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Reinforcement Learning

* \Who knows...
* what an MDP is?
* what RL is7?
* what DQN is?
* how DQN works?
* how MCTS works?
* how alpha Go works?
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Reinforcement Learning

* \Who knows...
* what an MDP is?
* what RL is7?
* what DQN is?
* how DQN works?
* how MCTS works?
* how alpha Go works?

Let’s start with a glimpse...
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Breakout: DQN (2013)

= » Youlube

100 Training Episodes




Alpha Go — Deepmind (2016)
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Science

AlphaGo Zero: Google DeepMind
supercomputer learns 3,000 years of
human knowledge in 40 days
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Hide and Seek - OpenAI (2019)

@ Muiti-Agent Hide and:Seek
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Glimpse of the State of the Art...

* “Deep RL": Combination of RL techniques with deep neural
networks

ience:
PTapE SClenCe.
CURVES -

DIGIT/
CARDS WI!IZ
[ |

* Many recent results:
* Atari Breakout
* Go, Poker
* Dota 2 / Starcraft
* Simulated Robotics/Locomotion
* Hide and Seek
* Capture the flag
* Chip Design
* Summarizing books & ChatGPT
* ‘Generally capable agents’
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Vision: improving the world

Brussels traffic jams, the biggest cause of air pollution, carry a yearly cost of 511 million

Euros

Rangers Use Artificial Intelligen

to Fight Poachers

Emerging technology may help wildlife officials beat back traffickers.

+ @ ¢

Antipoaching patrols like this team at the Lewa Wildlife Conservancy in Kenya

may sconuse Altechnology to stay one stepahead of criminals.

-

L p— ARTIFICIAL INTELLIGENCE IS
NOW TELLING DOCTORS HOW
10 TREAT YOU

FINANCIAL TIMES

Artificial Intelligence and Robotics | + Add to myFT

Meet the cobots: humans and robots
together on the factory floor

=

Lending hand: mechanical engineer Jesse Rochelle works with Baxter at the Stenner Pumps factery in
Jacksonville, Florida © FT
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MAY 5, 2015 by: Peggy Hollinger, Industry Editor

Walking across the floor of SEW-Eurodrive’s factory in Baden-Wiirttemberg is
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S5Y OF MODERNIZING MEDICINE

SLAND DERMATOLOGIST Kavita Mariwalla knows how
acne. burns. and rashes. But when a natient came in




Vision: improving the world

Brussels traffic jams, the biggest cause of air pollution, carry a yearly cost of 511 million
Euros
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Meet the cobots: humans and robots

Rangers Use Artificial Intelliger (0gether on the factory floor
to Fight Poachers

Emerging technology may help wildlife officials beat back traffickers.
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These are all tasks of a sequential
nature...

d :

R

Lending hand: mechanical engineer Jesse Rochelle warks with Baxter at the Stennel % re i n fo rC e m e n t I e a r n i n g C a n

Jacksonville, Florida © FT

v £ in potentially make a big impact

Antipoaching patrols like this team at the Lewa Wildlife Conservancy in Kenya

may sconuse Altechnology to stay one stepahead of criminals. -
5 o MAY 5, 2015 by: Peggy Hollinger, Industry Editor
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Outline for Today

© oo
* Foundations of RL

® I[ntuition behind
state of the art

* Challenges**

**Disclaimer: | took many examples from my own research, but this is only a very small sample.
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Sequential Decision Making (SDM)

* Actions over multiple time steps

* SDM problems are complex...
* immediate vs long-term benefits

* deal with uncertainties
(stochasticity, partial information)

2023-02-14 Frans A. Oliehoek - intro RL
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Sequential Decision Making (SDM)

* Actions over multiple time steps

* SDM problems are complex...
* immediate vs long-term benefits

* deal with uncertainties
(stochasticity, partial information)

* Manual programming is difficult
* Instead: “programming via rewards”
* planning / reinforcement learning

2023-02-14 Frans A. Oliehoek - intro RL
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Complex decisions over time

* Formalized as Markov decision process (MDP)
* states (s), actions (a), rewards (r)

s=>s',r

* states are observed
* but transitions are stochastic: P(s’ | s, a)
 and rewards could be too: r ~ R(s,a)
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Complex decisions over time

* Formalized as Markov decision process (MDP)
* states (s), actions (a), rewards (r)

s=>s',r

* states are observed
* but transitions are stochastic: P(s’ | s, a)
 and rewards could be too: r ~ R(s,a)

* OK, so how to
- balance short-term vs long-term rewards

 taking into account the uncertainty
?

2023-02-14 Frans A. Oliehoek - intro RL
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MDP Objective

* Goal: optimize the ‘value’ of a policy
* j.e., expected (discounted) sum of rewards

V() = E[ Z: yt+R(s,a) | ]
* Task is planning:

* compute a good/optimal policy m
* given the model (or a simulator)

2023-02-14 Frans A. Oliehoek - intro RL
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MDP Objective

* Goal: optimize the ‘value’ of a policy
* j.e., expected (discounted) sum of rewards

V(n) = E[ 2: y*«R(s,a) | ]

* Task is planning:
* compute a good/optimal policy m
* given the model (or a simulator)

* Typical approach:
compute ‘optimal Q-value function’ Q*(s,a)

* expresses expected value given s,a
* Bellman optimality equation:

Q*(s,a) = R(s,a)+y Z_ P(s’|s,a)V*(s’)

* where
V*(s) = max_ Q*(s,a)

2023-02-14 Frans A. Oliehoek - intro RL
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Example: pick up the toolbox

L)
iiﬁ/

11 12 13 14 15

- reward: +1
- let’'s assume y=0.9
— and deterministic movement

Robot needs to go to toolbox, and pick it up.

2023-02-14 Frans A. Oliehoek - intro RL
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Example: pick up the toolbox

If we were at square

15...
11 12 13 14 15
6 7 8 9 10
1 2 3 4 5
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Example: pick up the toolbox

If we were at square

15...

2023-02-14

11 12 13 14 15
6 7 8 9 10
2 3 4 5
/

Fra

Q*(s=15, a=pickup) =1
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Example: pick up the toolbox

If we were at square
15...

