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Why Measure Theory to do Probability Theory?



Why Measure Theory in the first place?

* The existence of the Lebesgue measure:
* does not exist on whole power set 2R

* but does exist on Borel 5-algebra B,

* To prevent set-theoretic paradoxa
like Banach-Tarski:

* the orange is both a third and a half
of the Poincaré disk / hyperbolic plane.

* Stan Wagon. The Banach Tarski Paradox. CUP 1985. https://demonstrations.wolfram.com/TheBanachTarskiParadox/



Discrete and continuous distributions are not expressive enough

®* The uniform distribution on the
diagonal A C [0,1]7

® Is neither discrete nor absolute
continuous w.r.t. 12.

® so It can not be described with a
probability mass function nor with

a probability density w.r.t. A2,



The Category of Measurable Spaces

e Let 2 be a set. A o-algebra on 2 is a set of subsets B C 2 such that:
* e A,
A, €FB.neN = UAHEQS’

neN

*AeB = I\NAe R
* Atuple (X', % o) of aset X and a o-algebra % o is called measurable space.
e Amapf: & — % between measurable spaces (X, B4 ) and (¥, 95’?) is called a
measurable map if: B € 955? — f1(B) B o

* Note that the compositions of two measurable maps is a measurable map.

* Meas denotes the category of measurable spaces and measurable maps.



Kolmogorov’s approach to Probability Theory (1933)

* Kolmogorov Axioms:

* A probability distribution is just a normalized measure.

* Probability Theory can thus be viewed as a sub-field of Measure Theory.

* now allows for Lebesgue’s theory of integration (measure integrals, etc.)

* Measure Theory as an expressive “safe space” of Probability Theory.

* Andrei Kolmogoroftf. Grundbegriffe der Wahrscheinlichkeitsrechnung. Ergebnisse der Mathematik und
lhrer Grenzgebiete. 1. Folge, Nr. 2, Springer (1933).



How to formalize Random Variables?

e Sample space is a measurable space: (Q, 95’@)
* where A, is the o-algebra/set of admissible outcome events on 2.
e State space is a measurable space: (Sl" , B 5[)

* where I o is another c-algebra/set of admissible events on 2.

* Admissible random variables are all measurable maps:
e X € Meas ((Q2, By), (L, B))
* For fixed probability measure P on (€2, % ,) the distribution of X is:

* push-forward probability measure: X.P on 98, (also written as: P(X)).
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What is a Stochastic Process?



Different realizations of one stochastic process
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Text book definitions - stochastic process

* D. Revus, M. Yor - Continuous Martingales and Brownian Motion:

(1.1) Definition. Let T be a set, (E, &) a measurable space. A stochastic process
indexed by T, taking its values in (E, &), is a family of measurable mappings
X;, t € T, from a probability space ($2,.7% , P) into (E, &). The space (E, &) is
called the state space.

For every w € §2, the mapping t — X;(w) 1s a “curve” in E which i1s referred
to as a trajectory or a path of X. We may think of a path as a point chosen
randomly in the space .7 (T, E) of all functions from 7 into E, or, as we shall
see later, in a reasonable subset of this space.

11



Text book definitions - stochastic process

* D. Revus, M. Yor - Continuous Martingales and Brownian Motion:

Let (.f) be a filtration on (§2,.7 ) and T a stopping time. For a process X,
we define a new mapping X7 on the set {w : T (w) < 00} by

X7r(w) = X (w) it T(w) =t.

This 1s the position of the process X at time 7', but it is not clear that X 1is
a random variable on {T < oo}. Moreover if X is adapted, we would like X7

(4.7) Definition. A process X is progressively measurable or simply progressive
(with respect to the filtration (.%)) if for every t the map (s, ) — X(w) from
[0,¢] x $2 into (E, &) is ./2([0, t]) ® .7 -measurable. A subset I' of R, x §2 is
progressive if the process X = 1 is progressive.

(4.8) Proposition. An adapted process with right or left continuous paths is pro-
gressively measurable.
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Three Definitions of Stochastic Processes
* Let (2, B) be the sample space, (X', % o) the state space, (7, B )

the time space, e.g. 7 = NorJ = R,,.

* A stochastic process is what kind of random variable / measurable map?

