{X}_{\mathbb{N}}\right)^{\mathcal{X}} \text{ such that:}$$

$$u_{n}(X_{0:n} | Z) \quad \text{ for all } n \in \mathbb{N},$$

Conditional De Finetti Theorem

- For a Markov kernel $Q(X_{\mathbb{N}} | Z) \in \mathscr{P}(\mathscr{X}^{\mathbb{N}})^{\mathscr{Z}}$ the following is equivalent:

 - There exists a quasi-universal space \mathscr{Y} and $K(X | Y) \in \mathscr{P}(\mathscr{X})^{\mathscr{Y}}$ and $P(Y|Z) \in \mathscr{P}(\mathscr{Y})^{\mathscr{X}}$ such that :

•
$$Q(X_{\mathbb{N}} | Z) = \left(\bigotimes_{n \in \mathbb{N}} K(X_n | Y) \right) \circ P(Y | Z).$$

Tobias Fritz, Tomáš Gonda, Paolo Perrone, De Finetti's Theorem in Categorical Probability, 2021, https://arxiv.org/abs/2105.02639.

• $(\mathcal{X}, \mathcal{X}^{\Omega})$ standard quasi-universal spaces, $(\mathcal{X}, \mathcal{X}^{\Omega})$ any quasi-universal space.

• $Q(X_{\mathbb{N}} | Z)$ is **exchangable**, i.e. invariant under all finite permutions: $\rho : \mathbb{N} \cong \mathbb{N}$.

In this case we can w.l.o.g. take: $\mathscr{Y} = \mathscr{P}(\mathscr{X})$ and $K(X \in A \mid Y = P) := P(A)$.

Transitional Conditional Independence

- Consider a Markov kernel: $P(X, Y, Z | T) \in \mathscr{P}(\mathscr{X} \times \mathscr{Y} \times \mathscr{Z})^{\mathscr{T}}$.
- We say that X is conditional independent of Y given Z w.r.t. $P(X, Y, Z \mid T),$
 - in symbols: $X \perp |Y| Z$
 - there exists a Markov kernel $Q(X|Z) \in \mathscr{P}(\mathscr{X})^{\mathscr{X}}$ such that:
 - $P(X, Y, Z \mid T) = Q(X \mid Z) \otimes P(Y, Z \mid T).$

Patrick Forré, Transitional Conditional Independence, 2021, https://arxiv.org/abs/2104.11547.

if:

Partially Generic Causal Bayesian Networks

- A partially generic causal Baysian network per definition consists of:
 - a conditional directed acyclic graph (CDAG): G = (J, V, E),
 - an input variable X_j on a quasi-universal space \mathcal{X}_j for each $j \in J$,
 - an output variable $X_{\!_{V}}$ on a standard quasi-universal space $\mathcal{X}_{\!_{V}}$ for each $v\in V$,
 - an **exceptional set**: $W \subseteq V$,
 - a Markov kernel: $P_{v}(X_{v}|X_{\operatorname{Pa}^{G}(v)}) \in \mathscr{P}(\mathscr{X}_{v})^{\mathscr{X}_{\operatorname{Pa}^{G}(v)}}$ for $v \in V \setminus W$.

Partially Generic Causal Bayesian Networks

- introduce for $w \in W$:
 - an indicator variable: $I_w \rightarrow w$,
 - a quasi-universal space: $\mathcal{X}_{I_{w}}$:=
 - a "generic" Markov kernel:

•
$$P_w \left(X_w \in A \mid X_{Pa^G(w)} = x, X_{I_w} = Q \right) := Q \left(X_w \in A \mid X_{Pa^G(w)} = x \right)$$

• So we get a joint Markov kernel: $P(X_V, X_J, X_{I_W} | X_J, X_{I_W})$.

• For a partially generic causal Baysian network with exceptional set W we

$$\mathscr{P}(\mathscr{X}_{W})^{\mathscr{X}_{\operatorname{Pa}^{G}(W)}}$$
,

Theorem: Global Markov Property

- - and any subsets: $A, B, C \subseteq V \cup I_W \cup J$ we have the implication:
 - $A \perp B \mid C \implies X_A \perp X_B \mid X_C$.

• For every partially generic causal Bayesian network with exceptional set W

(Proposed) Answers
Answers - Stochastic Process

- <u>Definition</u>: A stochastic process is a quasi-measurable map:
 - $X: \Omega \to \mathscr{X}^{\mathscr{T}}, \quad \omega \mapsto (t \mapsto X(\omega)(t)).$

• Lemma: The map:
$$\mathscr{X}^{\mathscr{T}} \to \prod_{t \in \mathscr{T}} \mathscr{X}$$
, $X \mapsto (X(t))_{t \in \mathscr{T}}$, is quasi-measurable.

• Lemma: If $T: \Omega \to \mathcal{T}$ is quasi-measurable (random time) then the map:

• $\Omega \to \mathcal{X}, \ \omega \mapsto X(\omega)(T(\omega))$ is again quasi-measurable.

• Lemma: This is equivalent to a quasi-measurable map: $X: \Omega \times \mathcal{T} \to \mathcal{X}, \ (\omega, t) \mapsto X(\omega, t)$.

