
1

Reinforcement Learning:
State of the Art & Challenges

Frans A. Oliehoek
Dept. of Intelligent Systems

ML Bootcamp, 14-2-2023, CWI



2Frans A. Oliehoek - intro RL2023-02-14

Reinforcement Learning

● Who knows…
● what an MDP is?    
● what RL is?
● what DQN is?
● how DQN works?
● how MCTS works?
● how alpha Go works?
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Reinforcement Learning

● Who knows…
● what an MDP is?    
● what RL is?
● what DQN is?
● how DQN works?
● how MCTS works?
● how alpha Go works?

Let’s start with a glimpse...
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Breakout: DQN (2013)



5

Alpha Go – Deepmind (2016)
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Hide and Seek – OpenAI (2019)
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Glimpse of the State of the Art...
● “Deep RL”: Combination of RL techniques with deep neural 
networks

● Many recent results:
● Atari Breakout
● Go, Poker
● Dota 2 / Starcraft
● Simulated Robotics/Locomotion
● Hide and Seek
● Capture the flag
● Chip Design
● Summarizing books & ChatGPT
● ‘Generally capable agents’
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Vision: improving the world
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Vision: improving the world

These are all tasks of a sequential 
nature…

→ reinforcement learning can 
potentially make a big impact
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Outline for Today

● Teaser
● Foundations of RL
● Intuition behind 
state of the art

● Challenges**

**Disclaimer: I took many examples from my own research, but this is only a very small sample.
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Sequential Decision Making (SDM)

● Actions over multiple time steps

● SDM problems are complex...
● immediate vs long-term benefits
● deal with uncertainties 

(stochasticity, partial information)

● Manual programming is difficult
• Instead: “programming via rewards”
• planning / reinforcement learning
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Sequential Decision Making (SDM)

● Actions over multiple time steps

● SDM problems are complex...
● immediate vs long-term benefits
● deal with uncertainties 

(stochasticity, partial information)

● Manual programming is difficult
• Instead: “programming via rewards”
• planning / reinforcement learning
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Complex decisions over time
● Formalized as Markov decision process (MDP)

● states (s), actions (a), rewards (r)

● states are observed
● but transitions are stochastic: P(s’ | s, a)
● and rewards could be too: r ~ R(s,a)

● OK, so how to
• balance short-term vs long-term rewards
• taking into account the uncertainty

?

a

s '
s→s ' ,r
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Complex decisions over time
● Formalized as Markov decision process (MDP)

● states (s), actions (a), rewards (r)

● states are observed
● but transitions are stochastic: P(s’ | s, a)
● and rewards could be too: r ~ R(s,a)

● OK, so how to
• balance short-term vs long-term rewards
• taking into account the uncertainty

?

a

s '
s→s ' ,r
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MDP Objective
● Goal: optimize the ‘value’ of a policy π:

● i.e., expected (discounted) sum of rewards
  V(π) = E[ Σt  γt * R(s,a)  | π ]

● Task is planning: 
● compute a good/optimal policy π
● given the model (or a simulator)

● Typical approach: 
compute ‘optimal Q-value function’ Q*(s,a)
● expresses expected value given s,a
● Bellman optimality equation:

         Q*(s,a) = R(s,a)+γ Σs’ P(s’|s,a)V*(s’) 
• where 

V*(s) = maxa Q*(s,a)  

a

s '
s→ s ' , r
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MDP Objective
● Goal: optimize the ‘value’ of a policy π:

● i.e., expected (discounted) sum of rewards
  V(π) = E[ Σt  γt * R(s,a)  | π ]

● Task is planning: 
● compute a good/optimal policy π
● given the model (or a simulator)

● Typical approach: 
compute ‘optimal Q-value function’ Q*(s,a)
● expresses expected value given s,a
● Bellman optimality equation:

         Q*(s,a) = R(s,a)+γ Σs’ P(s’|s,a)V*(s’) 
• where 

V*(s) = maxa Q*(s,a)  

a

s '
s→ s ' , r
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Example: pick up the toolbox
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►Q*(s,a) = R(s,a)+γ Σs’ P(s’|s,a)V*(s’) 
►V*(s) = maxa Q*(s,a)  

Robot needs to go to toolbox, and pick it up.
→ reward: +1
→ let’s assume γ=0.9
→ and deterministic movement
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Example: pick up the toolbox
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if we were at square 
15...

“pickup”
→ R=+1

►Q*(s,a) = R(s,a)+γ Σs’ P(s’|s,a)V*(s’) 
►V*(s) = maxa Q*(s,a)  
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Example: pick up the toolbox
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if we were at square 
15...

Q*(s=15, a=pickup) = 1

“pickup”
→ R=+1

►Q*(s,a) = R(s,a)+γ Σs’ P(s’|s,a)V*(s’) 
►V*(s) = maxa Q*(s,a)  
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Example: pick up the toolbox
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if we were at square 
15...

Q*(s=15, a=pickup) = 1
V*(s=15) = 1

“pickup”
→ R=+1

►Q*(s,a) = R(s,a)+γ Σs’ P(s’|s,a)V*(s’) 
►V*(s) = maxa Q*(s,a)  
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Example: pick up the toolbox
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if we were at 14?

Q*(s=15, a=pickup) = 1
V*(s=15) = 1

►Q*(s,a) = R(s,a)+γ Σs’ P(s’|s,a)V*(s’) 
►V*(s) = maxa Q*(s,a)  

“right” → R=0
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Example: pick up the toolbox
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if we were at 14?

Q*(s=15, a=pickup) = 1
V*(s=15) = 1
Q*(s=14, a=right) = 0 + 0.9 * 1 = 0.9►Q*(s,a) = R(s,a)+γ Σs’ P(s’|s,a)V*(s’) 

►V*(s) = maxa Q*(s,a)  

“right” → R=0
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Example: pick up the toolbox
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if we were at 14?

