Quasi-Measurable Spaces

A Convenient Foundation of Probability Theory

Patrick Forré

References

- The talk is based on the following papers:
- Chris Heunen, Ohad Kammar, Sam Staton, Hongseok Yang. A convenient category for higher-order probability theory. 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), 2017.
- Patrick Forré, Quasi-Measurable Spaces, 2021, https://arxiv.org/abs/2109.11631.

Why Measure Theory to do Probability Theory?

Why Measure Theory in the first place?

- The existence of the Lebesgue measure:
- does not exist on whole power set $2^{\mathbb{R}}$.
- but does exist on Borel σ-algebra $\mathscr{B}_{\mathbb{R}}$.
- To prevent set-theoretic paradoxa like Banach-Tarski:
- the orange is both a third and a half of the Poincaré disk / hyperbolic plane.

[^0]
Discrete and continuous distributions are not expressive enough

- The uniform distribution on the diagonal $\Delta \subseteq[0,1]^{2}$
- is neither discrete nor absolute continuous w.r.t. λ^{2}.
- so it can not be described with a probability mass function nor with a probability density w.r.t. λ^{2}.

The Category of Measurable Spaces

- Let \mathscr{X} be a set. A σ-algebra on \mathscr{X} is a set of subsets $\mathscr{B} \subseteq 2^{\mathscr{X}}$ such that:
- $\varnothing \in \mathscr{B}$,
. $A_{n} \in \mathscr{B}, n \in \mathbb{N} \Longrightarrow \bigcup_{n \in \mathbb{N}} A_{n} \in \mathscr{B}$
- $A \in \mathscr{B} \Longrightarrow \mathscr{X} \backslash A \in \mathscr{B}$
- A tuple $\left(\mathscr{X}, \mathscr{B}_{X}\right)$ of a set \mathscr{X} and a σ-algebra \mathscr{B}_{X} is called measurable space.
- $\operatorname{A~map} f: \mathscr{X} \rightarrow \mathscr{Y}$ between measurable spaces $\left(\mathscr{X}, \mathscr{B}_{X}\right)$ and $\left(\mathscr{Y}, \mathscr{B}_{\mathscr{Y}}\right)$ is called a measurable map if: $\quad B \in \mathscr{B}_{\mathscr{Y}} \Longrightarrow f^{-1}(B) \in \mathscr{B}_{X}$.
- Note that the compositions of two measurable maps is a measurable map.
- Meas denotes the category of measurable spaces and measurable maps.

Kolmogorov’s approach to Probability Theory (1933)

- Kolmogorov Axioms:
- A probability distribution is just a normalized measure.
- Probability Theory can thus be viewed as a sub-field of Measure Theory.
- now allows for Lebesgue's theory of integration (measure integrals, etc.)
- Measure Theory as an expressive "safe space" of Probability Theory.
- Andrei Kolmogoroff. Grundbegriffe der Wahrscheinlichkeitsrechnung. Ergebnisse der Mathematik und Ihrer Grenzgebiete. 1. Folge, Nr. 2, Springer (1933).

How to formalize Random Variables?

- Sample space is a measurable space: $\left(\Omega, \mathscr{B}_{\Omega}\right)$
- where \mathscr{B}_{Ω} is the σ-algebra/set of admissible outcome events on Ω.
- State space is a measurable space: $\left(\mathscr{X}, \mathscr{B}_{X}\right)$
- where \mathscr{B}_{X} is another σ-algebra/set of admissible events on \mathscr{X}.
- Admissible random variables are all measurable maps:
- $X \in \operatorname{Meas}\left(\left(\Omega, \mathscr{B}_{\Omega}\right),\left(\mathcal{X}, \mathscr{B}_{X}\right)\right)$
- For fixed probability measure P on $\left(\Omega, \mathscr{B}_{\Omega}\right)$ the distribution of X is:
- push-forward probability measure: $X_{*} P$ on $\mathscr{B}_{\mathscr{X}} \quad$ (also written as: $P(X)$).

What is a Stochastic Process?

Different realizations of one stochastic process

Text book definitions - stochastic process

- D. Revus, M. Yor - Continuous Martingales and Brownian Motion:
(1.1) Definition. Let T be a set, (E, \mathscr{E}) a measurable space. A stochastic process indexed by T, taking its values in (E, \mathscr{E}), is a family of measurable mappings $X_{t}, t \in T$, from a probability space (Ω, \mathscr{F}, P) into (E, \mathscr{E}). The space (E, \mathscr{E}) is called the state space.

For every $\omega \in \Omega$, the mapping $t \rightarrow X_{t}(\omega)$ is a "curve" in E which is referred to as a trajectory or a path of X. We may think of a path as a point chosen randomly in the space $\mathscr{F}(T, E)$ of all functions from T into E, or, as we shall see later, in a reasonable subset of this space.

Text book definitions - stochastic process

- D. Revus, M. Yor - Continuous Martingales and Brownian Motion:

Let $\left(\mathscr{T}_{t}\right)$ be a filtration on (Ω, \mathscr{F}) and T a stopping time. For a process X, we define a new mapping X_{T} on the set $\{\omega: T(\omega)<\infty\}$ by

$$
X_{T}(\omega)=X_{t}(\omega) \quad \text { if } \quad T(\omega)=t .
$$

This is the position of the process X at time T, but it is not clear that X_{T} is a random variable on $\{T<\infty\}$. Moreover if X is adapted, we would like X_{T}
(4.7) Definition. A process X is progressively measurable or simply progressive (with respect to the filtration $\left(\mathscr{T}_{t}\right)$) if for every the map $(s, \omega) \rightarrow X_{s}(\omega)$ from $[0, t] \times \Omega$ into (E, \mathscr{E}) is $\mathscr{B}([0, t]) \otimes \mathscr{T}_{t}$-measurable. A subset Γ of $\mathbb{R}_{+} \times \Omega$ is progressive if the process $X=1_{\Gamma}$ is progressive.
(4.8) Proposition. An adapted process with right or left continuous paths is progressively measurable.

Three Definitions of Stochastic Processes

- Let $\left(\Omega, \mathscr{B}_{\Omega}\right)$ be the sample space, $\left(\mathscr{X}, \mathscr{B}_{\mathscr{X}}\right)$ the state space, $\left(\mathscr{T}, \mathscr{B}_{\mathscr{T}}\right)$ the time space, e.g. $\mathscr{T}=\mathbb{N}$ or $\mathscr{T}=\mathbb{R}_{\geq 0}$.
- A stochastic process is what kind of random variable / measurable map?

1. $\left(X_{t}\right)_{t \in \mathscr{T}}: \Omega \rightarrow \prod_{t \in \mathscr{T}} \mathscr{X}$,

$$
\omega \mapsto\left(X_{t}(\omega)\right)_{t \in \mathscr{T}},
$$

2. $X: \Omega \rightarrow \operatorname{Meas}(\mathscr{T}, \mathscr{X})$,

$$
\omega \mapsto(t \mapsto X(\omega)(t))
$$

3. $X: \Omega \times \mathscr{T} \rightarrow \mathcal{X}$, $(\omega, t) \mapsto X(\omega, t)$.

Problems

- Three different (partially inconsistent) definitions of stochastic processes
- mismatch between formalization and meaning.
- Not clear how to turn $\operatorname{Meas}(\mathscr{T}, \mathscr{X})$ into a measurable space in itself?
- existence of well-behaved σ-algebra unclear
- The measurability of $\omega \mapsto X_{T(\omega)}(\omega)$ only guaranteed under additional assumptions.

Are Probabilistic Programs functional?