11 12 13 14
6 7 8 9 10
1 2 3 4 5

Q*(s=15, a=piW
V*¥(s=15) =1

2023-02-14 Fra
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Example: pick up the toolbox

if we were at 147 _ right” -~ R=0
-
11 12 13 14 15
6 7 8 9 10
1 2 3 4 5

Q*(s=15, a=pickup) =1
V*(s=15) =1

2023-02-14 Fra




Example: pick up the toolbox

. “right” - R=0
If we were at 147 J
1
11 12 13 14 15
6 7 8 9 10
1 2 3 4 5
Q*(s=15, a=pickup) = 1 /

V*¥(s=15) =1
Q*(s=14, a=right) =0+ 0.9*1 =0.9
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Example: pick up the toolbox

- “right” - R=0
If we were at 147 , J

11 12 13 14 NG

2 3 4 5

Q*(s=15, a=pickup) =1

V*(s=15) =1
Q*(s=14, a=right) = 0 + 0.9 %
V*¥(s=14) = 0.9

2023-02-14 Fra
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Example: pick up the toolbox

compute value of any
location @
66 .73 .81 .9 1
11 12 13 14 15
66 .73 .81 .9 81
6 7 8 9 10
48 53 59 66 .73
1 2 3 4 5

2023-02-14

Fra

Q*(s=15, a=pickup) =1
V*¥(s=15) =1
Q*(s=14, a=right) =0+ 0.9*1 =0.9
V*(s=14) = 0.9

Q*(s=1, a=right) =0+ 0.9 * .53 =0.48
V*(s=1) = 0.48
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This (form of planning) is also called
“dynamic programming”

» toolbox

2023-02-14

L)
fi=/

66 .73 .81 9 1
11 12 13 14 15
66 .73 .81 9 81
6 7 8 9 10
48 53 59 66 .73
2 3 4 5

Fra

Q*(s=15, a=pickup) =1
V*¥(s=15) =1
Q*(s=14, a=right) =0+ 0.9*1 =0.9
V*(s=14) = 0.9

Q*(s=1, a=right) =0+ 0.9 * .53 =0.48
V*(s=1) = 0.48
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MDP Planning

® Given an MDP:

* S - set of states
* A - set of actions

* transition model: P(s'|s,a)

* rewards: R(s,a)

* Goal:
* compute a policy
* that optimizes value V(n)

2023-02-14 Frans A. Oliehoek - intro RL
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MDP-Planhhing-

Reinforcement Learning

* Given an-MbDHR:

* S - set of states
* A - set of actions

* Goal:

* eompute-learn a policy

* that optimizes value V(n)

2023-02-14 Frans A. Oliehoek - intro RL
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MDP-Planhhing-

Reinforcement Learning

* Given an-MbDHR:

* S - set of states
* A - set of actions

* Goal:

* eompute-learn a policy

* that optimizes value V(n)

Reinforcement learning is a problem

(not a particular technique)

2023-02-14 Frans A. Oliehoek - intro RL
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Example...

* You are in state 23

* what do you want to do?

(A or B)

2023-02-14

\ ~23 /

N €

Frans A. Oliehoek - intro RL

29



Example...

* You are in state 23

* what do you want to do?
(A or B)

. +14

*YOoU are now In state 12

 what do you want to do?
(A or B)

2023-02-14 Frans A. Oliehoek - intro RL
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Example...

* You are in state 23

* what do you want to do?
(A or B)

. +14

*YOoU are now In state 12

 what do you want to do?
(A or B)

* -30
* You are Iin state 23 again

* what do you want to do?
(A or B)

2023-02-14 Frans A. Oliehoek - intro RL
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2023-02-14

Foundations:
Q-Learning

Frans A. Oliehoek - intro RL
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Q-learning

* Takes Bellman equations

- turns into an update equation that learns
from sampled experience

m After a transition (s,a,r,s’) we
>Q(s,a) := (1-a) Q(s,a) + af r+ vy max_, Q(s’,a’))

update target

m Need to sufficiently explore the environment
> But then will converge to Q*

2023-02-14 Frans A. Oliehoek - intro RL
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RL Nomenclature

Terminology in RL sometimes confusing...

* model available = ‘planning’
* small problems: exact planning (DP, VI, PI, etc.)

* large problems: simulation-based planning
(aka approximate DP, neurodynamic programming, ... etc.)

* model not available —» ‘reinforcement learning’
* model-based RL: learns a model

* model-free RL: does not learn a model
* value-based: directly learn value function
* policy search: directly learn policy

2023-02-14 Frans A. Oliehoek - intro RL
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RL Nomenclature

Terminology in RL sometimes confusing...

odel available = ‘planning’
* small proble Xactp annin‘g\(,DP, VI, PI, etc.)
* large problems: simulation-based planning

(aka approximate DP, neurodynami Common confusion #1: mixing up these
»Of course: MBRL typically uses planning

* model n ' — ‘reinforcement learning’
<model-based RL: learns a @

* model-free RL: does not learn a model
* value-based: directly learn value function
* policy search: directly learn policy

2023-02-14 Frans A. Oliehoek - intro RL
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RL NomenCIa tCommon confusion #2: mixing up these

»indeed, can use Q-learning for both!
»but:
« in former we care about computational cost

* in latter we learn online: care about the rewards
during learning (‘regret’)

Terminology in RL sometin

* model available —» |
» small problems: exact planning (DP, VI, PI, etc.)

arge problems: simulation-based planning
(aka approximate DP, neurodynamic p"i‘ogramming, ... etc.

* model not available - ‘reinforcement learning’
* model-based RL: learns a model

model-free RL: does not learn a model
* value-based: directly learn value function
* policy se ' '

2023-02-14 Frans A. Oliehoek - intro RL

36



2023-02-14

Foundations:
Monte-Carlo Tree Search

Frans A. Oliehoek - intro RL
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Online Planning

* Pre-planning for all states

could be infeasible...

* 1 possible solution:

Interleave planning and execution Observe state K
o
- focuses computational effort Plan
on states reachable in near-future T
Select action
e

2023-02-14

s'~P(.|s,a

(.Is,a)
1

I
s'.r
-
(- & ‘ﬂ “' “
®
W= \/
Do :5-:-: a

Perform action

Frans A. Oliehoek - intro RL
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<Intermezzo: Policy Representations>

* A policy rr, in an MDP:
states to actions m:S - A

f
?

* How represented?
* Lookup table
* (More) computation
* e.g., heural network

AREARANEARAAAAR
[OJOJOJOJOJOJOLO

function MonteCarloPlanning(state)
repeat
search(state, 0)
until Timeout
return bestAction(state,0)

* entire planning algorithm

function search(state, depth)

if Terminal(state) then return 0

if Leaf(state, d) then return Evaluate(state)

action := selectAction(state, depth)

. (nextstate, reward) := simulateAction(state, action)
1 q := reward + v search(nextstate, depth + 1)

: UpdateValue(state, action, q, depth)

13: return g

PEoOXI® Gmwe

2023-02-14 Frans A. Oliehoek - intro RL




<Intermezzo: Policy Representations>

* A policy m, in an MDP:
states to actions m:S - A

f
f

* How represented?
* Lookup table
* (More) computation

BRG]
[OJOJOJOJOJOJOLO

1: function MonteCarloPlanning(state)
2: repeat

3: search(state, 0)

til Timeout

* entire planning algorith

urn bestAction(state,0)

one perspeCtlve- 1ction search(state, depth)
. . . ‘o . Terminal(state) then return 0
»online planning is a (pre-specified) policy Leaf(state, d) then return Evaluate(state)
ion := selectAction(state, depth)
cxtstate, reward) := simulateAction(state, action)
= rewar d + v search(nextstate, depth + 1)
dateValue(state, action, q, depth)

Implication: burn g

»learning to plan not fundamentally different than
learning a policy with a different parametrization?

N




Online Planning

* Pre-planning for all states
could be infeasible...