Q*(s=15, a=pickup) = 1
V*(s=15) = 1
Q*(s=14, a=right) = 0 + 0.9 * 1 = 0.9
V*(s=14) = 0.9

►Q*(s,a) = R(s,a)+γ Σs’ P(s’|s,a)V*(s’) 
►V*(s) = maxa Q*(s,a)  

“right” → R=0
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Example: pick up the toolbox
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compute value of any 
location

Q*(s=15, a=pickup) = 1
V*(s=15) = 1
Q*(s=14, a=right) = 0 + 0.9 * 1 = 0.9
V*(s=14) = 0.9
…
...
Q*(s=1, a=right) = 0 + 0.9 * .53 = 0.48
V*(s=1) = 0.48

►Q*(s,a) = R(s,a)+γ Σs’ P(s’|s,a)V*(s’) 
►V*(s) = maxa Q*(s,a)  
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Example: pick up the toolbox
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compute value of any 
location

Q*(s=15, a=pickup) = 1
V*(s=15) = 1
Q*(s=14, a=right) = 0 + 0.9 * 1 = 0.9
V*(s=14) = 0.9
…
...
Q*(s=1, a=right) = 0 + 0.9 * .53 = 0.48
V*(s=1) = 0.48

►Q*(s,a) = R(s,a)+γ Σs’ P(s’|s,a)V*(s’) 
►V*(s) = maxa Q*(s,a)  

This (form of planning) is also called 
“dynamic programming”
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MDP Planning

● Given an MDP:

● S – set of states 
● A – set of actions 
● transition model: P(s'|s,a)
● rewards:  R(s,a)

● Goal: 
● compute a policy π
● that optimizes value V(π)

a

s '
s→s ' ,r
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a

s '
s→s ' ,r

MDP Planning 
Reinforcement Learning

● Given an MDP:

● S – set of states 
● A – set of actions 
● transition model: p(s'|s,a)
● rewards:  R(s,a)

● Goal: 
● compute learn a policy π
● that optimizes value V(π)
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a

s '
s→s ' ,r

MDP Planning 
Reinforcement Learning

● Given an MDP:

● S – set of states 
● A – set of actions 
● transition model: p(s'|s,a)
● rewards:  R(s,a)

● Goal: 
● compute learn a policy π
● that optimizes value V(π)

Reinforcement learning is a problem

(not a particular technique)



29Frans A. Oliehoek - intro RL2023-02-14

Example...

● You are in state 23
● what do you want to do? 

(A or B)

s23

?
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Example...

● You are in state 23
● what do you want to do? 

(A or B)
● +14

● You are now in state 12
● what do you want to do? 

(A or B)

s23 s12

r=+14
aA ?

s1~T(.|s0,a0)
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Example...

● You are in state 23
● what do you want to do? 

(A or B)
● +14

● You are now in state 12
● what do you want to do? 

(A or B)
● -30

● You are in state 23 again
● what do you want to do? 

(A or B)

s23 s12

r=+14
aA aB

s23

r=-30
?

s2~T(.|s1,a1)
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Foundations:
Q-Learning
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Q-learning

● Takes Bellman equations
→ turns into an update equation that learns 
    from sampled experience

█ After a transition (s,a,r,s’) we update
▷ Q(s,a) := (1-α) Q(s,a) +  α [ r + γ maxa’ Q(s’,a’) ]

█ Need to sufficiently explore the environment
▷ But then will converge to Q*

update target
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RL Nomenclature

Terminology in RL sometimes confusing…

● model available → ‘planning’
● small problems: exact planning (DP, VI, PI, etc.)
● large problems: simulation-based planning 

(aka approximate DP, neurodynamic programming, … etc.)

● model not available → ‘reinforcement learning’
● model-based RL: learns a model
● model-free RL: does not learn a model 
• value-based: directly learn value function
• policy search: directly learn policy 
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RL Nomenclature

Terminology in RL sometimes confusing…

● model available → ‘planning’
● small problems: exact planning (DP, VI, PI, etc.)
● large problems: simulation-based planning 

(aka approximate DP, neurodynamic programming, … etc.)

● model not available → ‘reinforcement learning’
● model-based RL: learns a model
● model-free RL: does not learn a model 
• value-based: directly learn value function
• policy search: directly learn policy 

Common confusion #1: mixing up these
►Of course: MBRL typically uses planning
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RL Nomenclature

Terminology in RL sometimes confusing…

● model available → ‘planning’
● small problems: exact planning (DP, VI, PI, etc.)
● large problems: simulation-based planning 

(aka approximate DP, neurodynamic programming, … etc.)

● model not available → ‘reinforcement learning’
● model-based RL: learns a model
● model-free RL: does not learn a model 
• value-based: directly learn value function
• policy search: directly learn policy 

Common confusion #2: mixing up these
►indeed, can use Q-learning for both!
►but: 
• in former we care about computational cost
• in latter we learn online: care about the rewards 

during learning (‘regret’)
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Foundations:
Monte-Carlo Tree Search
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Online Planning

● Pre-planning for all states
could be infeasible…

● 1 possible solution:
Interleave planning and execution

→ focuses computational effort
   on states reachable in near-future

a

s '∼P (.∣s , a)s ' , r
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<Intermezzo: Policy Representations>

● A policy π, in an MDP: 
states to actions π:S → A

● How represented? 
● Lookup table
● (More) computation
• e.g., neural network
• entire planning algorithm
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<Intermezzo: Policy Representations>

● A policy π, in an MDP: 
states to actions π:S → A

● How represented? 
● Lookup table
● (More) computation
• e.g., neural network
• entire planning algorithm

one perspective: 
►online planning is a (pre-specified) policy

Implication:
►learning to plan not fundamentally different than 

learning a policy with a different parametrization?
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Online Planning

● Pre-planning for all states
could be infeasible…

● 1 possible solution:
Interleave planning and execution

→ focuses computational effort
   on states reachable in near-future

a

s '∼P(.∣s ,a)s ' , r
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Online Planning

● Pre-planning for all states
could be infeasible…

● 1 possible solution:
Interleave planning and execution

→ focuses computational effort
   on states reachable in near-future

a

s '∼P(.∣s ,a)s ' , r

What planning methods?