A program that outputs a probabilistic program

```
def prog_prob_prog(a):
    return lambda m,s: [Z:=np.random.uniform(), a*m+s*Z][-1]
```

- uncurried version:

```
print(prog_prob_prog(a=1))
```

<function prog_prob_prog.<locals>.<lambda>

```
for n in range(5):
    print(prog_prob_prog(a=n)(m=5,s=2))
```

1.8106662116099772
6.762509413168864
10.365457994333775
15.884402920590935
21.48676872656254

```
for n in range(5):
    print(prob_prog(a=n,m=5,s=2))
```

1.5413066059310134
6.248544376268809
10.923467140491365
16.8296978388216
20.72122425243884

Another probabilistic program that outputs a probabilistic program

```
import numpy as np
def prob_prog_1(m=0,s=1):
    Z = np.random.normal()
    X = m+s*Z
    return(X)
- Output:
```

```
def prob_prog_2(m=0,s=1,b=0):
```

def prob_prog_2(m=0,s=1,b=0):
U = np.random.uniform()
U = np.random.uniform()
if U <= 0.33:
if U <= 0.33:
return 'det fct', lambda x: x**2
return 'det fct', lambda x: x**2
elif U <= 0.66:
elif U <= 0.66:
return 'output', b+prob_prog_1(m,s)
return 'output', b+prob_prog_1(m,s)
else:
else:
return 'prob_prog_1', prob_prog_1

```
        return 'prob_prog_1', prob_prog_1
```

```
for n in range(10):
```