* 1 possible solution:
Interleave planning and execution

- focuses computational effort
on states reachable in near-future

Observe state

<]_

<

Plan

&

Select action

<

Perform action

41



Online Planning

* Pre-planning for all states

could be infeasible...

* 1 possible solution:

Interleave planning and execution Observe state

What planning methods?

»E.g., chess

Build a lookahead tree (“search”)
»over which we can do dynamic programming

<]_

L

Plan

_—

Select action

<

Perform action

2023-02-14

Frans A. Oliehoek - intro RL
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Dynamic Programming

* Construct a plan for T time steps into the future

m

2K 2K RN DN ‘e

7 7 1 | L W 4 EEE
A 3 ) 3 7S

’ . ’ . 1 ‘. 1} ‘s \ 2N

2023-02-14 Frans A. Oliehoek - intro RL

43



Dynamic Programming

* Construct a plan for T time steps into the future

1 2 start from last
time step

q

use heuristic to provide values, V(s), for the leaves
2023-02-14 Frans A. Oliehoek - intro RL
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Dynamic Programming

* Construct a plan for T time steps into the future

For each square:

- what is expected
I reward?

L J

) IR
N

Use the Bellman equation, we saw before:

--------
-

’Q(sa,a1) =R(s,a,) + P(s'|s,a)V(s,) + P(s.'|s,a)V(s,)

\ =0 + 8*4  + 2%2 .
: ¥ | =3.6
“‘ .'\ba’\bb’ \ba’\bb’ \ba’\bb’ \ba’\bb’
Ao 2 4 2 4 2 4 2
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Dynamic Programming

* Construct a plan for T time steps into the future

For each square:

- what is expected
reward?

A 3

~ e ~ ~
§~ §~ Py 5~
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n N ] ' 1
I I
1 1
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v v .
2 A 4 < :
¢ o LAREN .
. . . S ’
'¢ -~ L4 -~ '¢
f’ ~~§
- S . ~ -
== =

.
. he - .
. ~ o

A}

- ~
"‘ - .
Py -~ *
. - 4
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. ;- S, 4
K K LR K
S
q L ) F/ q ) Y
’ / ’ £
) | ‘ ) | 3 \;
] i X
L] I 1
[l i A
|
L]
]
1
'
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.
. .
. e
s {
4 2 4 2 4
\‘ " .
. . -
-~ . he
o . S
§~. __“ ~~~
)
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Dynamic Programming

* Construct a plan for T time steps into the future

a @ a For each square:

- what is expected
I reward?
T Y

y
O

3.6 @35 W25 l3-0
4 2 4 2 2 4 2

2023-02-14 Frans A. Oliehoek - intro RL
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Dynamic Programming

* Construct a plan for T time steps into the future

So what action do
we pick?

: b 1
. s ",,"- . . .
ARS LA Y 1 . -
’ e . L OGN Y 1 ‘. oS ! R
4 2 4 2 4 2 4 2 4 2

2023-02-14 Frans A. Oliehoek - intro RL
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Dynamic Programming

* Construct a plan for T time steps into the future

1 2 So what action do
we pick?

1 2 21 1 2
3.6 = "3.5 : ‘2.5 l‘?O 3.6 L
1 1 1 o L YN LI % EEn
’ . ’ . 1 ‘. 1} ‘s \ 2N
4 2 4 2 4 2 4 2 4 2

2023-02-14 Frans A. Oliehoek - intro RL
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Dynamic Programming

* Construct a plan for T time steps into the future

a1 a2
et cetera
3.4 8
,' ’ ‘§~
é" ; “ ~~§
36(s.) (5 (52
a1 az “1 d “1 az

2023-02-14 Frans A. Oliehoek - intro RL
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Dynamic Programming

* Construct a plan for T time steps into the future

5 l3-0

66 60 &

— Take action a, now

| = repeat next time step

Observe state K

<

Plan

L

Select action

"

Perform action—

2023-02-14 Frans A. Oliehoek - intro RL
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Monte Carlo Tree Search (MCTS)

* Problem: trees get huge...!

* MCTS provides leverage by:

* incrementally constructing a
sampled version of the tree

* focusing on promising regions

2023-02-14 Frans A. Oliehoek - intro RL

planning

simulator

52



MCTS - Example

starting a, @ a
with only a
root node

2023-02-14 Frans A. Oliehoek - intro RL
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MCTS - Example

do a first simulation:
— adds 1 child node

Rollout policy:

- possibly till end of problem

- rewards used to update statistics
in tree

use -
'rollout policy'

r=+10

2023-02-14 Frans A. Oliehoek - intro RL




MCTS - Example

another simulation:
— adds 1 child node

2023-02-14 Frans A. Oliehoek - intro RL

R(s

now’

a,,S.)= -2
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MCTS - Example

2023-02-14

1, {+7} stored statistics are
used to direct the
search to promising
regions

@ rrans A Oliehoek - intro RL
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Rollout Policies

* Another important component: which rollout policy?
* In theory: as long as it gives positive probability to any action
* |In practice: huge effect -» use domain knowledge.

* Perspective: MCTS as a policy improvement operator

* given a policy, MCTS improves it
by applying additional search

* How AlphaGo improves its policies...

2023-02-14 Frans A. Oliehoek - intro RL - 57




MCTS Pros/Cons

®Pros:
* rapidly zooms in on promising regions
* can be used to improve policies
* basis of many successful application

° | imitations:

* needle in the hay-stack problems
* problems with high branching factor

58



Foundations: Summary

* MDPs formalize decision making in stochastic environment
* Model available - planning
* Model not available = reinforcement learning (RL)

*RL is a problem
* Q-learning is one of the most popular techniques

* For complex problems:
* representing a policy as a table not feasible
* online planning can help

* Given infinite computation:
* dynamic programming on tree of trajectories

* Monte Carlo tree search (MCTS):
* avoid creating the entire tree; focus on promising parts
* by selecting actions in a smart way
* use domain knowledge via rollout policies

2023-02-14 Frans A. Oliehoek - intro RL
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Outline for Today

o Toasor

* Foundationsof RL

*ntuition behind
state of the art
* DON
* AlphaGo

* Challenges

Homage to Newton by Salvador Dali
(Photo by Marcus Lim. CC-BY-SA-3.0)

2023-02-14 Frans A. Oliehoek - intro RL
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Deep RL:
Deep Q-Networks (DQN)

2023-02-14 Frans A. Oliehoek - intro RL




Deep RL: Scaling up via deep learning

* Methods covered so far are tabular
* Q(s,a) values for each (s,a) in a table

e But MDPs are huge...!
(e.g., number of possible screens in Atari?)

* use function approximation

to scale up! map from
* e.g., represent Q(s,a) with 'state ’
a deep neural network features

to values for
each action

2023-02-14
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Deep Q-Networks

e Prototypical example: DQN [Mnih et al. 2015]

* does precisely this:
* Q-network: 84x84 image - 'action values'
* Train with Q-learning

=z

i

P2l "

vy
+ I+
@] (@] (@)

['4
ok

@) (@)

AINMNIR )€
=11+
@] (@] (@)

* only: Q-learning with neural networks might diverge...

Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." Nature 518.7540 (2015): 529.

2023-02-14 Frans A. Oliehoek - intro RL
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Tricks for Convergence

* SO0 need to stabilize...

* DQN uses a number
of techniques:

* experience replay
* ‘target network’
* gradient clipping

* together, they lead to sufficient
stability

Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights 0
Initialize target action-value function Q with weights 0~ = 0
For episode =1, M do
Initialize sequence s, = {x, } and preprocessed sequence ¢, =¢(s,)
Fort=1,T do
With probability ¢ select a random action a,
otherwise select a, =argmax,Q(¢ (s ).a; 0)
Execute action a; in emulator and observe reward r, and image x; ; ,
Set s, 1=5;,a,,%, 4 and preprocess ¢, | = (s;41)
Store transition (gﬁ,,a,,r,,qﬁ,H) inD
Sample random minibatch of transitions ( 0;,a)517,0j 4 1) from D

rj if episode terminates at step j+ 1
Sety;j= ri+7 maxy Q(fﬁjH,a’; ()_) otherwise

Perform a gradient descent step on (y_,- - Q(qu,a_,-; 0) ) ’ with respect to the
network parameters ()
Every C steps reset Q= Q
End For
End For

2023-02-14 Frans A. Oliehoek - intro RL 64




2023-02-14

Deep RL:
Alpha-Go

Frans A. Oliehoek - intro RL
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AlphaGo

®* Combines neural networks and MCTS The Telegraph

2023-02-14

Science

5

& - Science

AlphaGo Zero: Google DeepMind
supercomputer learns 3,000 years of
human knowledge in 40 days

A
\
) [

ECHOIC)

Frans A. Oliehoek - intro RL
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AlphaGo

* Combines neural networks and MCTS
* Main challenges:

* many actions
— |earn a policy network

* deep trees, long rollouts
- value network

Eh!ﬂ Eﬁlﬁgfﬁ]ﬂj HOME NEWS
Science

5

AlphaGo Zero: Google DeepMind
supercomputer learns 3,000 years of
human knowledge in 40 days

aEIoloE :

2023-02-14 Frans A. Oliehoek - intro RL
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AlphaGo

“aa,

.
st

.
.

e,

Traa,
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AlphaGo

2023-02-14

P(a,)

P(a,)

NN predicts
P, v=Te(Se)

Frans A. Oliehoek - intro RL "
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AlphaGo

2023-02-14

P(a,)

P(a,)

prior
probabilities
to initialize
node

NN predicts
P, v=Te(Se)

value
prediction for
updating
Q-estimates

Frans A. Oliehoek - intro RL "
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AlphaGo

P(a,)

@ P(a,)

Where does the neural network
come from?

»initialized from human data

»self-play:
learned from games played
against itself

NN predicts
P, v=Te(Se)

2023-02-14 Frans

value
prediction for
updating
Q-estimates

A. Oliehoek - intro RL
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Outline for Today

* Challenges

* sample complexity

* learning models

* partial observability
scaling & need for abstraction =
* multiagent systems
* generalization

2023-02-14 Frans A. Oliehoek - intro RL
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Sample Complexity

Frans A. Oliehoek - intro RL

73



Deep RL methods are data hungry

e Atari: DQN was using
50 million frames** per game
(38 days of play by a human)

® Dota 2 ***;
1-3M steps per batch
estimated 9.7 trillion steps

e XLand
* fine tuning’ --- 100M steps

* training of last (5%)
generation
> 100 billion steps

** training used ‘frame skipping’ so 200M frames from environment needed
*** also ‘frameskipping’ so almost x4 frames from environment

2023-02-14 Frans A. Oliehoek - intro RL
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Deep RL methods are data hungry

e Atari: DQN was using e 1-7 days on 1 GPU
50 million frames** per game
(38 days of play by a human)

* Dota 2 ***; * 10 months
1-3M steps per batch 80k—173k CPUs: 7.5 steps/s
estimated 9.7 trillion steps 1000s of GPUs
e XLand e 8 TPUV3s
* fine tuning’ --- 100M steps * 30mins
* training of last (5™) * 23 days
generation

> 100 billion steps

** training used ‘frame skipping’ so 200M frames from environment needed
*** also ‘frameskipping’ so almost x4 frames from environment

2023-02-14 Frans A. Oliehoek - intro RL
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Ideas for improving sample efficiency

e Use models... (later)

e Store as much as data as we can!
* E.g., Replay memory

* “Do we need a parametric model?”
[Van Hasselt et al. 2019 NeurlPS]

* Data augmentation: exploit invariance

* Exploit symmetries...

2023-02-14 Frans A. Oliehoek - intro RL
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1 Idea: Exploiting Symmetries

S

* Many RL problems exhibit symmetries

* Symmetric (s, a) pairs
should have the same policy

* |dea:
— put constraints on network weights
— enables more efficient learning

* MDP homomorphic networks
for data-efficient RL

* use a symmetrizer’ to construct equivariant weights
- Fewer interactions with the world needed!

[van der Pol, Worrall, van Hoof, Oliehoek & Welling, NeurlPS, 2020]

2023-02-14 Frans A. Oliehoek - intro RL

Average Return

L|s]

K(r(s)] = m(L[s])

-+==- Stoch. Data Aug.
L iigie?” —-- Full Data Aug.
/A/ o .
=== Convolutional

o
L

—— Equivariant

100 200 300 400 500 600
Time steps (x 25000)

reward in Pong
(as function of steps)
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Learning Models
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Learning models

°|f we can a learn model of the environment
— can generate new training data
— and/or directly use in (online) planning (e.g. Alpha Go)

* In small problems, sure! Learn tables for
* empirical transition probabilities
* empirical rewards

* But when learning
from sensor data...?

‘world models’
[Ha&Schmidhuber'18 NeurlPS]

2023-02-14 Frans A. Oliehoek - intro RL
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Constraints on the Latent Space

* Much recent work: learn latent representation
(Deep MDP, Word Models, MuZero, etc. etc.)

* But also proved to be difficult...
- need appropriate constraints!

2023-02-14 Frans A. Oliehoek - intro RL
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Constraints on the Latent Space

* Much recent work: learn latent representation

(Deep MDP, Word Models, MuZero, etc. etc.)

* But also proved to be difficult...
- need appropriate constraints!

L

Do RO NEO®
w
A

(a) WM-AE Baseline (b) LD-AE Baseline (c) DMDP-HOM Baseline

Abstract MDP. Nodes: abstract states, edges: abstract transitions, color: predicted value.

[van der Pol, Kipf, Oliehoek & Welling, AAMAS, 2020]
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Put constraints on the Latent Space

How? s T, o)
-I.I.I
»“MDP homomorpism metrics” H E N
- latent states need to predict the reward well ...."l
- latent states need to predict the transitions well HED
hl
»Eryforce consistency , oonEEe oEeEee
(with ‘contrastive learning’) 00000 - OoooECO®
coooee ! ocooceooe
o00EEE 0000es
00enn n[a[ele]s]w
oOo0EE® [E[Eea]E
_ Z(s) T(Z(s), Aula)) = Z(I(s,a))

—— LD-AE

The models support planning
»discretize
»apply standard planning (value iteration)
»much better sample complexity

— WM-AE
—— This paper

length

c
o
¢ 50

od

/agc:ls
N
o

0 200 400 600 800 1000

Abstract MDP. Nodes: abstract states, edges: abstract transitions, color: predicted value.