Build a lookahead tree (“search”) 
►over which we can do dynamic programming
►E.g., chess
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Dynamic Programming

● Construct a plan for T time steps into the future

snow

sa sb

sa sb

sa sb

sa sb sa sb sa sbsa sb sa sb

...

a1 a2

a1 a1 a1a2 a2 a2a2
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Dynamic Programming

● Construct a plan for T time steps into the future

snow

sa sb

sa sb

sa sb

sa sb sa sb sa sbsa sb sa sb

...

a1 a2

a1 a1 a1a2 a2 a2a2

4 4 4 4 42 2 2 2 2

start from last 
time step

use heuristic to provide values, V(s), for the leaves
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Dynamic Programming

● Construct a plan for T time steps into the future

snow

sa sb

sa sb

sa sb

sa sb sa sb sa sbsa sb sa sb

...

a1 a2

a1 a1 a1a2 a2 a2a2

4 4 4 4 42 2 2 2 2

For each square:
→ what is expected 
reward?

Use the Bellman equation, we saw before:

Q(sa,a1)  = R(sa,a1)   +   P(sa'|sa,a1)V(sa')    +    P(sb'|sb,a1)V(sb')

                = 0          +              .8*4        +               .2*2  
                = 3.6 
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Dynamic Programming

● Construct a plan for T time steps into the future

snow

sa sb

sa sb

sa sb

sa sb sa sb sa sbsa sb sa sb

...

a1 a2

a1 a1 a1a2 a2 a2a2

4 4 4 4 42 2 2 2 2

3.6

For each square:
→ what is expected 
reward?
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Dynamic Programming

● Construct a plan for T time steps into the future

snow

sa sb

sa sb

sa sb

sa sb sa sb sa sbsa sb sa sb

...

a1 a2

a1 a1 a1a2 a2 a2a2

4 4 4 4 42 2 2 2 2

For each square:
→ what is expected 
reward?

3.6 3.5 2.5 3.0 3.6
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Dynamic Programming

● Construct a plan for T time steps into the future

snow

sa sb

sa sb

sa sb

sa sb sa sb sa sbsa sb sa sb

...

a1 a2

a1 a1 a1a2 a2 a2a2

4 4 4 4 42 2 2 2 2

So what action do 
we pick?

3.6 3.5 2.5 3.0 3.6
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Dynamic Programming

● Construct a plan for T time steps into the future

snow

sa sb

sa sb

sa sb

sa sb sa sb sa sbsa sb sa sb

...

a1 a2

a1 a1 a1a2 a2 a2a2

4 4 4 4 42 2 2 2 2

So what action do 
we pick?

3.6 3.5 2.5 3.0 3.6

3.6
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Dynamic Programming

● Construct a plan for T time steps into the future

snow

sa sb

sa sb

sa sb

sa sb sa sb sa sbsa sb sa sb

...

a1 a2

a1 a1 a1a2 a2 a2a2

4 4 4 4 42 2 2 2 2

et cetera

3.6 3.5 2.5 3.0 3.6

3.6

3.4

3.4
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Dynamic Programming

● Construct a plan for T time steps into the future

snow

sa sb

sa sb

sa sb

sa sb sa sb sa sbsa sb sa sb

...

a1 a2

a1 a1 a1a2 a2 a2a2

4 4 4 4 42 2 2 2 2

→ Take action a1 now
→ repeat next time step

3.6 3.5 2.5 3.0

3.6

3.4

3.4
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Monte Carlo Tree Search (MCTS)

● Problem: trees get huge...!

● MCTS provides leverage by:
● incrementally constructing a 

sampled version of the tree
● focusing on promising regions a

s ' , r
planning 
simulator
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MCTS – Example

snowa1 a2starting 
with only a 
root node
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MCTS – Example

snowa1 a2

sb

a1 a2

R(snow,a1,sb)=+4

r=+10

use 
'rollout policy'

do a first simulation:
→ adds 1 child node

Rollout policy:
- possibly till end of problem
- rewards used to update statistics   
  in tree
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MCTS – Example

snowa1 a2

sb

a1 a2

se

a1 a2

R(snow,a2,se)= -2

r=+6

another simulation:
→ adds 1 child node
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MCTS – Example

snowa1 a2

1, {+10}

sb

a1 a2

1, {+8}

2, {+14,+9} 1, {+4}

1, {+6}

se

a1 a20, {}

sc

1, {+7}

se

a1 a20, {} stored statistics are 
used to direct the 
search to promising 
regions
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Rollout Policies

● Another important component: which rollout policy?
● In theory: as long as it gives positive probability to any action
● In practice: huge effect → use domain knowledge.

● Perspective: MCTS as a policy improvement operator
● given a policy, MCTS improves it 

by applying additional search
● How AlphaGo improves its policies...
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MCTS Pros/Cons

● Pros:
● rapidly zooms in on promising regions
● can be used to improve policies
● basis of many successful application

● Limitations:
● needle in the hay-stack problems
● problems with high branching factor
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Foundations: Summary
● MDPs formalize decision making in stochastic environment

● Model available → planning
● Model not available → reinforcement learning (RL)

● RL is a problem
● Q-learning is one of the most popular techniques

● For complex problems: 
● representing a policy as a table not feasible
● online planning can help

● Given infinite computation: 
● dynamic programming on tree of trajectories

● Monte Carlo tree search (MCTS):
● avoid creating the entire tree; focus on promising parts
● by selecting actions in a smart way
● use domain knowledge via rollout policies
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Outline for Today

● Teaser
● Foundations of RL
●Intuition behind 
state of the art
● DQN
● AlphaGo

● Challenges

Homage to Newton by Salvador Dali
(Photo by Marcus Lim. CC-BY-SA-3.0)
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Deep RL:
Deep Q-Networks (DQN)
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Deep RL: Scaling up via deep learning

● Methods covered so far are tabular
● Q(s,a) values for each (s,a) in a table

● But MDPs are huge…! 
(e.g., number of possible screens in Atari?)