for n in range(10):
print(prob_prog_2(7,3,2))
print(prob_prog_2(7,3,2))
('output', 13.334218167868446)
('output', 11.471183953689039)
('det fct', <function prob_prog_2.<locals>.<lambda> at 0x7
('prob_prog_1', <function prob_prog_1 at 0x7fd4f2820550>)
('output', 8.377835031430754)
('prob_prog_1', <function prob_prog_1 at 0x7fd4f2820550>)
('output', 11.669097814447499)

```
- How can one mathematically describe such a (probabilistic) program that outputs a probabilistic program, possibly of different types?

\section*{How to formalize Probabilistic Programs?}
- Probabilistic programs:
- take input \(x\),
- sample internal random number \(\omega\),
- determine (stochastic) output \(z\),
- so either:
- measurable map: \(K: \Omega \times \mathscr{X} \rightarrow \mathscr{Z}\),
- however, \(\omega \in \Omega\) not really an input, rather internal
- Markov kernels from input space \(\mathscr{X}\) to output space \(\mathscr{Z}\),
- measurable map \(K: \mathscr{X} \rightarrow \mathscr{P}(\mathscr{Z})\)
- set of probabilistic programs: Meas \((\mathscr{X}, \mathscr{P}(\mathscr{X}))\).

\section*{Church's Simply Typed \(\lambda\)-Calculus (1940)}
- Functional Programming should satisfy "curry" / "uncurry" operations:
- \((x, y) \mapsto f(x, y) \quad\) corresponds 1:1 to: \(\quad x \mapsto(y \mapsto f(x, y))\)
- \((x, y) \mapsto g(x)(y) \quad\) corresponds 1:1 to: \(\quad x \mapsto g(x)=(y \mapsto g(x)(y))\)
- This mean a program in two (or more) variables \(f(x, y)\) can be expressed as iteratively defining a functions in one variable \(g(x)(y)\) and vice versa.
- Requires program-valued programs / function-valued functions.
- Realized in functional programming language Haskell.
- Mathematically corresponds to cartesian closed categories.

\footnotetext{
- Alonzo Church. A formulation of the simple theory of types. The Journal of Symbolic Logic 5.2 (1940): 56-68.
}

\section*{Can we Curry / Uncurry Probabilistic Programs?}
- Curry / Uncurry operations would translate to isomorphism:
- Meas \((\mathscr{X} \times \mathscr{Y}, \mathscr{P}(\mathscr{X})) \cong \operatorname{Meas}(X, \operatorname{Meas}(\mathscr{Y}, \mathscr{P}(\mathscr{X})))\).
- This means we need to be able to mathematically describe programs whose outputs are probabilistic programs.
- Furthermore, we need the operation \(\mathscr{P}\) to be well-behaved:
- functorial, respects product structure
- strong probability monad

\section*{Remark - Monad}
- Monad
- theory of functional programming with side effects
- equivalent to category-theoretical construction in mathematics
- strong monad:
- well-behaved w.r.t. products

\section*{Definition - Monad}
- A Monad on a category \(\mathscr{C}\) is a triple ( \(\mathscr{P}, \delta, \mathbb{M}\) ) consisting of:
- a functor \(\mathscr{P}: \mathscr{C} \rightarrow \mathscr{C}\),
- a natural transformation \(\delta: \operatorname{id}_{\mathscr{C}} \rightarrow \mathscr{P}\),
- a natural transformation \(\mathbb{M}: \mathscr{P}^{2}:=\mathscr{P} \circ \mathscr{P} \rightarrow \mathscr{P}\),
- such that:
- \(\mathbb{M} \circ \mathscr{P} \mathbb{M}=\mathbb{M} \circ \mathbb{M} \mathscr{P}\) as natural transformations \(\mathscr{P}^{3} \rightarrow \mathscr{P}\),
\(\bullet \mathbb{M} \circ \mathscr{P} \delta=\mathbb{M} \circ \delta \mathscr{P}=\mathrm{id}_{\mathscr{P}}\) as natural transformations \(\mathscr{P} \rightarrow \mathscr{P}\).
- A monad is called strong, if it is also "well-behaved" w.r.t. finite products \(\times\).

\section*{Problems}
- Define strong probability monad ( \(\mathscr{P}, \delta, \mathbb{M})\)
- Giry monad defined on category of measurable spaces Meas.
- The set of all programs that output probabilistic programs should be:
- \(\operatorname{Meas}(\mathscr{X}, \operatorname{Meas}(\mathscr{Y}, \mathscr{P}(\mathscr{Z})))\)
- Not clear how to turn Meas \((\mathscr{Y}, \mathscr{P}(\mathscr{Z}))\) into a measurable space in itself
- existence of well-behaved \(\sigma\)-algebra unclear
- Is is possible to do more complicated constructions, e.g. dependent products, etc,?
- Can we get a dependent type theory together with higher-order probability theory?

\title{
Can we do Graphical Reasoning between Random Variables and Mechanisms?
}

\section*{Conditional Independence in Probabilistic Graphical Models}
- Consider a Markov chain:
- We have:

- factorization: \(P(X, Y, Z)=P(Z \mid Y) \otimes P(Y \mid X) \otimes P(X)\)
- tells us that \(Z\) is only dependent on \(Y\), and, independent of \(X\) when conditioned on \(Y\), but then also of the choice of \(P(Y \mid X)\) and \(P(X)\).
- We want to be able to:
- formalize conditional independence: \(\quad Z \Perp X, Q(Y \mid X), Q(X) \mid Y\)
- including non-random variables \(Q(X)\) and \(Q(Y \mid X)\)
- read this off a graph via d-separation (or similar).

\section*{Including Non-Random Variables}

\(Q(Y \mid X)\)
- \(Q(Y \mid X)\) is non-random and takes values in \(\mathscr{L}:=\operatorname{Meas}(\mathscr{X}, \mathscr{P}(\mathscr{Y}))\)
- Then \(Y\) is determined by the new mechanism:
- \(\mathscr{L} \times \mathscr{X} \rightarrow \mathscr{P}(\mathscr{Y}), \quad(Q(Y \mid X), x) \mapsto Q(Y \mid X=x)\).
- similarly for \(X\).
- Problems:
- Not clear how to deal with non-random variables.
- Not clear how to turn \(\mathscr{L}:=\operatorname{Meas}(\mathscr{X}, \mathscr{P}(\mathscr{Y}))\) into a measurable space
- Not clear how to define conditional independence with the two problems above.
- Not clear if this corresponds to graphical conditional independence criteria.

\section*{How to formalize standard Causal Assumptions?}

\section*{Causal Inference - Estimating Treatment Effects}
- For estimating treatment effect, in the typical case, we have the variables:
- \(X=\) observed treatment variable,
- \(Y=\) observed outcome,
- \(Y_{x}=\) potential outcome variable under (forced) treatment \(X=x\),
- \(Z=\) all other relevant features of the patient.
- Estimation is not possible without further assumptions.
- Typical assumptions made are:
- Strong Ignorability: \(\quad X \Perp\left(Y_{x}\right)_{x \in X} \mid Z\),
- Consistency: \(Y=Y_{X}\) a.s.

\section*{Problems}
- Here, \(\left(Y_{x}\right)_{x \in X}\) is used as a vector of random variables from which we can pick components: \(\left(\tilde{x},\left(Y_{x}\right)_{x \in \mathscr{X}}\right) \mapsto Y_{\tilde{x}}\).
- However, the following map is, in general, not measurable:
\[
\text { - } \mathcal{X} \times \prod_{x \in \mathscr{X}} \mathscr{y} \rightarrow \mathscr{Y}, \quad\left(\tilde{x},\left(y_{x}\right)_{x \in x}\right) \mapsto y_{\tilde{x}}