. Xes: Q- [ [2 o~ (X(®))eq
2. X: Q — Meas(9,2), @ — (t —> X(a))(l‘)),

3. X: QX9 - X, (w, 1) = X(w,1).
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Problems

* Three different (partially inconsistent) definitions of stochastic processes
* mismatch between formalization and meaning.

* Not clear how to turn Meas(7, ) into a measurable space in itself?
* existence of well-behaved o-algebra unclear

» The measurability of @ — Xy, (@) only guaranteed under additional

assumptions.
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Are Probabilistic Programs functional?



A program that outputs a probabilistic program

def prog_prob_prog(a):

return lambda m,s: [Z:=np.random.uniform(), a*m+s*Z][-1]

print(prog_prob_prog(a=1))

<function prog_prob_prog.<locals>.<lambda>

for n in range(5):
print(prog_prob_prog(a=n) (m=5,s=2))

1.8106662116099772
6.762509413168864
10.365457994333775
15.884402920590935
21.48676872656254
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® uncurried version:

def prob_prog(a,m,s):
Z=np.random.uniform()
return axm+sxZ

for n in range(5):
print(prob_prog(a=n,m=5,s=2))

1.5413066059310134
6.248544376268809
10.923467140491365
16.82969/8388216
20.72122425243884



Another probabilistic program that outputs a probabilistic program

import numpy as np

def prob_prog_1(m=0,s=1):
Z = np.random.normal()
X = m+s*kZ
return(X)

* Output:

for n in range(10):
print(prob_prog_2(7,3,2))

('output', 13.334218167868446)
('output', 11.471183953689039)

def prob_prog_2(m=0,s=1,b=0):
U = np.random.uniform()
if U <= 0.33:
return 'det fct', lambda x: Xxk%x2
elif U <= 0.66:
return 'output', b+prob_prog_1(m,s)
else:
return 'prob_prog_1', prob_prog_1

* How can one
mathematically describe
such a (probabillistic)

('det fct', <function prob_prog_2.<locals>.<lambda> at 0x7

('prob_prog_1', <function prob_prog_1
('prob_prog_1', <function prob_prog_1
('prob_prog_1', <function prob_prog_1
('prob_prog_1', <function prob_prog_1
('output', 8.377835031430754)

('prob_prog_1', <function prob_prog_1
('output', 11.669097814447499)

at 0x7fd42820550>) program that outputs a
at 0x7fd4f2820550>)

at Ox7fd42820550>) probabilistic program,
at 0x7fd4f2820550>) _ ,
possibly of different

at 0x7fd4f2820550>)
types?



How to formalize Probabilistic Programs?

* Probabilistic programs:
* take input x,
* sample internal random number w,
* determine (stochastic) output z,
* so either:
* measurablemap: K: QX X — Z,
* however, @ € €2 not really an input, rather internal
* Markov kernels from input space 2 to output space £,

* measurablemap K: & — AP(F)
e set of probabilistic programs: Meas (Sl" , P(F )).

18



Church’s Simply Typed A-Calculus (1940)

* Functional Programming should satisfy “curry” / “uncurry” operations:

* (x,y) = f(x,y) corresponds 1:1to: x+— (v f(x,y))
* (x,y) — gx)(y) corresponds 1:1to: x> g(x) = (y > gx)(y))

* This mean a program in two (or more) variables f(x, y) can be expressed
as iteratively defining a functions in one variable g(x)(y) and vice versa.

* Requires program-valued programs / function-valued functions.
* Realized in functional programming language Haskell.

* Mathematically corresponds to cartesian closed categories.

* Alonzo Church. A formulation of the simple theory of types. The Journal of Symbolic Logic 5.2 (1940): 56-68.



Can we Curry / Uncurry Probabilistic Programs?

* Curry / Uncurry operations would translate to isomorphism:
« Meas (Sl" XY, P (Z’)) ~ Meas (Sl", Meas (?, @(Z’))).

* This means we need to be able to mathematically describe programs
whose outputs are probabilistic programs.

* Furthermore, we need the operation < to be well-behaved:
* functorial, respects product structure

* strong probability monad
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Remark - Monad

* Monad

* theory of functional programming with side effects

* equivalent to category-theoretical construction in mathematics
* strong monad.:

* well-behaved w.r.t. products
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Definition - Monad

* A Monad on a category € is a triple (<, 0, M) consisting of:
* afunctor P : € — 6,

* a natural transformation 0 : 1dg, — &,

* a natural transformation M : P? := P o P — P,
®* such that:
e M o M = M o MP as natural transformations %> — &P,
* M o P6 =M o 0 = 1d4 as natural transformations & — L.