● use function approximation
to scale up!
● e.g., represent Q(s,a) with 

a deep neural network

map from 
‘state 
features’

to values for 
each action
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Deep Q-Networks

● Prototypical example: DQN [Mnih et al. 2015]
● does precisely this:

● Q-network: 84x84 image  → 'action values'
● Train with Q-learning

● only: Q-learning with neural networks might diverge...
Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." Nature 518.7540 (2015): 529.
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Tricks for Convergence
● So need to stabilize…

● DQN uses a number
of techniques:
● experience replay
● ‘target network’
● gradient clipping

● together, they lead to sufficient 
stability 
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Deep RL:
Alpha-Go
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AlphaGo

● Combines neural networks and MCTS

● Main challenges: 

● many actions 
→ learn a policy network

● deep trees, long rollouts 
→ value network
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AlphaGo

● Combines neural networks and MCTS

● Main challenges: 

● many actions 
→ learn a policy network

● deep trees, long rollouts 
→ value network
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snowa1 a2

sb

a1 a2

se

a1 a2

r=+6

AlphaGo
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snowP(a1) P(a2)

sb

P(a1) P(a2)

se

P P

NN predicts
p,v=fθ(se)

AlphaGo
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snowP(a1) P(a2)

sb

P(a1) P(a2)

se

P P

NN predicts
p,v=fθ(se)

prior 
probabilities 

to initialize
node

value 
prediction for 

updating 
Q-estimates

AlphaGo
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snowP(a1) P(a2)

sb

P(a1) P(a2)

se

P P

NN predicts
p,v=fθ(se)

prior 
probabilities 

to initialize
node

value 
prediction for 

updating 
Q-estimates

AlphaGo

Where does the neural network 
come from?

►initialized from human data

►self-play:
learned from games played 
against itself
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Outline for Today

● Teaser
● Foundations of RL
● Intuition behind state of the art
● Challenges

● sample complexity
● learning models
● partial observability
● scaling & need for abstraction
● multiagent systems
● generalization 
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Sample Complexity



74Frans A. Oliehoek - intro RL2023-02-14

Deep RL methods are data hungry

● Atari: DQN was using 
50 million frames** per game
(38 days of play by a human) 

● Dota 2 ***: 
1–3M steps per batch
estimated 9.7 trillion steps

● XLand 
● `fine tuning’ --- 100M steps
● training of last (5th) 

generation
> 100 billion steps

** training used ‘frame skipping’ so 200M frames from environment needed
*** also ‘frameskipping’ so almost x4 frames from environment

● 1-7 days on 1 GPU

● 10 months 
80k—173k CPUs: 7.5 steps/s
1000s of GPUs

● 8 TPUv3s
● 30mins
● 23 days
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Ideas for improving sample efficiency

● Use models… (later)

● Store as much as data as we can!
● E.g., Replay memory 
● “Do we need a parametric model?”

[Van Hasselt et al. 2019 NeurIPS]

● Data augmentation: exploit invariance

● Exploit symmetries...
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1 Idea: Exploiting Symmetries

● Many RL problems exhibit symmetries
● Symmetric (s, a) pairs 

should have the same policy

● Idea:
→ put constraints on network weights
→ enables more efficient learning

● MDP homomorphic networks 
for data-efficient RL
● use a `symmetrizer’ to construct equivariant weights
→ Fewer interactions with the world needed!

[van der Pol, Worrall, van Hoof, Oliehoek & Welling, NeurIPS, 2020] reward in Pong 
(as function of steps)
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Learning Models



79Frans A. Oliehoek - intro RL2023-02-14

Learning models

● If we can a learn model of the environment
→ can generate new training data
→ and/or directly use in (online) planning (e.g. Alpha Go)

● In small problems, sure! Learn tables for
● empirical transition probabilities
● empirical rewards

● But when learning 
from sensor data…?

‘world models’ 
[Ha&Schmidhuber’18 NeurIPS]



80Frans A. Oliehoek - intro RL2023-02-14

Constraints on the Latent Space

● Much recent work: learn latent representation
(Deep MDP, Word Models, MuZero, etc. etc.)

● But also proved to be difficult...
→ need appropriate constraints!
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Constraints on the Latent Space

● Much recent work: learn latent representation
(Deep MDP, Word Models, MuZero, etc. etc.)

● But also proved to be difficult...
→ need appropriate constraints!

Abstract MDP. Nodes: abstract states, edges: abstract transitions, color: predicted value.

[van der Pol, Kipf, Oliehoek & Welling, AAMAS, 2020]
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Put constraints on the Latent Space

● Much recent work: learn latent representation**
→ But need appropriate constraints!

Abstract MDP. Nodes: abstract states, edges: abstract transitions, color: predicted value.

How?