\]
- So Strong Ignorability does formally not go well with Consistency.
- Not immediate clear how to fix this.

\section*{Explanation}
- Let \(\mathscr{X}=\mathbb{R}, \mathscr{Y}_{x}:=\mathscr{Y}:=\{0,1\}\), then the following map is not measurable:
\[
\text { - } e: \mathscr{X} \times \prod_{x \in \mathscr{X}} \mathscr{Y} \rightarrow \mathscr{Y}, \quad\left(\tilde{x},\left(y_{x}\right)_{x \in \mathscr{X}}\right) \mapsto y_{\tilde{x}}
\]
- Otherwise, we had: \(\quad D:=e^{-1}(1) \in \mathscr{B}_{x} \otimes \bigotimes_{x \in \mathscr{X}} \mathscr{B}_{\mathscr{Y}_{x}}\).
- Then \(D\) lies in a sub- \(\sigma\)-algebra generated by only countably many cylinder sets.
- So there exists countable subset: \(\mathscr{C} \subseteq \mathscr{X}\) s.t.: \(\quad D=B \times \prod_{x \in \mathscr{X} \backslash \mathscr{C}} \mathscr{Y}_{x}\) with \(\quad B \subseteq \mathscr{X} \times \prod_{x \in \mathscr{C}} \mathscr{Y}_{x}\).
- For \(x \in \mathscr{X} \backslash \mathscr{C}: \quad e\left(x, 0_{\mathscr{C}}, 0, ., 0,1_{x}, 0, ., 0\right)=1\), so \(\left(x, 0_{\mathscr{C}}, 0, ., 0,1_{x}, 0, ., 0\right) \in D\), so \(\quad\left(x, 0_{\mathscr{C}}\right) \in B\).
- But then: \(\quad\left(x, 0_{\mathscr{C}}, 0, ., 0,0_{x}, 0, ., 0\right) \in D=e^{-1}(1)\) and thus: \(e\left(x, 0_{\mathscr{C}}, 0, ., 0,0_{x}, 0, ., 0\right)=1\).
- but clearly: \(e\left(x, 0_{\mathscr{C}}, 0, ., 0,0_{x}, 0, ., 0\right)=0\), which is a contradiction.

\section*{How to formalize Counterfactual Probabilities?}

\section*{Counterfactual Probabilities}
- For reasonsing about treatment effect we consider the variables:
- \(X=\) observed treatment variable,
- \(Y=\) observed outcome,
- \(Y_{x}=\) potential outcome variable under (forced) treatment \(X=x\).
- Conditional counterfactual probabilities:
- \(C\left(A \mid x, x^{\prime}\right):=P\left(Y_{x} \in A \mid X=x^{\prime}\right)\)
- "What would have happened (with which probability) under treatment \(X=x\) given that the patient was actually treated with \(X=x^{\prime}\) ?"

\section*{Problems}
- Not clear if conditional counterfactual probabilities are probability measures in \(A\) and/or measurable in \(x, x^{\prime}\) or jointly.
- \(C\left(A \mid x, x^{\prime}\right):=P\left(Y_{x} \in A \mid X=x^{\prime}\right)\)
- Not clear if conditioning is well-defined here, dependent on how to view \(x \mapsto Y_{x}\).

If we are going to change all of this are we still able to do standard thing in Probability Theory and (Bayesian) Statistics?

Bad News

\section*{Random Functions do not exist in Meas}
- Theorem (Aumann, 1961):
- There is no \(\sigma\)-algebra \(\mathscr{B}_{\mathscr{L}}\) on \(\mathscr{L}:=\operatorname{Meas}(\mathbb{R}, \mathbb{R})\) such that the evaluation map is measurable:
\(\cdot \mathrm{ev}: \mathscr{L} \times \mathbb{R} \rightarrow \mathbb{R},(f, x) \mapsto f(x)\),
- where \(\mathbb{R}\) carries the Borel- \(\sigma\)-algebra and \(\mathscr{L}\) is the space of all measurable maps from \(\mathbb{R}\) to \(\mathbb{R}\), and the product carries the product- \(\sigma\) -algebra.
- So there is no well-behaved way to define a probability distribution over all measurable functions in a fully non-parametric way.
- Robert J. Aumann. Borel structures for function spaces. Illinois Journal of Mathematics 5.4 (1961): 614-630.

\section*{Quasi-Measurable Spaces}

\section*{Recall: Usual measure-theoretic approach}
- Sample space is a measurable space: \(\left(\Omega, \mathscr{B}_{\Omega}\right)\)
- where \(\mathscr{B}_{\Omega}\) is the \(\sigma\)-algebra/set of admissible outcome events on \(\Omega\).
- State space is a measurable space: \(\left(\mathcal{X}, \mathscr{B}_{X}\right)\)
- where \(\mathscr{B}_{X}\) is another \(\sigma\)-algebra/set of admissible events on \(\mathscr{X}\).
- Admissible random variables are all measurable maps:
- \(X \in \operatorname{Meas}\left(\left(\Omega, \mathscr{B}_{\Omega}\right),\left(\mathscr{X}, \mathscr{B}_{X}\right)\right)\)
- For fixed probability measure \(P\) on \(\left(\Omega, \mathscr{B}_{\Omega}\right)\) the distribution of \(X\) is:
- push-forward probability measure: \(X_{*} P\) on \(\mathscr{B}_{X} \quad\) (also written as: \(P(X)\) ).

\section*{Main Idea behind Quasi-Measurable Spaces}
- Main idea: Exchange the role of \(\sigma\)-algebras and random variables!!!
- Sample space is a measurable space: \(\left(\Omega, \mathscr{B}_{\Omega}\right)\)
- where \(\mathscr{B}_{\Omega}\) is the \(\sigma\)-algebra/set of admissible outcome events on \(\Omega\).
- State space is a "quasi-measurable space": \(\left(\mathscr{X}, \mathscr{X}^{\Omega}\right)\)
- where \(\mathscr{X}^{\Omega}\) is a set of admissible random variables.
- \(\sigma\)-algebra of admissible events is:
- \(\mathscr{B}_{X}:=\mathscr{B}\left(\mathscr{X}^{\Omega}\right):=\left\{A \subseteq \mathscr{X} \mid \forall X \in \mathscr{X}^{\Omega} . X^{-1}(A) \in \mathscr{B}_{\Omega}\right\}\)
- For fixed probability measure \(P\) on \(\left(\Omega, \mathscr{B}_{\Omega}\right)\) the distribution of \(X\) is:
- push-forward probability measure: \(X_{*} P\) on \(\mathscr{B}_{\mathscr{X}}\) (also written as: \(P(X)\) ).

\section*{The Sample Space - Act 1 - Random Variables}
- The Sample Space \(\left(\Omega, \Omega^{\Omega}\right)\) consists of:
- a set: \(\Omega\)
- a set of maps: \(\Omega^{\Omega} \subseteq\{\Phi: \Omega \rightarrow \Omega\}\)
- such that:
- \(\mathrm{id}_{\Omega} \in \Omega^{\Omega}\),
- \(\Omega^{\Omega}\) contains all constant maps,
- \(\Omega^{\Omega}\) is closed under composition:
- \(\Phi_{1}, \Phi_{2} \in \Omega^{\Omega} \Longrightarrow \Phi_{2} \circ \Phi_{1} \in \Omega^{\Omega}\).
- Standard example:
- \(\Omega^{\Omega}:=\operatorname{Meas}\left(\left(\Omega, \mathscr{B}_{\Omega}\right),\left(\Omega, \mathscr{B}_{\Omega}\right)\right)\) for some carefully chosen \(\sigma\)-algebra: \(\mathscr{B}_{\Omega}\).

\section*{Quasi-Measurable Spaces}
- A Quasi-Measurable Space \(\left(\mathscr{X}, \mathscr{X}^{\Omega}\right)\) w.r.t. sample space \(\left(\Omega, \Omega^{\Omega}\right)\) - per definition - consists of:
- a set: \(\mathscr{X}\)
- a set of admissible random variables: \(X^{\Omega}\),
- i.e. a set of maps: \(X: \Omega \rightarrow \mathscr{X}\), such that:
- all constant maps \(\Omega \rightarrow \mathscr{X}\) are in \(\mathcal{X}^{\Omega}\),
- \(\mathscr{X}^{\Omega}\) is closed under pre-composition with \(\Omega^{\Omega}\) :
\(\cdot X \in X^{\Omega}, \Phi \in \Omega^{\Omega} \Longrightarrow X \circ \Phi \in X^{\Omega}\).

\section*{Quasi-Measurable Maps}