[van der Pol, Kipf, Oliehoek & Welling, AAMAS, 2020]
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Efficient-Zero [vee.a. 2021 NeurIPs]

* MuZero: version of AlphaGo
that learns a model

* Efficient-Zero improves
sample complexity
* 3 modifications a

* most impact: enforce the temporal
consistency of the latent transition
model

* Qutperforms humans with just 2h of
‘play-time’ per game.

2023-02-14 Frans A. Oliehoek - intro RL
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Partial Observability

Frans A. Oliehoek - intro RL
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Partially observable RL (PORL)

* Rare for agent to see the Markov state
— more often: just an observation

* But... also difficult... let's give it a try...

2023-02-14 Frans A. Oliehoek - intro RL
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Example

* your action: Al, A2, or A3? - A3 >
null

2023-02-14 Frans A. Oliehoek - intro RL
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Example

* your action: Al, A2, or A3? - A3 >0
® you observed: -100, O1

2023-02-14 Frans A. Oliehoek - intro RL

88



Example

* your action: Al, A2, or A3? - A3
® you observed: -100, O1

e your action: Al, A2, or A3? —A1  null o1

2023-02-14 Frans A. Oliehoek - intro RL
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Example

* your action: Al, A2, or A3? - A3 7o 1 EP
® you observed: -100, O1 P ) v ) v i
* your action: Al, A2, or A3? - Al null o1 02
®* you observed: -1, 02

-100

2023-02-14 Frans A. Oliehoek - intro RL




Example

* your action: Al, A2, or A3? - A3
® you observed: -100, O1

® your action: A1, A2, or A3? - Al
®* you observed: -1, 02

® your action: Al, A2, or A3?7 - Al

2023-02-14 Frans A. Oliehoek - intro RL
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Example

* your action: Al, A2, or A3? - A3
® you observed: -100, O1

® your action: A1, A2, or A3? - Al
®* you observed: -1, 02

® your action: Al, A2, or A3?7 - Al
®* you observed: -1, 02

2023-02-14 Frans A. Oliehoek - intro RL
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Example

* your action: Al, A2, or A3? - A3
® you observed: -100, O1

® your action: A1, A2, or A3? - Al
®* you observed: -1, 02

® your action: Al, A2, or A3?7 - Al
®* you observed: -1, 02

® your action: A1, A2, or A3? - A2
* you observed: +10, O1

2023-02-14 Frans A. Oliehoek - intro RL




Example

* your action: Al, A2, or A3? - A3

® you observed:

-100, O1

® your action: A1, A2, or A3? - Al

* you observed:

-1, 02

® your action: A1, A2, or A3? - Al

* you observed:

-1, 02

® your action: A1, A2, or A3? - A2

®* you observed:

+10, O1

® your action: A1, A2, or A3? - A2

® you observed:

2023-02-14

-100, O1

Frans A. Oliehoek - intro RL
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Example

* your action: Al, A2, or A3? - A3

® you observed:

-100, O1

® your action: A1, A2, or A3? - Al

* you observed:

-1, 02

® your action: A1, A2, or A3? - Al

* you observed:

-1, 02

® your action: A1, A2, or A3? - A2

®* you observed:

+10, O1

® your action: A1, A2, or A3? - A2

® you observed:

-100, O1

Fun, eh...?

2023-02-14
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Example

* your action: Al, A2, or A3? - A3

® you observed: -100, O1
® your action: A1, A2, or A3?
®* you observed: -1, 02

® your action: A1, A2, or A3?
®* you observed: -1, 02

® your action: A1, A2, or A3?
* you observed: +10, O1
® your action: A1, A2, or A3?
® you observed: -100, O1

2023-02-14 Frans A. Oliehoek - intro RL
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- A2

- A2

=0penRight
=HearlLeft
=Listen
=HearRight
=Listen
=HearRight
=0penlLeft
=HearlLeft
=0penlLeft
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Example

* your action: Al, A2, or A3? - A3 =0penRight
* you observed: -100, O1 =Hearleft

® your action: Al, A2, or A3?7 - Al =Listen

* you observed: -1, 02 =HearRight
* your action: A1, A2, or A3? - Al =Listen

°* you observed: -1, 02 =HearRight
* your action: A1, A2, or A3? - A2 =0penleft

* you observed: +10, O1
® your action: A1, A2, or A3?
® you observed: -100, O1

2023-02-14 Frans A. Oliehoek - intro RL
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Example

* your action: Al, A2, or A3? - A3 =0penRight
* you observed: -100, O1 =Hearleft

® your action: Al, A2, or A3?7 - Al =Listen

* you observed: -1, 02 =HearRight
* your action: A1, A2, or A3? - Al =Listen

°* you observed: -1, 02 =HearRight
* your action: A1, A2, or A3? - A2 =0penleft

* you observed: +10, O1

® your action: A1, A2, or A3?
* you ohserved: -100, O]

Key points:
* very hard problem

* but can get a lot of of
prior knowledge

2023-02-14 Frans A. Oliehoek - intro RL
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Approaches to PORL

* Use prior knowledge

— Bayesian RL: maintains
belief over possible models

* hard - even in tabular settings!

* But there is progress

[Katt e.a. 2019 AAMAS, Katt e.a. 2017 ICML]

2023-02-14

Frans A. Oliehoek - intro RL

Bayesian 4
b(s,T

PORL
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Approaches to PORL

= //, = v TN

o : Bayesian g0
Use prior knovvlledg_e | PORL  @b(s,T,0)
— Bayesian RL: maintains | ‘

belief over possible models
* hard - even in tabular settings!

* But there is progress
[Katt e.a. 2019 AAMAS, Katt e.a. 2017 ICML]

®* Other approaches:

* use recurrent neural networks or other deep

learning
[Schmidhuber et al since 1990s]

* e.g., hierarchical LSTM for
capture the flag [jaderberg e.a. 2019 Science]
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Scalability &
(more explicit forms of) Abstraction

2023-02-14 Frans A. Oliehoek - intro RL 101



Only deep learning is not enoug

* Max. 2 intersections - even with 168x168 images (in 2016)

o
— canplenet ™

Problems:
»inherent limitations on size of neural networks (e.g., GPU memory)
»training time prohibitive

2023-02-14 Frans A. Oliehoek - intro RL
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So how would we...

* Process information of an entire city?

2023-02-14

b P ._-
Jans:Molenbeek:

Sint;

CBBD'M
deila|Bande dessinée s

@Cifr:zue_ Royal

City of’s /@
Brusselsis/

N29s

ARDLLEN, # %% - Al titut royalides Sciences® &

2 MATONC : aturelles de:Belgique’ -4

Ixelles

Frans A. Oliehoek - intro RL
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The Intuition behind Abstraction

* Alternative: reason only about a small part of the problem

2023-02-14 Frans A. Oliehoek - intro RL 104



The Intuition behind Abstraction

* Alternative: reason only about a small part of the problem

i ¥

-l — — L LR
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How to do Abstraction?