►“MDP homomorpism metrics”
• latent states need to predict the reward well
• latent states need to predict the transitions well

►Enforce consistency 
(with ‘contrastive learning’)

The models support planning
►discretize
►apply standard planning (value iteration)
►much better sample complexity

[van der Pol, Kipf, Oliehoek & Welling, AAMAS, 2020]
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Efficient-Zero [Ye e.a. 2021 NeurIPS]

● MuZero: version of AlphaGo 
that learns a model

● Efficient-Zero improves 
sample complexity
● 3 modifications
● most impact: enforce the temporal 

consistency of the latent transition 
model

● Outperforms humans with just 2h of 
‘play-time’ per game.
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Partial Observability
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Partially observable RL (PORL)

● Rare for agent to see the Markov state
→ more often: just an observation

● But… also difficult… let’s give it a try...
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● your action: A1, A2, or A3?   → A3
● you observed: -100, O1
● your action: A1, A2, or A3?    → A1
● you observed:     -1, O2
● your action: A1, A2, or A3?    → A1
● you observed:     -1, O2
● your action: A1, A2, or A3?    → A2
● you observed:  +10, O1
● your action: A1, A2, or A3?    → A2
● you observed: -100, O1

Example

Fun, eh...?

null

A3

s0
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● your action: A1, A2, or A3?    → A2
● you observed:  +10, O1
● your action: A1, A2, or A3?    → A2
● you observed: -100, O1

Example

Fun, eh...?

null O1

-100
A3 ?

s0 s1
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-1
A1

s0 s1 s3
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● your action: A1, A2, or A3?   → A3
● you observed: -100, O1
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=OpenRight
=HearLeft
=Listen
=HearRight
=Listen
=HearRight
=OpenLeft
=HearLeft
=OpenLeft
=...

Example
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● your action: A1, A2, or A3?   → A3
● you observed: -100, O1
● your action: A1, A2, or A3?    → A1
● you observed:     -1, O2
● your action: A1, A2, or A3?    → A1
● you observed:     -1, O2
● your action: A1, A2, or A3?    → A2
● you observed:  +10, O1
● your action: A1, A2, or A3?    → A2
● you observed: -100, O1

=OpenRight
=HearLeft
=Listen
=HearRight
=Listen
=HearRight
=OpenLeft
=HearLeft
=OpenLeft
=...

Key points:
● very hard problem
● but can get a lot of of 

prior knowledge

Example
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Approaches to PORL

● Use prior knowledge 
→ Bayesian RL: maintains
    belief over possible models
● hard – even in tabular settings!
● But there is progress

[Katt e.a. 2019 AAMAS, Katt e.a. 2017 ICML]

● Other approaches: 
● use recurrent neural networks or other deep 

learning 
[Schmidhuber et al since 1990s]

● e.g., hierarchical LSTM for 
capture the flag [Jaderberg e.a. 2019 Science]

b(s ,T ,O)

Knows:
〈S , A ,? ,O ,? , R 〉

Bayesian 
PORL
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Scalability & 
(more explicit forms of) Abstraction
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Only deep learning is not enough

● Max. 2 intersections – even with 168x168 images   (in 2016)

v

...

Problems: 
►inherent limitations on size of neural networks  (e.g., GPU memory)
►training time prohibitive
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So how would we...

● Process information of an entire city?
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● Alternative: reason only about a small part of the problem

The Intuition behind Abstraction

2

3

5

1

4
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The Intuition behind Abstraction

● Alternative: reason only about a small part of the problem

2

3

5

1

4

1

4
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How to do Abstraction?

● Can we reason over part 
of the system?

● INFLUENCE project:
● Consider from perspective 

of local problem
● Exploit accurate 

representations of 
influence?

“Well certainly not for all systems… 
they could be arbitrarily coupled…?”
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Abstraction

● Number of states s is huge…
● Use an abstraction function φ(s)

● Given an MDP: 
construct an abstract MDP

T(φ’|φ,a) = Σs’ ∈ φ’ Σs ∈ φ T(s’|s,a) ωφ(s)

● For each abstract state φ, weighting function ωφ(s) specifies the 
assumed state probabilities (link POMDPs)

● Similar for rewards

● Under some assumptions (‘ε-model similarity abstraction’): value 
loss bounded.
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Combining RL and Abstraction

● When the MDP is not known…
→ learn about abstract states directly?

● E.g., directly learn T(φ’|φ,a), R(φ,a)
using model-based RL?

● Sure… 
...but guarantees for MBRL method may not hold!
● These proofs are typically based on independence of samples
● In some cases it is possible to fix by resorting to Martingale bounds 

Starre et al. 2022 arxiv “An Analysis of Abstracted Model-Based Reinforcement Learning”
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Abstraction

● Number of states s is huge…
● Use an abstraction function φ(s)

● Given an MDP: 
construct an abstract MDP

T(φ’|φ,a) = Σs’ ∈ φ’ Σs ∈ φ T(s’|s,a) ωφ(s)

● For each abstract state φ, weighting function ωφ(s) specifies the 
assumed state probabilities (link POMDPs)

● Similar for rewards

● Under some assumptions (‘ε-model similarity abstraction’): value 
loss bounded.

Also…

these assumptions are rather strict…
→ typically do not hold when abstracting 
away entire state variables...
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How to do Abstraction?

● Can we reason over part 
of the system?

● INFLUENCE project:
● Consider from perspective 

of local problem
● Exploit accurate 

representations of 
influence?

“Well certainly not for all systems… 
they could be arbitrarily coupled…?”

https://www.fransoliehoek.net/wp/2022/02/03/a-blog-about-influence/

https://www.fransoliehoek.net/wp/2022/02/03/a-blog-about-influence/
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INFLUENCE results
● Exploring

“Approximate influence points”

● allows for decoupling local problem
from rest of system
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INFLUENCE results
● Exploring

“Approximate influence points”

● allows for decoupling local problem
from rest of system

how to learn? 
→ ‘normal’ CE loss

Elena Congeduti, Alexander Mey, and Frans A. Oliehoek. Loss 
Bounds for Approximate Influence-Based Abstraction. AAMAS’21
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INFLUENCE results
● Exploring

“Approximate influence points”

● allows for decoupling local problem
from rest of system

how to learn? 
→ ‘normal’ CE loss

Elena Congeduti, Alexander Mey, and Frans A. Oliehoek. Loss 
Bounds for Approximate Influence-Based Abstraction. AAMAS’21

how to use in MCTS? 
→ construct a ‘local simulator’

Jinke He, Miguel Suau, and Frans A. Oliehoek. 
Influence-Augmented Online Planning for Complex 
Environments. In NeurIPS, 2020.
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Multiagent Systems
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So how would we...