Answers - Probabilistic Programs

- <u>Definition</u>: A **probabilistic program** w measurable map: $\mathscr{X} \to \mathscr{P}(\mathscr{Z})$.
- Theorem: We have the natural curry / uncurry isomorphism:

• QMS
$$(\mathscr{X} \times \mathscr{Y}, \mathscr{P}(\mathscr{Z})) \cong$$
 QMS $(\mathscr{Y}, QMS(\mathscr{Y}, \mathscr{P}(\mathscr{Z})))$

- <u>Theorem</u>: QMS is a **quasitopos**, thus allows for **dependent type theory**.
- <u>Theorem</u>: The triple $(\mathcal{P}, \delta, \mathbb{M})$ forms a **strong probability monad** on the category of quasi-measurable spaces QMS (for certain sample spaces, e.g. the universal Hilbert cube). Thus allows for **higher-order probabilistic programs**.

• Definition: A probabilistic program with input $x \in \mathcal{X}$ and output $z \in \mathcal{X}$ is quasi-

- Transitional conditional independence also works with non-random input variables.
- <u>Theorem</u>: Global Markov Property: For $A, B, C \subseteq V \cup I_W \cup J$ we have:

•
$$A \perp B \mid C \implies X_A \perp X_B \mid X_C$$
.

- Example: Here Q(Y|X) is a non-random input variable with values in $\mathscr{L} := \text{QUS}(\mathscr{X}, \mathscr{P}(\mathscr{Y}))$
 - Then Y is determined by the new quasi-measurable mechanism:
 - $\mathscr{L} \times \mathscr{X} \to \mathscr{P}(\mathscr{Y}), \quad (Q(Y|X), x) \mapsto Q(Y|X = x).$
 - $Z \perp X, Q(Y \mid X), Q(X) \mid Y.$ • We can now read off the graph:

Answers - Graphical Models

Partially generic causal Bayesian networks can model graphical models with non-random input variables.

75

Answers - Causal Assumptions

•
$$G: \Omega \to \mathscr{Y}^{\mathscr{X}}$$

- Potential outcome under treatment
- Rephrase causal assumptions:
 - Strong Ignorability: $X \perp G \mid Z$,
 - Consistency: Y = G(X).
- Everything is well-defined and quasi-measurable.

Model potential outcome as quasi-measurable map / random function:

$$X = x$$
 then: $Y_x := G(x)$.

Answers - Counterfactual Probabilities

- <u>Theorem</u>: Disintegration of Markov kernels.
- Model potential outcome as: $G \in (\mathscr{Y})$
- Assume that \mathscr{X} to countably separated quasi-universal space.
- Then via the disintegration theorem there exists conditional:
 - $P(G|X) \in \mathscr{P}(\mathscr{G})^{\mathscr{X}}$ such that $P(G,X) = P(G|X) \otimes P(X)$.
- Evaluation maps and push-forwards are quasi-measurable, which implies:
 - $C(A \mid x, x') := P(G(x) \in A \mid X = x')$ defines:
 - well-defined and quasi-measurable $C \in \mathscr{P}(\mathscr{Y})^{\mathscr{X} \times \mathscr{X}}$

$$(\mathcal{X})^{\mathbf{\Omega}}$$

So, conditional counterfactual probabilities are well-defined and quasi-measurable.

Answers - Statistics and Probability Theory

- For (standard) quasi-universal spaces we at least can do the following:
 - <u>Theorem</u>: Disintegration of Markov kernels.
 - <u>Remark</u>: This allows for Bayes' Rule and thus Bayesian Statistics.
 - <u>Theorem</u>: Fubini Theorem.
 - Theorem: Conditional de Finetti Theorem.
 - <u>Theorem</u>: Kolmogorov Extension Theorem.
 - <u>Theorem</u>: Global Markov Property for graphical models like partially generic causal Bayesian networks.

Recommendation

- - use for:
 - sample space -> the universal Hilbert cube
 - replace:
 - measurable spaces \rightarrow quasi-measurable spaces
 - measurable maps -> quasi-measurable maps

• For probabilistic programming, graphical models, causality, statistics, etc.

• categorical construction in Meas \rightarrow categorical construction in QMS

study more of the (classical) theory in this framework (e.g. martingales).

Patrick Forré, Quasi-Measurable Spaces, 2021, https://arxiv.org/abs/2109.11631.

More about Convenient Categories

- **Probability Theory**
 - Quasi-Borel Spaces by Chris Heunen, Ohad Kammar, Sam Staton, Hongseok Yang
 - Quasi-Measurable Spaces by Patrick Forré, https://arxiv.org/abs/2109.11631
- **Topology**

 - C. Moore, Michael C. McCord, Neil Strickland, et al (script)
 - Condensed Sets by Peter Scholz, Dustin Clausen (script)
- **Differential Geometry**

Hoffnung, Andrew Stacey, et al.

* Compactly Generated Weakly Hausdorff Spaces (CGWH) - by Witold Hurewicz, David Gale, Norman Steenrod, John

Diffeological Spaces - by Kuo Tsai Chen, Jean-Marie Souriau, Patrick Iglesias-Zemmour, John Baez, Alexander

Thank you for your attention!