* Can we reason over part
of the system?

“Well certainly not for all systems...
they could be arbitrarily coupled...?”

106




Abstraction

* Number of states s is huge... e
* Use an abstraction function ¢(s)

* Given an MDP:
construct an abstract MDP

T(o'le,a) =2, ., 2, ., T(s'[s,a) w,(s)

¢

- For each abstract state ¢, weighting function w (s) specifies the
assumed state probabilities (link POMDPs)
* Similar for rewards

* Under some assumptions (‘e-model similarity abstraction’): value
loss bounded.
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Combining RL and Abstraction

* \When the MDP is not known...
— |learn about abstract states directly?

°E.qg., directly learn T(¢@'|¢p,a), R(p,a)
using model-based RL?

*Sure...
...but guarantees for MBRL method may not hold!

* These proofs are typically based on independence of samples
* In some cases it is possible to fix by resorting to Martingale bounds

Starre et al. 2022 arxiv “An Analysis of Abstracted Model-Based Reinforcement Learning”
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Abstraction

* Number of states s is huge...
* Use an abstraction function ¢(s)

*Given an MDP:  |ais0. .

construct an abs
these assumptions are rather strict...

- typically do not hold when abstracting
¢’/ away entire state variables...

T(¢'|e,a) = 2

« For each abstr , _ _ ,S) specifies the
assumed state probabilities (link POMDPs)

 Similar for rewards

* Under some assumptions (’e-model similarity abstraction’): value
loss bou a-
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How to do Abstraction?

* Can we reason over part
of the system?

“Well certainly not for all systems...
they could be arbitrarily coupled...?”

* INFLUENCE project:

* Consider from perspective
of local problem

* Exploit accurate
representations of
influence?

‘moaZmcrmZ~;

https://www.fransoliehoek.net/wp/2022/02/03/a-blog-about-influence/
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https://www.fransoliehoek.net/wp/2022/02/03/a-blog-about-influence/

INFLUENCE results

* Exploring
“Approximate influence points”

* allows for decoupling local problem ‘J&

from rest of system

‘mAzZzmcrmz~;
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INFLUENCE results

* Exploring
“Approximate influence points”

* allows for decoupling local problem
from rest of system

how to learn?
— ‘normal’ CE loss

Theorem 2. Consider an JALM M = (S,A,7,R h, bo) and an
AIP [ inducing M = (S, A, 77, R, h,b°). Then, a value loss bound in
terms of the 1-norm error is given by

1V =V lleo < 2h IRl max [|(1° (1 d) = 1" (1)1 (@)

Elena Congeduti, Alexander Mey, and Frans A. Oliehoek. Loss
Bounds for Approximate Influence-Based Abstraction. AAMAS'21
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INFLUENCE results

* Exploring
“Approximate influence points”

* allows for decoupling local problem
from rest of system

how to learn?
— ‘normal’ CE loss

Theorem 2. Consider an JALM M = (S,A,7,R h, bo) and an
AIP [ inducing M = (S, A, 77, R, h,b°). Then, a value loss bound in
terms of the 1-norm error is given by

1V =V lleo < 2h IRl max [|(1° (1 d) = 1" (1)1 (@)

Elena Congeduti, Alexander Mey, and Frans A. Oliehoek. Loss
Bounds for Approximate Influence-Based Abstraction. AAMAS'21

how to use in MCTS?
— construct a ‘local simulator’

number of simulations per step

discounted return

15000

10000 4

(%))
o
o
o

—385

|
w
[T=}
[s]

|
w
[f=}
o]

—400

- —— POMCP-global

B POMCP-IALS-random
s POMCP-IALS-RNN

20000 s POMCP-global

1 2 4 8 16 32 48 64
number of seconds allowed per planning step

—— POMCP-IALS-random
POMCP-IALS-RNN

0 10 20 30 40 50 60
number of seconds allowed per planning step

Jinke He, Miguel Suau, and Frans A. Oliehoek.
Influence-Augmented Online Planning for Complex
Environments. In NeurlPS, 2020.
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Multiagent Systems
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So how would we...

* coordinate traffic control in an entire city?

2023-02-14

b P ._-
Jans:Molenbeek:

Sint;

CBBD'M
deila|Bande dessinée s

@Cifr:zue_ Royal

City of’s /@
Brusselsis/

N29s

ARDLLEN, # %% - Al titut royalides Sciences® &

2 MATONC : aturelles de:Belgique’ -4

Ixelles
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E.g., learning Q(s,a) for a large (multiagent) problem

“plain deep learning”

—— Joint
— M1
— F
— M2R \
F2R |
— M3R /
— 3R /
— m2C
— F2C
— M3C
— F3C

M20

F20

M30
— F30 \

40000 -

30000 4

Total error

20000 —+

10000 -

T T T T
0 20000 40000 60000 80000 100000
Training examples

Jacopo Castellini, Frans A. Oliehoek, Rahul Savani, and Shimon Whiteson. The Representational Capacity of Action-Value
Networks for Multi-Agent Reinforcement Learning. In Proceedings of the Eighteenth International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), 2019

Problems:
»inherent limitations on size of neural networks (e.g., GPU memory)
»training time prohibitive
»joint action spaces scale exponentially
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Abstraction for Multiagent Problems

* Reason about multiple sub-problems
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E.g.: Transfer Planning

* Solve source problems independently

* Also “factored value functions”

Frans A. Oliehoek, Shimon Whiteson, and Matthijs T. J. Spaan. Approximate Solutions for Factored Dec-POMDPs with Many Agents. In Proceedings of the
Twelfth International Conference on Autonomous Agents and Multiagent Systems, pp. 563-570, 2013.
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E.g.: Transfer Planning

* Solve source problems independently

* Also “factored value functions”

y Agents. In Proceedings of the
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E-g. n TCoordlnated Deep Reinforcement Learning

® Solve s

* Also “fac

[Van der Pol & Oliehoek, 2016]

* DQN learners

* on different SUMO
configurations

* leading to lower average
travel time

8- Also: http: //www fransoliehoek. net/trafﬁcwdeo

2l /

And free to choose way in WhICh source problems are solved!

y Agents. In Proceedings of the
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E-g. n TCoordlnated Deep Reinforcement Learning

[Van der Pol & Oliehoek, 2016]

e Solve s DQN learners

e Also “fad® on different SUMO
configurations

* leading to lower average
travel time

Value factorlzatlon has become a major
technique in multiagent RL

pE=Rl © Also: http://v
47l / » Guestrin'02 (NIPS'01) - ‘factored value functions’

»learned message passing [Sukhbaatar et al. 2016]
»Value Decomposition networks [Sunehag et al. 2018]
»(Q-Mix [Rashid et al. 2018]

»Deep Coordination Graphs [Bohmer et al. [2019]

» Capacity of factored value functions [Castellini et al.
2021]

» etc.