- Let \(\left(\mathscr{Z}, \mathscr{Z}^{\Omega}\right)\) and \(\left(\mathscr{X}, \mathscr{X}^{\Omega}\right)\) two quasi-measurable spaces.
- A map \(g: \mathscr{Z} \rightarrow \mathscr{X}\) is called quasi-measurable if
\(\cdot Z \in \mathscr{Z}^{\Omega} \Longrightarrow g(Z):=g \circ Z \in X^{\Omega}\)
- The set of all quasi-measurable maps is abbreviated:
- \(\mathrm{QMS}\left(\left(\mathscr{Z}, \mathscr{Z}^{\Omega}\right),\left(\mathscr{X}, \mathscr{X}^{\Omega}\right)\right)\) or \(\operatorname{QMS}(\mathscr{Z}, \mathscr{X})\) for short.
- Note that the composition of two quasi-measurable maps is again quasimeasurable.
- The class of all quasi-measuable spaces (w.r.t. a fixed sample space) together with all quasi-measurable maps builds a category: QMS.

\section*{The Product Space}
- Let \(\left(\mathscr{X}_{i}, \mathscr{X}_{i}^{\Omega}\right)\) be a family of quasi-measurable spaces, \(i \in I\).
- Then we turn the product space: \(\prod_{i \in I} X_{i}\)
- into a quasi-measurable space by putting:
\[
\left(\prod_{i \in I} X_{i}\right)^{\Omega}:=\prod_{i \in I} X_{i}^{\Omega}
\]
- product random variables on the product are of the form:
- \(X(\omega)=\left(X_{i}(\omega)\right)_{i \in I}\) with \(X_{i} \in X_{i}^{\Omega}\) for all \(i \in I\).

\section*{The Function Space}
- Let \(\left(\mathscr{X}, \mathscr{X}^{\Omega}\right)\) and \(\left(\mathscr{F}, \mathscr{X}^{\Omega}\right)\) two quasi-measurable spaces. We put:
- \(\mathscr{X}^{\mathscr{E}}:=\operatorname{QMS}\left(\left(\mathscr{X}, \mathscr{Z}^{\Omega}\right),\left(\mathscr{X}, \mathscr{X}^{\Omega}\right)\right)\)
- \(\left(\mathscr{X}^{\mathscr{X}}\right)^{\Omega}:=\left\{X: \Omega \rightarrow \mathscr{X}^{\mathscr{Z}} \mid((\omega, z) \mapsto X(\omega)(z)) \in \operatorname{QMS}(\Omega \times \mathscr{Z}, \mathscr{X})\right\}\)
- function-valued random variables are defined via the product structure
- Then \(\left(\mathscr{X}^{\mathscr{E}},\left(X^{\mathscr{E}}\right)^{\Omega}\right)\) is a quasi-measurable space.
- Note that such a construction was not possible for measurable spaces!!!

\section*{Currying, Uncurrying and the Evaluation Map}
- Let \(\left(\mathscr{X}, \mathscr{X}^{\Omega}\right),\left(\mathscr{Y}, \mathscr{Y}^{\Omega}\right)\) and \(\left(\mathscr{X}, \mathscr{Z}^{\Omega}\right)\) be quasi-measurable spaces.
- We can then curry and uncurry:
- \(\operatorname{QMS}(\mathscr{Z} \times \mathscr{Y}, \mathscr{X}) \cong \operatorname{QMS}\left(\mathscr{Y}, \mathscr{X}^{\mathscr{E}}\right)=\operatorname{QMS}(\mathscr{Y}, \operatorname{QMS}(\mathscr{Z}, \mathscr{X}))\)
- In particular, the evaluation map is quasi-measurable:
- ev : \(X^{\mathscr{E}} \times \mathscr{Z} \rightarrow \mathcal{X}, \quad \operatorname{ev}(g, z):=g(z)\).
- Note that this was not possible in Meas for measurable spaces!!!

\section*{More Category-theoretical Constructions}
- Similary, we can define the following in QMS:
- coproducts, equalizers, coequalizers, thus:
- all small limits and all small colimits
- even more, we get in QMS:
- fibre products: \(X \times_{\mathcal{S}} \mathscr{Y} \rightarrow \mathcal{S}\),
- internal homs: \(\mathbb{Q}_{\delta}(\mathscr{X}, \mathscr{Y}) \rightarrow \mathcal{S}\)
- \(\left.\operatorname{QMS}_{\delta}\left(\mathscr{X} \times_{\mathcal{S}} \mathscr{Y}, \mathscr{X}\right)=\operatorname{QMS}_{\delta}(X) \mathscr{Q}_{\delta}(\mathscr{Y}, \mathscr{X})\right)\).
- Note that the latter was not possible in Meas for measurable spaces!!!

\section*{Main Theorems}
- Theorem: The category of quasi-measurable spaces QMS forms a quasitopos, and, is in particular, locally cartesian closed.
- Remark: This means that, besides simply typed \(\lambda\)-calculus, we get a dependent type theory for QMS. Roughly speaking, this means that we can model programs that can vary the output type/space dependent on the input. This makes it easy to implement all result obtained inside QMS in a theorem prover like Lean, Agda or Coq, etc.
- Theorem: The category of quasi-measurable spaces QMS forms a Heyting category.
- Remark: QMS has thus an internal logic of a (typed) intuitionistic first-order logic.
- Remark: Note that most of this is not true for the category of measurable spaces Meas!!!

\section*{Definition - Quasitopos}
- A quasitopos is a category that:
- has all finite limits,
- has all finite colimits,
- is locally cartesian closed,
- has a subobject classifier for strong monomorphisms.

\footnotetext{
- Peter T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium. Oxford University Press, 2002.
}

\section*{The Sample Space - Act 2 - The \(\sigma\)-Algebra}
- We now endow the Sample Space \(\left(\Omega, \Omega^{\Omega}\right)\) with an additional \(\sigma\)-algebra \(\mathscr{B}_{\Omega}\) such that:
\[
\text { - } \Omega^{\Omega} \subseteq \operatorname{Meas}\left(\left(\Omega, \mathscr{B}_{\Omega}\right),\left(\Omega, \mathscr{B}_{\Omega}\right)\right)
\]
- The Sample Space is now the triple: \(\left(\Omega, \Omega^{\Omega}, \mathscr{B}_{\Omega}\right)\).
- Standard example:
- \(\Omega^{\Omega}=\operatorname{Meas}\left(\left(\Omega, \mathscr{B}_{\Omega}\right),\left(\Omega, \mathscr{B}_{\Omega}\right)\right)\)

\section*{Topological and Measurable Spaces as Quasi-Measurable Spaces}
- If \(\left(\mathscr{X}, \mathscr{E}_{X}\right)\) is a measurable space or a topological space, etc., then we can turn this into a quasi-measurable space via allowing for the following random variables:
- \(\mathscr{X}^{\Omega}:=\mathscr{F}\left(\mathscr{E}_{X}\right):=\left\{X: \Omega \rightarrow X \mid \forall A \in \mathscr{E}_{X} \cdot X^{-1}(A) \in \mathscr{B}_{\Omega}\right\}\)
- Note that the later introduced \(\sigma\)-algebra \(\mathscr{B}_{X}\) might be strictly bigger than the one we started with to turn \(\left(\mathscr{X}, \mathscr{E}_{\mathscr{X}}\right)\) into quasi-measurable space \(\left(\mathscr{X}, \mathscr{X}^{\Omega}\right)\) :
- \(\mathscr{E}_{X} \subsetneq \mathscr{B}_{X}:=\mathscr{B}\left(\mathscr{X}^{\Omega}\right)\)

\section*{The \(\sigma\)-Algebra}
- Let \(\left(X, X^{\Omega}\right)\) be a quasi-measurable space.
- Then the induced \(\sigma\)-algebra is:
- \(\mathscr{B}_{X}:=\left\{A \subseteq \mathscr{X} \mid \forall X \in \mathscr{X}^{\Omega} \cdot X^{-1}(A) \in \mathscr{B}_{\Omega}\right\}\)
- We can then define the set of admissible random variables with values in \(\mathscr{B}_{\mathscr{X}}\) via:
- \(\left(\mathscr{B}_{X}\right)^{\Omega}:=\left\{\Psi: \Omega \rightarrow \mathscr{B}_{X} \mid \exists D \in \mathscr{B}_{\Omega \times \mathscr{X}} \forall \omega \in \Omega . \Psi(\omega)=D_{\omega}\right\} \cong \mathscr{B}_{\Omega \times \mathscr{X}}\)