● coordinate traffic control in an entire city?
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But only deep learning is not enough

● Max. 2 intersections – even with 168x168 images

v

...

Problems: 
►inherent limitations on size of neural networks  (e.g., GPU memory)
►training time prohibitive
►joint action spaces scale exponentially

E.g., learning Q(s,a) for a large (multiagent) problem

Jacopo Castellini, Frans A. Oliehoek, Rahul Savani, and Shimon Whiteson. The Representational Capacity of Action-Value 
Networks for Multi-Agent Reinforcement Learning. In Proceedings of the Eighteenth International Conference on 
Autonomous Agents and Multiagent Systems (AAMAS), 2019

“plain deep learning”
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Abstraction for Multiagent Problems

● Reason about multiple sub-problems

2

3

5

1

4

2

3

3

5

1

4
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3

5

1

4

Q1(π1 ,π4)

Q2(π2 ,π3)

Qn(π3 ,π5)

E.g.: Transfer Planning

2

3

● Solve source problems independently
● Also “factored value functions” 

Coordinate via message passing

Frans A. Oliehoek, Shimon Whiteson, and Matthijs T. J. Spaan. Approximate Solutions for Factored Dec-POMDPs with Many Agents. In Proceedings of the 
Twelfth International Conference on Autonomous Agents and Multiagent Systems, pp. 563–570, 2013. 
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3

5

1

4

Q1(π1 ,π4)

Q2(π2 ,π3)

Qn(π3 ,π5)

E.g.: Transfer Planning

2

3

● Solve source problems independently
● Also “factored value functions” 

Coordinate via message passing

Frans A. Oliehoek, Shimon Whiteson, and Matthijs T. J. Spaan. Approximate Solutions for Factored Dec-POMDPs with Many Agents. In Proceedings of the 
Twelfth International Conference on Autonomous Agents and Multiagent Systems, pp. 563–570, 2013. 

And free to choose way in which source problems are solved!

v

...
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3

5

1

4

Q1(π1 ,π4)

Q2(π2 ,π3)

Qn(π3 ,π5)

E.g.: Transfer Planning [Oliehoek et al. 2013] 

2

3

● Solve source problems independently
● Also “factored value functions” 

Coordinate via message passing

Frans A. Oliehoek, Shimon Whiteson, and Matthijs T. J. Spaan. Approximate Solutions for Factored Dec-POMDPs with Many Agents. In Proceedings of the 
Twelfth International Conference on Autonomous Agents and Multiagent Systems, pp. 563–570, 2013. 

And free to choose way in which source problems are solved!

v

...

Coordinated Deep Reinforcement Learning 
[Van der Pol & Oliehoek, 2016]

● DQN learners

● on different SUMO 
configurations

● leading to lower average 
travel time

● Also: http://www.fransoliehoek.net/trafficvideo

http://www.fransoliehoek.net/trafficvideo
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Twelfth International Conference on Autonomous Agents and Multiagent Systems, pp. 563–570, 2013. 

And free to choose way in which source problems are solved!

v

...

Coordinated Deep Reinforcement Learning 
[Van der Pol & Oliehoek, 2016]

● DQN learners

● on different SUMO 
configurations

● leading to lower average 
travel time

● Also: http://www.fransoliehoek.net/trafficvideo

Value factorization has become a major 
technique in multiagent RL

►Guestrin'02 (NIPS'01) - ‘factored value functions’ 
►learned message passing [Sukhbaatar et al. 2016]
►Value Decomposition networks [Sunehag et al. 2018]
►Q-Mix [Rashid et al. 2018]
►Deep Coordination Graphs [Böhmer et al. [2019]
►Capacity of factored value functions [Castellini et al. 

2021]
►etc.

http://www.fransoliehoek.net/trafficvideo
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Multiagent MCTS 

MCTS in multiagent settings?
● developed for games
● but does not scale well with number of agents...
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Coordinated control 
of pumping stations

Multiagent MCTS 

2 main ideas:
● Apply value factorization

inside MCTS tree
[Amato&Oliehoek’15 AAAI]
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Coordinated control 
of pumping stations

Multiagent MCTS 

2 main ideas:
● Apply value factorization

inside MCTS tree
[Amato&Oliehoek’15 AAAI]

● Decentralized MCTS:
predict teammates

Warehouse Commissioning                                
[Claes et al.’17 AAMAS] 

           

 
Toru Robot 

(Magazino GmbH)

depot

modeled as a 
graph

Live demo
at swarmlab,
Univ. Liverpool
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Other Agents & Nonstationarity

● If other agents change… 
the world is non-stationary!

● I.e., it is part of the environment
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Other Agents & Nonstationarity

● One idea: try to model it!

a

s '

o o

a
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Other Agents & Nonstationarity

● One idea: try to model it!

a

s '

o o

a

INFLUENCE suggest this 
might be possible

►certainly if world is 
structured

►and ‘influence strength’ 
of other agent limited
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Other Agents & Nonstationarity

● One idea: try to model it!

a

s '

o o

a

INFLUENCE suggest this 
might be possible

►certainly if world is 
structured

►and ‘influence strength’ 
of other agent limited

 

Taking this further…

►paradigm to deal with general sources of non-stationarity
• e.g., machine learning models that affect their own data.