And free to choose way in w
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Multiagent MCTS

MCTS in multiagent settings?
* developed for games
* but does not scale well with number of agents...

122




Multiagent MCTS

2 main ideas:

* Apply value factorization

inside MCTS tree
[Amato&Oliehoek’15 AAAI]

Coordinated control
of pumping stations

123




Multiagent MCTS

2 main ideas:

* Apply value factorization

inside MCTS tree
[Amato&Oliehoek’15 AAAI]

* Decentralized MCTS:
predict teammates

Coordinated control
of pumping stations

Warehouse Commissioning
[Claes et al.”17 AAMAS]

graph

Live demo
at swarmlab,
Univ. Liverpool §¢

Toru Robot
(Magazino GmbH)

modeled as a




Other Agents & Nonstationarity

* |f other agents change...
the world is non-stationary!

°|.e., It is part of the environment

2023-02-14 Frans A. Oliehoek - intro RL
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Other Agents & Nonstationarity

°*One idea: try to model it!

2023-02-14 Frans A. Oliehoek - intro RL 126



Other Agents & Nonstationarity

°*One idea: try to model it! INFLUENCE suggest this
might be possible

»certainly if world is
structured

»and ‘influence strength’
of other agent limited
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Other Agents & Nonstationarity

°*One idea: try to model it! INFLUENCE suggest this

2023-02-14

might be possible

»certainly if world is
structured

»and ‘influence strength’
of other agent limited

Taking this further...

»paradigm to deal with general sources of non-stationarity
« e.g., machine learning models that affect their own data.

» Environment Shift Games [Mey & 0. 2021 AAMAS Blue Sky]

« “Are Multiple Agents the Solution, and not the Problem,
to Non-Stationarity?”

Frans A. Oliehoek - intro RL
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Learning Reward Functions
or Dealing with Unknown Rewards
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Dealing with unknown rewards

* Specifying rewards
can be tricky

* E.g., when dealing with humans:

* how much distance
should a robot keep?

* how to approach an
intersection like

a human driver?
[Neumeyer'21 IEEE RAL]

® Learning from demonstration
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Dealing with unknown rewards

* Specifying rewards
can be tricky

* E.g., when dealing with humans:

* how much distance
should a robot keep?

* how to approach an
intersection like

a human driver?
[Neumeyer'21 IEEE RAL]

® Learning from demonstration

Learning from demonstration
»models of car driving behavior
»from camera data

»using GAIL [Ho&Ermon 2016 NeurlPS]:

learns a classifier punish learning agent
when not human-like

Learned car behaviors
[Behbahani et al. 2019]

2023-02-14 Frans A. Oliehoek - intro RL

131



Dealing with unknown rewards

Abstraction-Guided Policy Recovery from Expert Demonstrations (RECO)
»Expert data is sparse...

Agent Goal ~—— Expert trajectory

(I

Ponnambalam, C.T., Oliehoek F.A., Spaan, M.T.J. (2021). Thirty-First International Conference on Automated Planning and Scheduling (ICAPS).
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Dealing with unknown rewards

Abstraction-Guided Policy Recovery from Expert Demonstrations (RECO)
»Expert data is sparse...

Agent Goal ~—— Expert trajectory

(I

Which action should the agent take
from a state that is not in the expert
demonstrations?

Ponnambalam, C.T., Oliehoek F.A., Spaan, M.T.J. (2021). Thirty-First International Conference on Automated Planning and Scheduling (ICAPS).

2023-02-14 Frans A. Oliehoek - intro RL
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Dealing with unknown rewards

Abstraction-Guided Policy Recovery from Expert Demonstrations (RECO)
»Expert data is sparse...

Agent Goal ~—— Expert trajectory ~— RECO policy

(I

Which action should the agent take
from a state that is not in the expert
demonstrations?

»...use appropriate abstractions to piece together expert demonstrations:

e =

RECO uses abstraction
+ to recover a lost agent
back to a known state

08

Ponnambalam, C.T., Oliehoek F.A., Spaan, M.T.J. (2021). Thirty-First International Conference on Automated Planning and Scheduling (ICAPS).
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Value Alignment

* More generally:
how do we get Al to do
what we really want?

F o lr
<o)

> AN G

a

b0 3 oy W) oo D@

https://openai.com/blog/faulty-reward-functions/

* how to incentivize Al? Stuart Russell
. i j HUMAN
prevent the terminator scenario. COMPATIBLE
* \WWe may not have the best track record so far... ‘ : #
e .

Al and the Problem of Control
2023-02-14 Frans A. Oliehoek - intro RL 135



https://openai.com/blog/faulty-reward-functions/

Learning Rewards from Multiple Sources

* Learning human-aligned reward functions:
requires multiple objectives

++ [ + r(s,a) =
++ ]+
- [E] +

Q)

* This will likely require the combination of different
sources of feedback:

* Multi-Objective Reinforced Active Learning
combines demonstrations and preferences to
actively learn a reward for trading off objectives.

Peschl, M., Zgonnikov, A., Oliehoek, F., Siebert, L. C. (2021) MORAL: Aligning Al with Human Norms through Multi-Objective Reinforced Active Learning.
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Learning from data
& how to generalize?

2023-02-14 Frans A. Oliehoek - intro RL 137



Generalization

* “Agent, please do the right thing...

...also if the environment
looks slightly different”

OpenAlI's CoinRun environment

* Try to reduce overfitting to irrelevant features
* Data augmentation

* Meta-learning: train on a set of tasks
e.g., “generally capable agents”

* Statistical models, might be limited in learning
“out of distribution”
— ideas from causal inference [Bareinboim’20 ICML tutorial]
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Off-line RL: Learning from data sets

* When only learning offline from data...
..even more critical to not overfit:

actions that look good due to chance will not be corrected!

PEBL: Pessimistic Ensembles for Offline Deep Reinforcement Learning
»ensemble of neural networks: cecee EED

represents uncertainty about Q-values
;o o o

Shre

»penalize uncertainty:

nnnnnn

replace Q-values with a
one standard deviation lower bound

Breakout

» Leads to lower over-estimation, also _ ~poon
with less diverse training set

804

60 Tmme

Overestimation

40

20 4
-----------

04

0.0 D.IZ 054 UTE D.IE 1.0
Epsilon

Smit, J., Ponnambalam, C.T., Spaan, M.T.J., Oliehoek F.A. (2021). Robust and Reliable Autonomy in the Wild Workshop (IJCAI).
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Conclusions

* RL can do some cool things
* Foundations & state of the art
* Challenges are big

* sample complexity

* learning models

* partial observability

* scaling & the need for abstraction
* multiagent systems

* generalization
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Conclusions

* RL can do some cool things
* Foundations & state of the art
* Challenges are big

...but so might the
future benefits be:

sample complexity

learning models

partial observability

scaling & the need for abstraction
multiagent systems
generalization

Brussels traffic jams, the biggest cause of ai
Euros

FINANCIAL TIMES

A es s mesra | onin s
2w | Meet the cobots: humans and robots
together on the factory floor

1

4 ARTIFICIAL INTELLIGENCE IS

NOW TELLING DOCTORS HOW

| TO TREAT YOU
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Decentralized POMDPs

* A minimal framework for
* multiple cooperative agents
* stochastic environments
* state uncertainty

* A Dec-POMDP (S,A,P.,0,P,,R)
* n agents
* S - set of states

* A - set of joint actions a=<al,(12,---, an>
» P, - transition function P(s'|s,a)

* O - set of Joint observations O:<01, Oy,..es On>
« P, - observation function P<O|a,S ')

* R - reward function R<5,a>

e Act based on individual observations
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What does it buy us?