* Amonad is called strong, if it is also “well-behaved” w.r.t. finite products X.

22



Problems

* Define strong probability monad (£, 6, M)
* Giry monad defined on category of measurable spaces Meas.

* The set of all programs that output probabilistic programs should be:

« Meas (Sl", Meas (?, 9’(:?5)))
* Not clear how to turn Meas (?, P(E )) into a measurable space in itself

* existence of well-behaved o-algebra unclear
* Is is possible to do more complicated constructions, e.g. dependent products, etc,?

* Can we get a dependent type theory together with higher-order probability theory?
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Can we do Graphical Reasoning between
Random Variables and Mechanisms?




Conditional Independence in Probabilistic Graphical Models

®* Consider a Markov chain:
(x) ~(v) ~(2)
* We have:

e factorization: P(X,Y,Z) = P(Z|Y) ® P(Y|X) ® P(X)

* tells us that Z is only dependent on Y, and, independent of X when
conditioned on Y, but then also of the choice of P(Y|X) and P(X).

* We want to be able to:
* formalize conditional independence: Z 1 X, OQ(Y|X), O(X)|Y
* including non-random variables Q(X) and Q(Y | X)

* read this off a graph via d-separation (or similar).

25



Including Non-Random Variables
Q(X) Q(Y|X)

[CO S

e O)(Y|X) is non-random and takes values in & := Meas (fl", @(?))

* Then Y is determined by the new mechanism:
« XX = PY), (0Y|X),x)~ QY|X=x).

* similarly for X.



Q(X) QvX)  Problems

e

* Problems:

®* Not clear how to deal with non-random variables.

e Not clear how to turn & := Meas (Sl" : 93(?)) into @ measurable space

* Not clear how to define conditional independence with the two problems
above.

* Not clear if this corresponds to graphical conditional independence criteria.
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How to formalize standard
Causal Assumptions?




Causal Inference - Estimating Treatment Effects

* For estimating treatment effect, in the typical case, we have the variables:
* X = observed treatment variable,
* Y = observed outcome,
* Y = potential outcome variable under (forced) treatment X = x,
* / = all other relevant features of the patient.
* Estimation is not possible without further assumptions.
* Typical assumptions made are:
* Strong Ignorability: X 1L (Y,),co | Z,

* Consistency: ¥ = Yy a.s.
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Problems

* Here, (Y,),c o is used as a vector of random variables from which we can
pick components: ()’Z, (Yx)xe%) — Y.

* However, the following map is, in general, not measurable:

IxNY -7 (200we) ~ ¥s

xed
* So Strong Ignorability does formally not go well with Consistency.

®* Not immediate clear how to fix this.
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Explanation
*letd =R, %, =% :=1{0,1}, then the following map is not measurable:

o € - %XH?_)?’ ()’Z’(yx)xefl")l_)y)“é'

b=t A

, Otherwise, we had: D := e (1) B o Q ®95’%.
XeX

* Then D lies in a sub-o-algebra generated by only countably many cylinder sets.

. So there exists countable subset: € C X s.t.:. D = BX H Y. with BC X X H Y .
XEX\CE XEC

*Forx € T\6: e(x,04,,0,.,0,1.0,.,0)=1, so (x,04,0,.,0,1,.0,,0) €D, so (x,04,) € B.
* Butthen: (x,0-,0,.,0,0,,0,.,0) € D = ¢ !(1) andthus: e(x,0,0,.,0,0,,0,.,0) = 1.

* but clearly: e(x,04,0,.,0,0.,0,.,0) = 0, which is a contradiction.
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How to formalize
Counterfactual Probabilities?




Counterfactual Probabilities

* For reasonsing about treatment effect we consider the variables:

* X = observed treatment variable,

* Y = observed outcome,

* Y, = potential outcome variable under (forced) treatment X = x.
* Conditional counterfactual probabilities:

*CA|x,x)=PY €A|X =X

* “‘What would have happened (with which probability) under treatment
X = x given that the patient was actually treated with X = x'?”

33



Problems

* Not clear if conditional counterfactual probabilities are probability measures
in A and/or measurable in x, x" or jointly.