►Environment Shift Games [Mey & O. 2021 AAMAS Blue Sky]
• “Are Multiple Agents the Solution, and not the Problem, 

to Non-Stationarity?”
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Learning Reward Functions
or Dealing with Unknown Rewards
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● Specifying rewards 
can be tricky

● E.g., when dealing with humans:
● how much distance 

should a robot keep?
● how to approach an 

intersection like 
a human driver? 
[Neumeyer’21 IEEE RAL]

● Learning from demonstration

Dealing with unknown rewards
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● Specifying rewards 
can be tricky

● E.g., when dealing with humans:
● how much distance 

should a robot keep?
● how to approach an 

intersection like 
a human driver? 
[Neumeyer’21 IEEE RAL]

● Learning from demonstration

Dealing with unknown rewards

Learning from demonstration
►models of car driving behavior
►from camera data
►using GAIL [Ho&Ermon 2016 NeurIPS]:

learns a classifier punish learning agent 
when not human-like

Learned car behaviors
[Behbahani et al. 2019]
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● Specifying rewards 
can be tricky

● E.g., when dealing with humans:
● how much distance 

should a robot keep?
● how to approach an 

intersection like 
a human driver? 
[Neumeyer’21 IEEE RAL]

● Learning from demonstration
● Inverse reinforcement learning: 

tries to recover rewards function

Dealing with unknown rewards

Abstraction-Guided Policy Recovery from Expert Demonstrations (RECO)
►Expert data is sparse…

►...use appropriate abstractions to piece together expert demonstrations:

Ponnambalam, C.T., Oliehoek F.A., Spaan, M.T.J. (2021). Thirty-First International Conference on Automated Planning and Scheduling (ICAPS).
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Value Alignment

● More generally: 
how do we get AI to do 
what we really want?

● how to incentivize AI?
● prevent the terminator scenario.

● We may not have the best track record so far…

https://openai.com/blog/faulty-reward-functions/      

https://openai.com/blog/faulty-reward-functions/
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Learning Rewards from Multiple Sources
● Learning human-aligned reward functions:

requires multiple objectives

Peschl, M., Zgonnikov, A., Oliehoek, F., Siebert, L. C. (2021) MORAL: Aligning AI with Human Norms through Multi-Objective Reinforced Active Learning.

● This will likely require the combination of different 
sources of feedback:

● Multi-Objective Reinforced Active Learning 
combines demonstrations and preferences to 
actively learn a reward for trading off objectives. 
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Learning from data 
& how to generalize?



138Frans A. Oliehoek - intro RL2023-02-14

Generalization

● “Agent, please do the right thing…
...also if the environment 
looks slightly different”

● Try to reduce overfitting to irrelevant features 
● Data augmentation
● Meta-learning: train on a set of tasks

e.g., “generally capable agents”
● Statistical models, might be limited in learning

“out of distribution” 
→ ideas from causal inference [Bareinboim’20 ICML tutorial] 

OpenAI’s CoinRun environment
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PEBL: Pessimistic Ensembles for Offline Deep Reinforcement Learning
►ensemble of neural networks:

represents uncertainty about Q-values

►penalize uncertainty:

replace Q-values with a 
one standard deviation lower bound

►Leads to lower over-estimation, also 
with less diverse training set

Off-line RL: Learning from data sets

● When only learning offline from data… 
...even more critical to not overfit: 

actions that look good due to chance will not be corrected!

Smit, J., Ponnambalam, C.T., Spaan, M.T.J., Oliehoek F.A. (2021). Robust and Reliable Autonomy in the Wild Workshop (IJCAI).
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Conclusions

● RL can do some cool things
● Foundations & state of the art
● Challenges are big

● sample complexity
● learning models
● partial observability
● scaling & the need for abstraction
● multiagent systems
● generalization 

● ...but so might the 
future benefits be:
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Decentralized POMDPs

● A minimal framework for
● multiple cooperative agents
● stochastic environments
● state uncertainty

● A Dec-POMDP 
● n  agents
● S  – set of states
● A  – set of joint actions
● PT – transition function
● O  – set of joint observations
● PO – observation function
● R  – reward function

● Act based on individual observations

a1

a2

o2

o1

s→ s ' , r

⟨S , A , PT ,O , PO , R ⟩

a=〈a1 ,a2 , ... , an〉

o=〈o1 , o2 , ... , on〉
P(s '∣s , a)

P(o∣a , s ')
R(s ,a)
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What does it buy us?

● Optimal plans need to trade-off:
● immediate vs long-term reward (as in MDPs)
● knowledge gathering vs exploitation (as in POMDPs 

and/or  RL)
● exploiting individual knowledge vs being predictable

● Using Dec-POMDPs (and similar models) we can 
study quantitatively and qualitatively the effect of 
interaction.
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Decentralized POMDPs

〈S , A , PT ,O , PO , R ,h〉

a=〈a1 ,a2 , ... , an〉

o=〈o1 , o2 , ... , on〉
P(s '∣s , a)

P(o∣a , s ')
R(s ,a)

a1

a2

o2

o1

s→ s ' , r

Yes, these are horribly complex to solve optimally...
►NEXP-complete [Bernstein et al. 2000]
►but no easy way out - this is a minimal model.

…but we are making steady progress
►E.g., multi-robot systems - Christopher Amato et al.

• PR2 + 2 turtlebots for faster drinks delivery!
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A Definition of Influence

● Restrict attention to part of state space

x3

x2

x3

a3

x2

x3

o3
a3

x2

o3
a3

x4

o5 a5

x4x4

a5 o5
a5

Influence Links

'rest'

sub-
problem

Goal: 
predict ‘influence sources’
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►If we new the values of influence sources in advance...
►Of course we don't, but we can:
• compute a distribution over them
• need to condition on some stuff, D, in the local problem

►So, an influence point is a collection { P(xsources | D) }

A Definition of Influence

● Restrict attention to part of state space

x3

x2

x3

a3

x2

x3

o3
a3

x2

o3
a3

x4

o5 a5

x4x4

a5 o5
a5

Influence Links

'rest'

sub-
problem
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►If we new the values of influence sources in advance...
►Of course we don't, but we can:
• compute a distribution over them
• need to condition on some stuff, D, in the local problem

►So, an influence point is a collection { P(xsources | D) }

A Definition of Influence

● Restrict attention to part of state space

x3

x2

x3

a3

x2

x3

o3
a3

x2

o3
a3

x4

o5 a5

x4x4

a5 o5
a5

Influence Links

'rest'

sub-
problem

D-separating set

An inference task
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A Definition of Influence