- where \(D_{\omega}:=\{x \in \mathscr{X} \mid(\omega, x) \in D\}\)
- Then \(\left(\mathscr{B}_{x},\left(\mathscr{B}_{x}\right)^{\Omega}\right)\) is a quasi-measurable space.
- Note that this was not possible in the category of measurable spaces!!!

\section*{Theorem - The Adjunction}
- A map \(g: X \rightarrow \mathscr{Y}\) from a quasi-measurable space \(\left(X, X^{\Omega}\right)\) to a measurable space \(\left(\mathscr{Y}, \mathscr{B}_{\mathscr{Y}}\right)\) is
- measurable if and only if it is quasi-measurable,
- provided we use the corresponding choices:
\[
\begin{aligned}
\text { - } \mathscr{B}_{X}:=\mathscr{B}\left(\mathscr{X}^{\Omega}\right):=\left\{A \subseteq \mathscr{X} \mid \forall X \in \mathscr{X}^{\Omega} \cdot X^{-1}(A) \in \mathscr{B}_{\Omega}\right\}, \\
\text { - } \mathscr{Y}^{\Omega}:=\mathscr{F}\left(\mathscr{B}_{\mathscr{Y}}\right):=\left\{Y: \Omega \rightarrow \mathscr{Y} \mid \forall B \in \mathscr{B}_{\mathscr{Y}} \cdot Y^{-1}(B) \in \mathscr{B}_{\Omega}\right\} .
\end{aligned}
\]
- In other words, we have the natural identification of sets of maps:
- Meas \(\left(\left(\mathscr{X}, \mathscr{B}\left(\mathscr{X}^{\Omega}\right)\right),\left(\mathscr{Y}, \mathscr{B}_{\mathscr{Y}}\right)\right)=\operatorname{QMS}\left(\left(\mathscr{X}, \mathscr{X}^{\Omega}\right),\left(\mathscr{Y}, \mathscr{F}\left(\mathscr{B}_{\mathscr{Y}}\right)\right)\right)\).

\section*{The Sample Space - Act 3 - Probability Measures}
- We now endow the Sample Space \(\left(\Omega, \Omega^{\Omega}, \mathscr{B}_{\Omega}\right)\) with some additional set of product compatible probability measures \(\mathscr{P}\) on \(\mathscr{B}_{\Omega}\), i.e. such that:
- for all \(P \in \mathscr{P}\) and \(D \in \mathscr{B}_{\Omega \times \Omega}\) the map:
\(-\Omega \rightarrow[0,1], \quad \omega \mapsto P\left(D^{\omega}\right), \quad\) is (quasi-)measurable,
\[
\text { - where } D^{\omega}:=\{\tilde{\omega} \in \Omega \mid(\tilde{\omega}, \omega) \in D\},
\]
- for all \(P_{1}, P_{2} \in \mathscr{P}\) there exist \(\Phi_{1}, \Phi_{2} \in \Omega^{\Omega}\) and \(P \in \mathscr{P}\) such that:
- \(P_{1} \otimes P_{2}=P\left(\Phi_{1}, \Phi_{2}\right)\) on \(\mathscr{B}_{\Omega \times \Omega}\),
i.e. for all \(D \in \mathscr{B}_{\Omega \times \Omega}\) we have:
- \(\left(P_{1} \otimes P_{2}\right)(D):=\int P_{1}\left(D^{\omega}\right) P_{2}(d \omega)=P\left(\left\{\omega \in \Omega \mid\left(\Phi_{1}(\omega), \Phi_{2}(\omega)\right) \in D\right\}\right)\).
- The Sample Space is now the quadruple: \(\left(\Omega, \Omega^{\Omega}, \mathscr{B}_{\Omega}, \mathscr{P}\right)\).

\section*{The Space of Push-forward Probability Measures}
- Let \(\left(X, X^{\Omega}\right)\) be a quasi-measurable space. Define:
- \(\mathscr{P}(\mathcal{X}):=\mathscr{P}\left(\mathscr{X}, \mathscr{X}^{\Omega}\right):=\left\{P(X): \mathscr{B}_{\mathscr{X}} \rightarrow[0,1] \mid X \in \mathscr{X}^{\Omega}, P \in \mathscr{P}\right\}\)
- \(\mathscr{P}(\mathscr{X})^{\Omega}:=\mathscr{P}\left(X, \mathscr{X}^{\Omega}\right)^{\Omega}:=\left\{P(X \mid I) \mid X \in\left(\mathscr{X}^{\Omega}\right)^{\Omega}, P \in \mathscr{P}\right\}\)
- \(P(X \in A \mid I=\omega):=P(\{\tilde{\omega} \in \Omega \mid X(\omega)(\tilde{\omega}) \in A\})\) for \(A \in \mathscr{B}_{\mathscr{X}}\)
- Lemma: \(\left(\mathscr{P}(\mathscr{X}), \mathscr{P}(\mathscr{X})^{\Omega}\right)\) is also a quasi-measurable space.

\section*{The Spaces of Markov Kernels and Random Functions}
- Let \(\left(\mathscr{X}, \mathscr{X}^{\Omega}\right)\) and \(\left(\mathscr{X}, \mathscr{Z}^{\Omega}\right)\) be quasi-measurable spaces.
- Then the space of Markov kernels from \(\left(\mathscr{Z}, \mathscr{Z}^{\Omega}\right)\) to \(\left(\mathscr{X}, \mathscr{X}^{\Omega}\right)\) :
- \(\mathscr{P}(\mathscr{X})^{\mathscr{L}}=\operatorname{QMS}\left(\left(\mathscr{X}, \mathscr{Z}^{\Omega}\right),\left(\mathscr{P}(\mathscr{X}), \mathscr{P}(\mathscr{X})^{\Omega}\right)\right)\)
- is again a quasi-measurable space.
- Also the space of probability distribution over functions:
- \(\mathscr{P}\left(X^{\mathscr{E}}\right)\) is again a quasi-measurable space.
- Note that these construction were not possible in the category of measurable spaces!!!

\section*{Some surprising Lemmata}
- Let \(\left(X, X^{\Omega}\right)\) and \(\left(\mathscr{Y}, \mathscr{Y}^{\Omega}\right)\) be quasi-measurable spaces.
- Then the following maps are all quasi-measurable:
- \(\mathscr{Y}^{\mathscr{X}} \times \mathscr{B}_{\mathscr{Y}} \rightarrow \mathscr{B}_{\mathscr{X}}, \quad(f, B) \mapsto f^{-1}(B)\).
- \(\mathscr{P}(\mathscr{X}) \times \mathscr{B}_{\mathscr{X}} \rightarrow[0,1], \quad(P, A) \mapsto P(A)\).
- \(\mathscr{Y}^{\mathscr{X}} \times \mathscr{P}(\mathscr{X}) \rightarrow \mathscr{P}(\mathscr{Y}), \quad(f, P) \mapsto f_{*} P\).
- \([0, \infty]^{X} \times \mathscr{P}(\mathscr{X}) \rightarrow[0, \infty], \quad(h, P) \mapsto \int h(x) P(d x)\).
- Note that such statements were not known or even possible in the category of measurable spaces!!!

\section*{Theorem: The Product of Markov Kernels}
- Assume that there exists an isomorphism of quasi-measurable spaces:
- \(\Omega \times \Omega \cong \Omega\).
- Then for all quasi-measurable spaces \(\left(\mathscr{X}, \mathscr{X}^{\Omega}\right),\left(\mathscr{Y}, \mathscr{Y}^{\Omega}\right),\left(\mathscr{L}, \mathscr{E}^{\Omega}\right)\) the product of Markov kernels:
- \(\otimes: \mathscr{P}(\mathscr{X})^{\mathscr{Y} \times \mathscr{E}} \times \mathscr{P}(\mathscr{Y})^{\mathscr{L}} \rightarrow \mathscr{P}(\mathscr{X} \times \mathscr{Y})^{\mathscr{E}}\)
\((P(X \mid Y, Z) \otimes Q(Y \mid Z))(D \mid z):=\int P\left(X \in D^{y} \mid Y=y, Z=z\right) Q(Y \in d y \mid Z=z)\)
- is a well-defined quasi-measurable map.

\section*{Theorem: Strong Probability Monad}
- If \(\Omega \times \Omega \cong \Omega\) then the triple ( \(\mathscr{P}, \delta, \mathbb{M}\) ) is a strong probability monad on the cartesian closed category QMS , where:
- \(\delta: \mathscr{X} \rightarrow \mathscr{P}(\mathscr{X})\),
\[
\delta_{x}(A):=\mathbb{1}_{A}(x),
\]
- \(\mathbb{M}: \mathscr{P}(\mathscr{P}(\mathscr{X})) \rightarrow \mathscr{P}(\mathscr{X})\),
\[
\mathbb{M}(\Pi)(A):=\int P(A) d \Pi(P)
\]
- This thus allows for a notion of computation of monadic type and simply typed \(\lambda\)-calculus.
- We thus get semantics for higher-order probability theory for probabilistic programming language.

\section*{Construction of well-behaved Sample Spaces}
- Theorem: Let \(\Omega_{0}\) be a set, and:
- \(\mathscr{E}_{0}\) a countable set of subsets of \(\Omega_{0}\) that separates the points of \(\Omega_{0}\).
- \(\Omega:=\prod_{n \in \mathbb{N}} \Omega_{0}, \quad\) and \(\mathscr{E}:=\left\{\operatorname{pr}_{n}^{-1}(A) \mid A \in \mathscr{E}_{0}, n \in \mathbb{N}\right\}\),
- \(\tilde{\mathscr{P}}:=\left\{P\right.\) complete perfect probability measure on \(\left.\Omega, \mathscr{E} \subseteq \mathscr{B}_{P}\right\}\),
- \(\mathscr{B}_{\Omega}:=\bigcap_{P \in \tilde{\mathscr{P}}} \mathscr{B}_{P}\), the perfect-universal completion of \(\mathscr{E}\),
- \(\Omega^{\Omega}:=\operatorname{Meas}\left(\left(\Omega, \mathscr{B}_{\Omega}\right),\left(\Omega, \mathscr{B}_{\Omega}\right)\right), \quad \mathscr{P}:=\left.\tilde{\mathscr{P}}\right|_{\mathscr{B}_{\Omega}}\)
- Then \(\left(\Omega, \Omega^{\Omega}, \mathscr{B}_{\Omega}, \mathscr{P}\right)\) satisfies all points of act 1-3 and \(\Omega \times \Omega \cong \Omega\).

\section*{Fubini Theorem}
- Let \(\left(\Omega, \Omega^{\Omega}, \mathscr{B}_{\Omega}, \mathscr{P}\right)\) be the sample space from the last slide.
- Let \(\left(\mathscr{X}, \mathscr{X}^{\Omega}\right)\) and \(\left(\mathscr{Y}, \mathscr{Y}^{\Omega}\right)\) be quasi-measurable spaces and:
- \(f \in[0, \infty]^{\mathscr{X} \times \mathscr{Y}}, \quad P \in \mathscr{P}(\mathscr{X})\) and \(Q \in \mathscr{P}(\mathscr{y})\).
- Then we have the equality:
\[
\iint f(x, y) P(d x) Q(d y)=\iint f(x, y) Q(d y) P(d x)
\]

\section*{The Sample Space - Act 4 - The Universal Hilbert Cube}
- \(\Omega=[0,1]^{\mathbb{N}}=\prod_{n \in \mathbb{N}}[0,1]\), the Hilbert Cube,
- \(\mathscr{B}_{\Omega}=\) set of all universally measurable subsets of \(\Omega\).
- Note that this is bigger than the Borel \(\sigma\)-algebra on \(\Omega\).
- \(\mathscr{P}=\) all probability measures on \(\mathscr{B}_{\Omega}, \quad \Omega^{\Omega}=\operatorname{Meas}\left(\left(\Omega, \mathscr{B}_{\Omega}\right),\left(\Omega, \mathscr{B}_{\Omega}\right)\right)\).
- We call this Sample Space \(\left(\Omega, \Omega^{\Omega}, \mathscr{B}_{\Omega}, \mathscr{P}\right)\) the Universal Hilbert Cube.
- Interpretation: Countably infinite sequence of uniformly distributed samples (e.g. from a (pseudo-)random number generator).
- Note that it satisfies act 1-3 and the iso: \(\Omega \times \Omega \cong \Omega\) (via "Hilbert's Hotel").

\section*{The Category of Quasi-Universal Spaces}
- Definition: A quasi-universal space \(\left(\mathscr{X}, \mathscr{X}^{\Omega}\right)\) is - per definition - just a quasi-measurable space where the sample space \(\Omega\) is the universal Hilbert cube.
- We abbreviate the category of quasi-universal spaces as QUS.

\section*{Countably Separated and Standard Quasi-Measurable Spaces}
- Definition: A quasi-measurable space \(\left(\mathscr{X}, \mathscr{X}^{\Omega}\right)\) is called:
- countably separated if there exists a countable subset \(\mathscr{E} \subseteq \mathscr{B}_{X}\) that separates the points of \(\mathscr{X}\).
- standard quasi-measurable space if there are quasi-measurable maps:
- \(l:\left(\mathcal{X}, \mathscr{X}^{\Omega}\right) \rightarrow\left(\Omega, \Omega^{\Omega}\right)\) and \(r:\left(\Omega, \Omega^{\Omega}\right) \rightarrow\left(\mathcal{X}, \mathscr{X}^{\Omega}\right)\) s.t.:
- \(r \circ l=\mathrm{id}_{X}\).

\section*{Theorem: Disintegration of Markov Kernels}
- Let \(\left(\mathscr{X}, \mathscr{X}^{\Omega}\right)\) and \(\left(\mathscr{Y}, \mathscr{Y}^{\Omega}\right)\) and \(\left(\mathscr{F}, \mathscr{L}^{\Omega}\right)\) be quasi-universal spaces.
- Let \(\left(\mathscr{Y}, \mathscr{Y}^{\Omega}\right)\) be countably separated. and:
- either \(\left(\mathscr{X}, \mathscr{X}^{\Omega}\right)\) or \(\left(\mathscr{Z}, \mathscr{Z}^{\Omega}\right)\) be a standard quasi-universal space.
- Then the product of Markov kernels:
- \(\otimes: \mathscr{P}(\mathscr{X})^{\mathscr{Y} \times \mathscr{E}} \times \mathscr{P}(\mathscr{Y})^{\mathscr{L}} \rightarrow \mathscr{P}(\mathscr{X} \times \mathscr{Y})^{\mathscr{L}}\)
- is a (surjective) quotient map of quasi-universal spaces.
- More concretely, for every \(P(X, Y \mid Z) \in \mathscr{P}(\mathscr{X} \times \mathscr{Y})^{\mathscr{E}}\) there exists \(P(X \mid Y, Z) \in \mathscr{P}(\mathscr{Y})^{\mathscr{Y} \times \mathscr{E}}\) such that: \(P(X, Y \mid Z)=P(X \mid Y, Z) \otimes P(Y \mid Z)\).

\section*{Conditional Kolmogorov Extension Theorem}
- Let \(\left(\mathscr{X}_{n}, \mathscr{X}_{n}^{\Omega}\right), n \in \mathbb{N}\), a sequence of standard quasi-universal spaces and \(\left(\mathscr{Z}, \mathscr{Z}^{\Omega}\right)\) be any quasi-universal space.
- Assume we have \(Q_{n}\left(X_{0: n} \mid Z\right) \in \mathscr{P}\left(\mathscr{X}_{0: n}\right)^{\mathscr{X}}\) such that for every \(n \in \mathbb{N}\) :
- \(\operatorname{pr}_{0: n, *} Q_{n+1}\left(X_{0: n+1} \mid Z\right)=Q_{n}\left(X_{0: n} \mid Z\right)\).
- Then there exists a unique \(Q\left(X_{\mathbb{N}} \mid Z\right) \in \mathscr{P}\left(\mathscr{X}_{\mathbb{N}}\right)^{\mathscr{L}}\) such that:
\[
\text { - } \operatorname{pr}_{0: n, *} Q\left(X_{0: n+1} \mid Z\right)=Q_{n}\left(X_{0: n} \mid Z\right) \quad \text { for all } n \in \mathbb{N},
\]
- where \(\mathscr{X}_{\mathbb{N}}:=\prod_{n \in \mathbb{N}} \mathscr{X}_{n}\).

\section*{Conditional De Finetti Theorem}
- \(\left(\mathscr{X}, \mathscr{X}^{\Omega}\right)\) standard quasi-universal spaces, \(\left(\mathscr{X}, \mathscr{Z}^{\Omega}\right)\) any quasi-universal space.
- For a Markov kernel \(Q\left(X_{\mathbb{N}} \mid Z\right) \in \mathscr{P}\left(X^{\mathbb{N}}\right)^{\mathscr{Z}}\) the following is equivalent:
- \(Q\left(X_{\mathbb{N}} \mid Z\right)\) is exchangable, i.e. invariant under all finite permuations: \(\rho: \mathbb{N} \cong \mathbb{N}\).
- There exists a quasi-universal space \(\mathscr{Y}\) and \(K(X \mid Y) \in \mathscr{P}(\mathscr{X})^{\mathscr{Y}}\) and \(P(Y \mid Z) \in \mathscr{P}(\mathscr{Y})^{\mathscr{L}}\) such that :
\[
Q\left(X_{\mathbb{N}} \mid Z\right)=\left(\bigotimes_{n \in \mathbb{N}} K\left(X_{n} \mid Y\right)\right) \circ P(Y \mid Z)
\]
- In this case we can w.l.o.g. take: \(\mathscr{Y}=\mathscr{P}(\mathscr{X})\) and \(K(X \in A \mid Y=P):=P(A)\).

\section*{Transitional Conditional Independence}
- Consider a Markov kernel: \(P(X, Y, Z \mid T) \in \mathscr{P}(\mathscr{X} \times \mathscr{Y} \times \mathscr{Z})^{\mathscr{T}}\).
- We say that \(X\) is conditional independent of \(Y\) given \(Z\) w.r.t. \(P(X, Y, Z \mid T)\),
- in symbols: \(\quad X \Perp Y \mid Z \quad\) if:
- there exists a Markov kernel \(Q(X \mid Z) \in \mathscr{P}(X)^{\mathscr{E}}\) such that:
- \(P(X, Y, Z \mid T)=Q(X \mid Z) \otimes P(Y, Z \mid T)\).

\section*{Partially Generic Causal Bayesian Networks}
- A partially generic causal Baysian network - per definition - consists of:
- a conditional directed acyclic graph (CDAG): \(G=(J, V, E)\),
- an input variable \(X_{j}\) on a quasi-universal space \(X_{j}\) for each \(j \in J\),
- an output variable \(X_{v}\) on a standard quasi-universal space \(X_{\nu}\) for each \(v \in V\),
- an exceptional set: \(W \subseteq V\),


\section*{Partially Generic Causal Bayesian Networks}
- For a partially generic causal Baysian network with exceptional set \(W\) we introduce for \(w \in W\) :
- an indicator variable: \(I_{w} \rightarrow w\),
- a quasi-universal space: \(\mathscr{X}_{I_{w}}:=\mathscr{P}\left(X_{w}\right)^{\mathscr{X}_{\mathrm{P} a} G_{(w)}}\),
- a "generic" Markov kernel:
- \(P_{w}\left(X_{w} \in A \mid X_{\mathrm{Pa}^{G}(w)}=x, X_{I_{w}}=Q\right):=Q\left(X_{w} \in A \mid X_{\mathrm{Pa}^{G}(w)}=x\right)\).
- So we get a joint Markov kernel: \(P\left(X_{V}, X_{J}, X_{I_{W}} \mid X_{J}, X_{I_{W}}\right)\).

\section*{Theorem: Global Markov Property}
- For every partially generic causal Bayesian network with exceptional set \(W\) and any subsets: \(A, B, C \subseteq V \cup I_{W} \cup J\) we have the implication:
- \(A \perp B\left|C \Longrightarrow X_{A} \Perp X_{B}\right| X_{C}\).

\section*{(Proposed) Answers}

\section*{Answers - Stochastic Process}
- Definition: A stochastic process is a quasi-measurable map:
- \(X: \Omega \rightarrow X^{\mathscr{T}}, \quad \omega \mapsto(t \mapsto X(\omega)(t))\).
- Lemma: This is equivalent to a quasi-measurable map: \(X: \Omega \times \mathscr{T} \rightarrow \mathcal{X}, \quad(\omega, t) \mapsto X(\omega, t)\).
- Lemma: The map: \(\mathscr{X}^{\mathscr{T}} \rightarrow \prod_{t \in \mathscr{T}} X, \quad X \mapsto(X(t))_{t \in \mathscr{T}} \quad\) is quasi-measurable.
- Lemma: If \(T: \Omega \rightarrow \mathscr{T}\) is quasi-measurable (random time) then the map:
- \(\Omega \rightarrow X, \omega \mapsto X(\omega)(T(\omega))\) is again quasi-measurable.

\section*{Answers - Probabilistic Programs}
- Definition: A probabilistic program with input \(x \in \mathscr{X}\) and output \(z \in \mathscr{Z}\) is quasimeasurable map: \(\mathscr{X} \rightarrow \mathscr{P}(\mathscr{X})\).
- Theorem: We have the natural curry / uncurry isomorphism:
- \(\operatorname{QMS}(\mathscr{X} \times \mathscr{Y}, \mathscr{P}(\mathscr{X})) \cong \operatorname{QMS}(\mathscr{X}, \operatorname{QMS}(\mathscr{Y}, \mathscr{P}(\mathscr{X})))\)
- Theorem: QMS is a quasitopos, thus allows for dependent type theory.
- Theorem: The triple ( \(\mathscr{P}, \delta, \mathbb{M}\) ) forms a strong probability monad on the category of quasi-measurable spaces QMS (for certain sample spaces, e.g. the universal Hilbert cube). Thus allows for higher-order probabilistic programs.
- Partially generic causal Bayesian networks can model graphical models with non-random input variables.
- Transitional conditional independence also works with non-random input variables.
- Theorem: Global Markov Property: For \(A, B, C \subseteq V \cup I_{W} \cup J\) we have:
- \(A \perp B\left|C \Longrightarrow X_{A} \Perp X_{B}\right| X_{C}\).
- Example: Here \(Q(Y \mid X)\) is a non-random input variable with values in \(\mathscr{L}:=\operatorname{QUS}(\mathscr{X}, \mathscr{P}(\mathscr{Y}))\)
- Then \(Y\) is determined by the new quasi-measurable mechanism:
- \(\mathscr{L} \times \mathscr{X} \rightarrow \mathscr{P}(\mathscr{Y}), \quad(Q(Y \mid X), x) \mapsto Q(Y \mid X=x)\).
- We can now read off the graph: \(\quad Z \Perp X, Q(Y \mid X), Q(X) \mid Y\).

\section*{Answers - Causal Assumptions}
- Model potential outcome as quasi-measurable map / random function:
- \(G: \Omega \rightarrow Y^{X}\)
- Potential outcome under treatment \(X=x\) then: \(Y_{x}:=G(x)\).
- Rephrase causal assumptions:
- Strong Ignorability: \(\quad X \Perp G \mid Z\),
- Consistency: \(\quad Y=G(X)\).
- Everything is well-defined and quasi-measurable.

\section*{Answers - Counterfactual Probabilities}
- Theorem: Disintegration of Markov kernels.
- Model potential outcome as: \(G \in\left(\mathscr{Y}^{\mathscr{X}}\right)^{\Omega}\)
- Assume that \(\mathscr{X}\) to countably separated quasi-universal space.
- Then via the disintegration theorem there exists conditional:
- \(P(G \mid X) \in \mathscr{P}(\mathscr{G})^{\mathscr{X}}\) such that \(P(G, X)=P(G \mid X) \otimes P(X)\).
- Evaluation maps and push-forwards are quasi-measurable, which implies:
- \(C\left(A \mid x, x^{\prime}\right):=P\left(G(x) \in A \mid X=x^{\prime}\right)\) defines:
- well-defined and quasi-measurable \(C \in \mathscr{P}(\mathscr{Y})^{\mathscr{X} \times \mathscr{X}}\)
- So, conditional counterfactual probabilities are well-defined and quasi-measurable.

\section*{Answers - Statistics and Probability Theory}
- For (standard) quasi-universal spaces we at least can do the following:
- Theorem: Disintegration of Markov kernels.
- Remark: This allows for Bayes' Rule and thus Bayesian Statistics.
- Theorem: Fubini Theorem.
- Theorem: Conditional de Finetti Theorem.
- Theorem: Kolmogorov Extension Theorem.
- Theorem: Global Markov Property for graphical models like partially generic causal Bayesian networks.

\section*{Recommendation}
- For probabilistic programming, graphical models, causality, statistics, etc.
- use for:
- sample space \(->\) the universal Hilbert cube
- replace:
- measurable spaces —> quasi-measurable spaces
- measurable maps —> quasi-measurable maps
- categorical construction in Meas —> categorical construction in QMS
- study more of the (classical) theory in this framework (e.g. martingales).

\section*{More about Convenient Categories}
- Probability Theory
- Quasi-Borel Spaces - by Chris Heunen, Ohad Kammar, Sam Staton, Hongseok Yang
- Quasi-Measurable Spaces - by Patrick Forré, https://arxiv.org/abs/2109.11631
- Topology
- Compactly Generated Weakly Hausdorff Spaces (CGWH) - by Witold Hurewicz, David Gale, Norman Steenrod, John C. Moore, Michael C. McCord, Neil Strickland, et al (script)
- Condensed Sets - by Peter Scholz, Dustin Clausen (script)
- Differential Geometry
- Diffeological Spaces - by Kuo Tsai Chen, Jean-Marie Souriau, Patrick Iglesias-Zemmour, John Baez, Alexander Hoffnung, Andrew Stacey, et al.

\section*{Thank you for your attention!}```


[^0]:    - Stan Wagon. The Banach Tarski Paradox. CUP 1985. https://demonstrations.wolfram.com/TheBanachTarskiParadox/