* CAlx,x) =P, €Al X =X

* Not clear if conditioning is well-defined here, dependent on how to view
X Y.
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If we are going to change all of this
are we still able to do standard thing in
Probability Theory and (Bayesian) Statistics?






Random Functions do not exist in Meas

* Theorem (Aumann, 1961):

* There is no os-algebra B, on & := Meas (R, R) such that the
evaluation map Is measurable:

cev: XR >R, (f,x) — f(x),

* where R carries the Borel-o-algebra and £ is the space of alll
measurable maps from R to IR, and the product carries the product-o
-algebra.

* So there is no well-behaved way to define a probability distribution over all
measurable functions in a fully non-parametric way.

®* Robert J. Aumann. Borel structures for function spaces. lllinois Journal of Mathematics 5.4 (1961): 614-630.



Quasi-Measurable Spaces



Recall: Usual measure-theoretic approach

e Sample space is a measurable space: (Q, 93’9)

* where %, is the o-algebra/set of admissible outcome events on €.

e State space is a measurable space: (Sl" , A8 %)

* where 93 o is another c-algebra/set of admissible events on 2.

* Admissible random variables are all measurable maps:
e X € Meas ((Q, Ba), (A, 93’5[))
e For fixed probability measure P on (Q, QS’Q) the distribution of X is:

* push-forward probability measure: X.P on 9o (also written as: P(X)).

39



Main Idea behind Quasi-Measurable Spaces

* Main idea: Exchange the role of o-algebras and random variables!!!

e Sample space is a measurable space: (Q, %’Q)

* where S, is the o-algebra/set of admissible outcome events on €2.

e State space is a “quasi-measurable space’: (Sl” , A Q)

e where & {2 IS a set of admissible random variables.

* o-algebra of admissible events is:
e By =B (X%) ={ACT|IVXe XX A) € By}
* For fixed probability measure P on (Q, Q?Q) the distribution of X is:

* push-forward probability measure: X:P on 9B o (also written as: P(X) ).

40



The Sample Space - Act 1 - Random Variables

* The Sample Space (Q2, Q*?) consists of:

* aset: £
e asetofmaps: Q¥ C {®: Q - Q)
* such that:
e id, € Q,
e (O*? contains all constant maps,
e O s closed under composition:
¢ D, D, € Q¥ = P,0oD, € Q
* Standard example:

e QY := Meas ((Q, Ba), (L2, %Q)) for some carefully chosen o-algebra: 9,

41



Quasi-Measurable Spaces

e A Quasi-Measurable Space (ﬁl" , A Q) w.r.t. sample space (Q, Q*?) - per
definition - consists of:

e aset: X

e a set of admissible random variables: Q,

e jie.asetofmaps: X: Q — X, such that:
e all constant maps € — X arein X Q,

o X is closed under pre-composition with Q.

e XeXPe¥ — Xod e T

42



Quasi-Measurable Maps

o |et (Z’, SZ’Q) and (Sl", &"Q) two quasi-measurable spaces.

* Amap g . #Z — X is called quasi-measurable if
e 7€ F? = 9(Z)=gZe L

* The set of all quasi-measurable maps is abbreviated:
. QMS ((Z,%9),(2,2%)) or QMS(Z,Z) forshort

* Note that the composition of two quasi-measurable maps is again quasi-
measurable.

* The class of all quasi-measuable spaces (w.r.t. a fixed sample space) together with
all quasi-measurable maps builds a category: QMS.
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The Product Space

o Let (Sl"i, SXZQ) be a family of quasi-measurable spaces, i € .

, 'hen we turn the product space: HSX ;

el

Q
, Into a quasi-measurable space by putting: H v = H vA ZQ

icl icl
* product random variables on the product are of the form:

e X(0) = (X{w)). _ with X; € X foralli €1

el
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The Function Space

o Let (Sl", SZQ) and (Z, ZQ) two quasi-measurable spaces. We put:
. 27 = QMS ((Z,29), (2,29))
. (%Z)Q = {X: Q- 7| ((a),z) — X(a))(z)) e QMS(L2 X Z’,ﬁl”)}

* function-valued random variables are defined via the product structure

Q
o Then (fl"z, (Sl"z) ) IS a quasi-measurable space.