● Enables lossless abstraction:

x3

x2

x3

a3

x2

x3

o3
a3

x2

o3
a3

D DD

Catch intractable:
►'D' might be huge...
►but we know many classes for which it is 

compact
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The Procedure of IBA
● Define the local model

• reward-relevant and observation-relevant variables must be included

● Determine a d-separating set

● Construct the 
influence-augmented local model (IALM)
● With states <s,D>
● Compute influence point: { P(xsources | D) }
● Compute transitions P(<s’,D’>|<s,D>,a)
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An Example: Planetary Rover

● Satellite (agent 1) can send a plan to rover (agent 2)
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An Example: Planetary Rover

● Satellite (agent 1) can send a plan to rover (agent 2)

►Influence: P(a1
2

 | pl0:2)
►d-set:  pl0:2

►can encode compactly:
planTime∈{0,1,2,not_yet}

►IALM states: <l2,planTime>
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Approximate Influences
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Exact Influence Points

If you can compute them, exact influence points are great!
►...but in general intractable.
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Exact Influence Points (EIPs)

● An exact representation of influence exist:
Exact Influence Point (EIP)  [Oliehoek et al. 2012]
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Approximate Influence Points (AIPs)

May need to resort to approximate influence points (AIPs) to predict P(xsources|D)
►Form of sequence prediction: supervised learning.
►E.g., build on deep learning
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An Example
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An Example
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An Example

►find representation of influence 
(of 'rest' on 'local problem' )

►great implications, e.g.: 
• use partial system simulator
• for local, fast simulation
• same results
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MCTS – Example

snowa1 a2
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MCTS – Example

snowa1 a2

0, {}0, {}

R(snow,a1,sb)=+4
sb

0, {}
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MCTS – Example

snowa1 a2

0, {}

0, {}

sb

a1 a2

0, {}

0, {}

R(snow,a1,sb)=+4

0, {}
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MCTS – Example

snowa1 a2

0, {}

0, {}

sb

a1 a2

0, {}

0, {}

R(snow,a1,sb)=+4

0, {}

r=+10

use 
'rollout policy'
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MCTS – Example

snowa1 a2

1, {+10}

sb

a1 a2

0, {}

1, {+14}

R(snow,a1,sb)=+4

0, {}

r=+10
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MCTS – Example

snowa1 a2

1, {+10}

sb

a1 a2

0, {}
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se
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MCTS – Example

snowa1 a2

1, {+10}

sb

a1 a2

0, {}

1, {+14} 0, {}

0, {}

se

a1 a20, {}

R(snow,a2,se)= -2
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MCTS – Example

snowa1 a2

1, {+10}

sb

a1 a2

0, {}

1, {+14} 0, {}

0, {}

se

a1 a20, {}

R(snow,a2,se)= -2
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MCTS – Example

snowa1 a2

1, {+10}

sb

a1 a2

0, {}

1, {+14} 1, {+4}

1, {+6}

se

a1 a20, {}

R(snow,a2,se)= -2

r=+6
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MCTS – Example

snowa1 a2

1, {+10}

sb

a1 a2

0, {}

1, {+14} 1, {+4}

1, {+6}

se

a1 a20, {}
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MCTS – Example

snowa1 a2

1, {+10}

sb

a1 a2

0, {}

1, {+14} 1, {+4}

1, {+6}

se

a1 a20, {}

NOTE: the statistics maintained, represent 
an estimate of Q(s,a)
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MCTS – Example

snowa1 a2

1, {+10}

sb

a1 a2

0, {}

1, {+14} 1, {+4}

1, {+6}

se

a1 a20, {}
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MCTS – Example
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sb
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MCTS – Example

snowa1 a2

1, {+10}

sb

a1 a2

0, {}

2, {+14,+9} 1, {+4}

1, {+6}

se

a1 a20, {}

sc
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MCTS – Example

snowa1 a2

1, {+10}

sb

a1 a2

0, {}

2, {+14,+9} 1, {+4}

1, {+6}

se

a1 a20, {}

sc
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MCTS – Example

snowa1 a2

1, {+10}

sb

a1 a2

0, {}

2, {+14,+9} 1, {+4}

1, {+6}

se

a1 a20, {}

sc
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MCTS – Example

snowa1 a2

1, {+10}

sb

a1 a2

0, {}

2, {+14,+9} 1, {+4}

1, {+6}

se

a1 a20, {}

sc
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MCTS – Example

snowa1 a2

1, {+10}

sb

a1 a2

1, {+8}

2, {+14,+9} 1, {+4}

1, {+6}

se

a1 a20, {}

sc

1, {+7}

se

a1 a20, {}
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Convergence…?

● Does this converge…?
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Convergence…?

● Does this converge…?

● Yes… but not trivial…
conflicting requirements:
● accurate value estimates:

→ try all actions infinitely often
● estimates of an optimal policy

→ be greedy in sub-tree
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Action Selection in the tree?

● What actions to select?
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Action Selection in the tree?

● What actions to select?

● Balance:
● exploitation: focus on good branches
● exploration: see if there could be better 

branches
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Action Selection in the tree?

● What actions to select?

● Balance:
● exploitation: focus on good branches
● exploration: see if there could be better 

branches ►Typical approach: exploration bonus
►E.g., the “UCT” algorithm [Kocsis&Szepesvári'06]

U (h ,a)=Q(h ,a)+c √ log(Nh+1)/N a

exploration bonusmean return
upper confidence 
bound of node h
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Action Selection in the tree?

● What actions to select?

● Balance:
● exploitation: focus on good branches
● exploration: see if there could be better 

branches ►Typical approach: exploration bonus
►E.g., the “UCT” algorithm [Kocsis&Szepesvári'06]

U (h ,a)=Q(h ,a)+c √ log(Nh+1)/N a

exploration bonusmean return
upper confidence 
bound of node hif a tried more often → 

less bonus

“Optimism in the face of uncertainty”
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