* Note that such a construction was not possible for measurable spaces!!!
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Currying, Uncurrying and the Evaluation Map
o Let (Sl", SZQ) (?, ?Q) and (Z, Z’Q) be quasi-measurable spaces.
* We can then curry and uncurry:

. QMS (Z x %, %) = QMS (¥,2%) = QMS (%,QMS (Z,2))

* In particular, the evaluation map is quasi-measurable:

eev: T2 XF - X, ev(g,z):=22).

* Note that this was not possible in Meas for measurable spaces!!!
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More Category-theoretical Constructions

* Similary, we can define the following in QMS:
* coproducts, equalizers, coequalizers, thus:
* all small limits and all small colimits
* even more, we get in QMS:
e fibre products: X X ¥ — &,
* internal homs: Q (X, Y) - &
* QMS (X X ¥, 2) = QMS (X, Q (Y, Z)).

* Note that the latter was not possible in Meas for measurable spaces!!!
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Main Theorems

* Theorem: The category of quasi-measurable spaces QMS forms a quasitopos, and, is in
particular, locally cartesian closed.

* Remark: This means that, besides simply typed A-calculus, we get a dependent type
theory for QMS. Roughly speaking, this means that we can model programs that can vary
the output type/space dependent on the input. This makes it easy to implement all result
obtained inside QMS in a theorem prover like Lean, Agda or Coq, etc.

* Theorem: The category of quasi-measurable spaces QMS forms a Heyting category.

* Remark: QMS has thus an internal logic of a (typed) intuitionistic first-order logic.

* Remark: Note that most of this is not true for the category of measurable spaces Meas!!!

48



Definition - Quasitopos
* A quasitopos is a category that:
®* has all finite limits,
®* has all finite colimits,

* is locally cartesian closed,

* has a subobject classifier for strong monomorphisms.

* Peter T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium. Oxford University Press, 2002.



The Sample Space - Act 2 - The o-Algebra

e We now endow the Sample Space (Q, Q*?) with an additional o-algebra
9B - such that:

e Q% C Meas ((Q, By), (Q, By)).

e The Sample Space is now the triple: (Q, Q% HBo).

* Standard example:

o QQ = Meas ((Q, @Q)a (Q9 %Q))
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Topological and Measurable Spaces as Quasi-Measurable Spaces

o |f (ﬁl" : %5[) IS @ measurable space or a topological space, etc., then we can

turn this into a quasi-measurable space via allowing for the following random
variables:

e X :=F(Ey) :={X: Q> T |VA€ E4. X (A) € By}

* Note that the later introduced c-algebra 95 o- might be strictly bigger than the
one we started with to turn (Sl" , %&/‘) into quasi-measurable space (2, 2*%):

¢« &0 C By =B (L)
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The o-Algebra

o |et (Sl", SZ"Q) be a quasi-measurable space.

* Then the induced o-algebra is:
e By ={ACT|VXEI*.X'(A) € By,
* We can then define the set of admissible random variables with values in &8 o- via:
¢ (By) ={¥: Q> By|ID € BV €Q. ¥(w) =D, = Beyy
e where D, = {x ed | (w,x) € D}

Q
e Then (95’5[, (Qﬁ’%) ) IS a quasi-measurable space.

* Note that this was not possible in the category of measurable spaces!!!
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Theorem - The Adjunction

e Amap g : & — ¥ from a quasi-measurable space (2, ) to a
measurable space (¢, %?) IS

* measurable if and only if it is quasi-measurable,

* provided we use the corresponding choices:
¢ Boi=RBIXAH ={ACT|VXeIT®. XA € B},
e Y =F(By) ={Y: Q> Y|VBE RBy.Y ' (B) € By}
* In other words, we have the natural identification of sets of maps:

. Meas ((sz", BILY), (Y, 935?)) — QMS ((&", 79, (¥, g?(@?))).
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The Sample Space - Act 3 - Probability Measures

* We now endow the Sample Space (Q, Q. 9B ) with some additional set of
product compatible probability measures & on 9%, i.e. such that:

e forall P € P and D € B the map:
e Q — [0,1], w+— P(D?®), is(quasi-)measurable,
* where D” :={w € Q| (0w, w) € D},
e for all P;, P, € P there exist ®,, ®, € Q*? and P € & such that:
*PL® P, =P(D,D,) on Bno, .e. forall D € B, We have:

. (P ® PyD) := JP1(D”) Py(dw) = P(low € Q| (P (0), Pyr(@)) € D}).

* The Sample Space is now the quadruple: (Q, Q% B, P).

54



The Space of Push-forward Probability Measures

e | et (Sl", SZQ) be a quasi-measurable space. Define:
« AX) =P, LY :={PX): By —[011|XEIL*PEP
« PP = P, TH = {PX|D|X e (XHNPe P}

PXEA|I=0):=P ({6 €Q|X@)(@ €A}) forAc By

e lemma: (@(&"), g’(&")g) is also a quasi-measurable space.

55



The Spaces of Markov Kernels and Random Functions

o Let (5[, SZQ) and (SZ, ZQ) be quasi-measurable spaces.

e Then the space of Markov kernels from (Z’, Z’Q) to (Sl", &"Q):
. (DT = QMS ((Z, Z9), (P D), P2)°) )

® Is again a quasi-measurable space.

* Also the space of probability distribution over functions:
o X (SZZ) is again a quasi-measurable space.

* Note that these construction were not possible in the category of measurable
spaces!!!
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Some surprising Lemmata

o Let (&", SXQ) and (?, QQ) be quasi-measurable spaces.
* Then the following maps are all quasi-measurable:

o« YT X Boy > By, (f,B) ~ f~'(B).

* P(X)X FHBq — [0,1], (P,A) —» P(A).

Y XPX) > P(Y). (P P

. [0,00]* % AP(X) = [0,00], (h,P)+ Jh(x) P(dx).

* Note that such statements were not known or even possible in the category of
measurable spaces!!!

S7



Theorem: The Product of Markov Kernels

* Assume that there exists an isomorphism of quasi-measurable spaces:
e (2 X =)

e Then for all quasi-measurable spaces (2, L), (¥, ?Q), (ZF, Z*) the
product of Markov kernels:

* ®: P(X)** X P(Y)* - P XY)*

(PX1Y,2) @ Q(Y|Z))(D|2) := JP(X ceD’|Y=y,Z=2)0(Yedy|Z=72)
* is a well-defined quasi-measurable map.
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Theorem: Strong Probability Monad

o |f Q2 X €2 = Q) then the triple (£, 0, M) is a strong probability monad on
the cartesian closed category QMS, where:

5. X > P 5.(A) := 1 ,(x),

M P(PD)) = P, M(IT)(A) := [P(A) dri(P).

* This thus allows for a notion of computation of monadic type and simply
typed A-calculus.

* We thus get semantics for higher-order probability theory for probabilistic
programming language.
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Construction of well-behaved Sample Spaces

* Theorem: Let €2, be a set, and:

* &, a countable set of subsets of £, that separates the points of €2,

Q= HQO, and & := {pr;'(A)|A € &), n € N},

neN

¢« P = { P complete perfect probability measure on €2, & C 95’13},

B = ﬂ 9B p, the perfect-universal completion of &,
PEP

° QQ .= Meas ((Q, L@Q)a (Qa t%Q))v ‘@ = ‘@ ‘ggg

* Then (€2, Q2 AB o, P) satisfies all points of act 1-3 and 2 X € = .
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Fubini Theorem

e Let (Q, Q% RB o, P) be the sample space from the last slide.
o Let (ﬁl" , A Q) and (?, ?9) be quasi-measurable spaces and:

e fE[0,00]*%Y, P P(X) and O € P(Y).

* Then we have the equality:

. “f (x,y) P(dx) Q(dy) = ”f (x, y) Q(dy) P(dx).



The Sample Space - Act 4 - The Universal Hilbert Cube

Q=01 = H [0.1], the Hilbert Cube,

neN
* % = set of all universally measurable subsets of £2.

* Note that this is bigger than the Borel o-algebra on €2.
e &P = all probability measures on B, Q% = Meas ((Q, By), (Q, Bg)).

e We call this Sample Space (Q, Q. B o, P) the Universal Hilbert Cube.

* Interpretation: Countably infinite sequence of uniformly distributed samples (e.g.
from a (pseudo-)random number generator).

* Note that it satisfies act 1-3 and the iso: €2 X €2 = € (via “Hilbert’s Hotel”).
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The Category of Quasi-Universal Spaces

e Definition: A quasi-universal space (Sl", SZ"Q) IS - per definition - just a

quasi-measurable space where the sample space €2 is the universal
Hilbert cube.

* We abbreviate the category of quasi-universal spaces as QUS.
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Countably Separated and Standard Quasi-Measurable Spaces

e Definition: A quasi-measurable space (SZ", SZQ) Is called:

* countably separated if there exists a countable subset & C I o that
separates the points of X .

* standard quasi-measurable space if there are quasi-measurable maps:
¢ : (SZ",SZQ) — (Q,QQ) and 7 : (Q,QQ) — (SZ",SZQ) s.t.:

'r°l=id&/'.
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Theorem: Disintegration of Markov Kernels
e Let (Sl", SXQ) and (?, ?9) and (Z’, ZQ) be quasi-universal spaces.
o Let (?, Y Q) be countably separated. and:

e either (ﬁl", SXQ) or (Z’, Z’Q) be a standard quasi-universal space.

* Then the product of Markov kernels:
* @ PNV XPY) - PXXY)”
®* is a (surjective) quotient map of quasi-universal spaces.

* More concretely, for every P(X, Y| Z) € P(XL X ¥)? there exists
PX|Y,Z) € P(Y)?*Z suchthat: PX,Y|Z)=PX|Y,Z) @ P(Y|Z).
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Conditional Kolmogorov Extension Theorem

o Let (&" A f,}) n € N, a sequence of standard quasi-universal spaces and

(Z’, Z’Q) be any quasi-universal space.

e Assume we have Q (X,.,|Z) € & (&"O:n)z such that for every n € N
* Pro. Oni1Xoinr114) = Qu(Xo, 1 2).
e Then there exists a unique Q(Xy | Z) € & (SZ"N)Z such that:
o pry., «QXp.np112) = Q,(Xy., | Z) foralln € N,
. Where X' = Hﬁl"n

neN
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Conditional De Finetti Theorem

. (5[, SZQ) standard quasi-universal spaces, (Z, ZQ) any quasi-universal space.

Z
e For a Markov kernel Q(Xy | Z) € & (SXN) the following is equivalent:

* J(Xy\|Z) is exchangabile, i.e. invariant under all finite permuations: p : N = N.

* There exists a quasi-universal space % and K(X|Y) € P (X )¢ and
P(Y|Z) € P(%)? such that :

®K(Xn\ Y)) o P(Y|2Z).

neN

, QXN [2) = (

* In this case we can w.l.o.g. take: % = P(X)and K(X € A|Y = P) := P(A).

Tobias Fritz, Tomas Gonda, Paolo Perrone, De Finetti's Theorem in Categorical Probability, 2021, https://arxiv.org/abs/2105.02639.



Transitional Conditional Independence
e Consider a Markov kernel: P(X,Y,Z|T) € P(X X Y X F)” .

* We say that X is conditional independent of Y given Z w.r.i.
PX,Y,Z|T),

* insymbols: X 1 Y|Z if:
e there exists a Markov kernel Q(X|Z) € P(X)? such that:
* PIX,Y,Z|T) = Q0X|2)Q P(Y, Z|T).

Patrick Forre, Transitional Conditional Independence, 2021, https://arxiv.org/abs/2104.11547.



Partially Generic Causal Bayesian Networks

* A partially generic causal Baysian network - per definition - consists of:
* a conditional directed acyclic graph (CDAG): G = (J,V, E),

e an input variable X; on a quasi-universal space £ ; for each j € J,

* an output variable X, on a standard quasi-universal space & , for each
vevV,

* an exceptional set: W C V,

o a Markov kernel: P (X | Xp,q(,)) € P(X V)‘% PG forv € VA\W.
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Partially Generic Causal Bayesian Networks

* For a partially generic causal Baysian network with exceptional set W we
introduce forw € W:

* an indicator variable: [, — w,
» a quasi-universal space: &, = P(XL,,)" P,
w

* a “generic” Markov kernel:
® PW (XW & A ‘XPaG(W) — X,XW — Q) — Q (XW & A ‘XPaG(w) — .X)

» So we get a joint Markov kernel:  P(Xy, X}, X; | X, X; ).
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Theorem: Global Markov Property

* For every partially generic causal Bayesian network with exceptional set W

and any subsets: A,B,C C VUI,UJ we have the implication:
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(Proposed)
Answers




Answers - Stochastic Process

* Definition: A stochastic process is a quasi-measurable map:

cX: Q> 27, o (e X))

* Lemma: This is equivalentto a quasi-measurable map: X : QX 9 - I, (w,t) —» X(w,?).

, IS quasi-measurable.

, Lemma: The map: L7 - HSX X - (X(t))

=N

=~

* lemma: lIf T: Q — I is quasi-measurable (random time) then the map:

* Q> 2, wr X(w)(T(w)) is again quasi-measurable.
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Answers - Probabilistic Programs

* Definition: A probabilistic program with input x € X and output z € #£ is quasi-
measurable map: X — LP(F).

* Theorem: We have the natural curry / uncurry isomorphism:

. QMS (2 x %, 2 (Z)) = QMS (Z,QMS (¥, #(%)) )

* Theorem: QMS is a quasitopos, thus allows for dependent type theory.

* Theorem: The triple (<2, 0, M) forms a strong probability monad on the category

of quasi-measurable spaces QMS (for certain sample spaces, e.g. the universal

Hilbert cube). Thus allows for higher-order probabilistic programs.
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Answers - Graphical Models

-2

* Partially generic causal Bayesian networks can model graphical models with non-random input variables.

* Transitional conditional independence also works with non-random input variables.

* Theorem: Global Markov Property: For A,B,C C VU I, UJ we have:
*ALlB|C = X, 1 Xp|X.

* Example: Here Q(Y'| X) is a non-random input variable with values in £ := QUS (&", 9’(?))

®* Then Y is determined by the new quasi-measurable mechanism:

s XL - AY), (QY|X),x)+ QY|X =x).

* We can now read off the graph:

Z1 X 0Y|X),0X)|Y.



Answers - Causal Assumptions

* Model potential outcome as quasi-measurable map / random function:
e G: Q> Y*

* Potential outcome under treatment X = x then: Y. := G(x).

* Rephrase causal assumptions:
 Strong Ignorability: X 1 G|Z,
* Consistency: Y = G(X).

* Everything is well-defined and quasi-measurable.
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Answers - Counterfactual Probabilities

* Theorem: Disintegration of Markov kernels.

e Model potential outcome as: G € (%)

* Assume that 2 to countably separated quasi-universal space.

* Then via the disintegration theorem there exists conditional:
e P(G|X) € P(€)* suchthat P(G,X)=P(G|X) ® P(X).

* Evaluation maps and push-forwards are quasi-measurable, which implies:
* C(A|x,x") :=P(G(x) € A| X = Xx') defines:
e well-defined and quasi-measurable C € (Y )**+

* So, conditional counterfactual probabilities are well-defined and quasi-measurable.

77



Answers - Statistics and Probability Theory

* For (standard) quasi-universal spaces we at least can do the following:

* Theorem: Disintegration of Markov kernels.

* Remark: This allows for Bayes’ Rule and thus Bayesian Statistics.

®* Theorem: Fubini Theorem.

®* Theorem: Conditional de Finetti Theorem.

* Theorem: Kolmogorov Extension Theorem.

* Theorem: Global Markov Property for graphical models like partially generic

causal Bayesian networks.
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Recommendation

* For probabilistic programming, graphical models, causality, statistics, etc.
* use for:
* sample space —> the universal Hilbert cube
* replace:
* measurable spaces —> quasi-measurable spaces
* measurable maps —> quasi-measurable maps
 categorical construction in Meas —> categorical construction in QMS

* study more of the (classical) theory in this framework (e.g. martingales).

* Patrick Forré, Quasi-Measurable Spaces, 2021, https://arxiv.org/abs/2109.11631.



More about Convenient Categories

* Probability Theory

®* Quasi-Borel Spaces - by Chris Heunen, Ohad Kammar, Sam Staton, Hongseok Yang

®* Quasi-Measurable Spaces - by Patrick Forré, https://arxiv.org/abs/2109.11631

* Topology

* Compactly Generated Weakly Hausdorff Spaces (CGWH) - by Witold Hurewicz, David Gale, Norman Steenrod, John

C. Moore, Michael C. McCord, Neil Strickland, et al (script)
* Condensed Sets - by Peter Scholz, Dustin Clausen (script)

* Differential Geometry

* Diffeological Spaces - by Kuo Tsai Chen, Jean-Marie Souriau, Patrick Iglesias-Zemmour, John Baez, Alexander

Hoffnung, Andrew Stacey, et al.
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https://arxiv.org/abs/2109.11631
http://neil-strickland.staff.shef.ac.uk/courses/homotopy/cgwh.pdf
https://www.math.uni-bonn.de/people/scholze/Condensed.pdf

Thank you for your attention!