* Optimal plans need to trade-off:
* immediate vs long-term reward (as in MDPs)

* knowledge gathering vs exploitation (as in POMDPs
and/or RL)

* exploiting individual knowledge vs being predictable

* Using Dec-POMDPs (and similar models) we can
study quantitatively and qualitatively the effect of
interaction.
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Decentralized POMDPs

Yes, these are horribly complex to solve optimally...
» NEXP-complete [Bernstein et al. 2000]
»but no easy way out - this is a minimal model.

s=>s',r
...but we are making steady progress
»E.g., multi-robot systems - Christopher Amato et al.

Raphaelisees that the!RPR2 is busy serving
Lkeonardo, so it geesto'room 1.

« PR2 + 2 turtlebots for faster drinks delivery!
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* Restrict attention to part of state space

2023-02-14

sub-
a, problem
B m O N N N N E W
~ \\‘\ = ~/,’/ “. I- - o
. . o 03 :
> 1N > ‘05,""_a_5_' 'rest’
------------------ » X4 P R X4

Influence Links

Goal:
predict ‘influence sources’

Frans A. Oliehoek - intro RL
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* Restrict attention to part of state space

Influence Links

»If we new the values of influence sources in advance...
»Of course we don't, but we can:

« compute a distribution over them

* need to condition on some stuff, D, in the local problem

»So, an influence point is a collection { P(x_ ... | D) }

sub-

problem

'rest’
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* Restrict attention to part of state space

sub-
problem

'rest’

Influence Links D-separating set

»|f we new the values of influence sources in advanc
» Of course we don't, but we can:
« compute a distribution over them

* need to condition on some stuff, D, in the local problem q
» S0, an influence point is a collection { P(x | D)/

sources

An inference task

149




A Definiti € Tl

* Enables lossless abstraction:

2023-02-14 Frans A. Oliehoek - intro RL 150



The Procedure of IBA

®* Define the local model
* reward-relevant and observation-relevant variables must be included

* Determine a d-separating set

* Construct the
influence-augmented local model (IALM)

* With states <s,D>
« Compute influence point: { P(x_, .| D) }

* Compute transitions P(<s’,D'>|<s,D>,a)
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An Example: Planetary Rover

e Satellite (agent 1) can send a plan to rover (agent 2)

A \ A
~_" ’ ~ _ _
’ ; '4{ f influence
& 7 ~ 2 7N s destination

influence
source

D-set

(direct)
influence link

agent 2's
local states

Figure 7: Illustration of the influence experienced by the mars rover (agent ¢ = 2) at stage t = 3
in the PLANETARY EXPLORATION domain. If the satellite (agent 1) computes and transmits a plan
(pl), the rover can more effectively navigate from that point onward.
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An Example: Planetary Rover

e Satellite (agent 1) can send a plan to rover (agent 2)

”, o ’ 1 -, o s
bt hmmmmaas P I ep— ! bt] )
~_ 7 ’ ~ _ 7 ’
- r r f -

Sy Ay ;

b ~ influence link
- ~ )
‘ ' agent 2's
~ - local states

influence
destination

e Y influence

. source

) (direct)

Figure 7: Illustration of the influence experienced by the mars rover (a

in the PLANETARY EXPLORATION domain. If the satellite (agent 1) com

»Influence: P(a?| pl°?)

»d-set: plo?

»can encode compactly:
planTime&€{0,1,2,not_yet}

»IALM states: </ ,planTime>

(pl), the rover can more effectively navigate from that point onward.
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Approximate Influences
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Exact Influence Points

Influence sources

’
- o oo
.

'local problem' :
(local rewards not shown) 1

rest’

If you can compute them, exact influence points are great!
»...but in general intractable.

2023-02-14 Frans A. Oliehoek - intro RL
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Exact Influence Points (EIPs)

* An exact representation of influence exist:
Exact Influence Point (EIP) (oliehoek et al. 2012]

Definition. The incoming influence for agent 7, for a stage t is the
conditional probability distribution of the influence sources:

It,; = Pr(ul,;|D;)

H

given enough local history D! to d-separate u’,; from the (other) local
states and observations.

Definition. An exact influence point 1_,; for agent 7, specifies the
incoming influences for all stages I ,; = (IO . ,Ih_-l). Influence sources

'local problem'
(local rewards not shown)
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Approximate Influence Points (AIPs)

__.——=predictions

'local problem' ,( X, ) X, Q

(local rewards not shown) "% _ " e eecmeeeemn !

%
U\
e

May need to resort to approximate influence points (AIPs) to predict P(x

»Form of sequence prediction: supervised learning.
»E.g., build on deep learning

ID)

sources
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An Example

/A's |ocal \
: problem -,
. high traffic density

on this.incoming lane

- =
----------

time step t=0
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An Example

!A's local

* problem
\ green fot northbound
| queue
time step t=0

......
--------
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An Example

northbound

queue
at B grows .
"
4
'l

:AI'S |0cal
! problem

1
L}
|}
|
)

time step t=1
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An Example

IittIe traffic
heading to C

-
-
~

/A's |ocal
* problem

......
--------

time step t=2
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An Example

“
‘O
*
4
rd
4
'
r 4
L4
’
4
']
£ ]
!A's local ‘
' |
; problem :
: 1
l 1
|
\ 1)
| 1 ]
K '
K ’
: ']
X ’
' i
. 4
K ' 4
' 4
> "
£ d
"'

- -
---------

southwest-
bound
traffic gets
green

time step t=3
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An Example

/A's |ocal
* problem

......
--------

Increased amount of

incoming traffic

time step t=4
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An Example

: problem

1
L}
|}
|
)

!A's local

.
e

to predict local state
at stage t=5....

LI

]

...state.énd action at
stage,t=0 are relevant

- =
----------

time step t=5
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An Example

A's local
problem

- -
o - oy

»find representation of influence
(of 'rest' on 'local problem')

»great implications, e.g.:

« use partial system simulator
 for local, fast simulation
« same results

.
e

to predict local state
at stage t=5....

R

...state.énd action at
stage,t=0 are relevant

......
--------

time step t=5
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MCTS - Example

a, H




MCTS - Example

04 09
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MCTS - Example

04 09
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MCTS - Example

04 09
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MCTS - Example

0,8 09
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MCTS - Example

0,0

04 - 0,p
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MCTS - Example

o

use
'rollout policy'

0.4

0. {

r=+10
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MCTS - Example

L4014y 0%

0,4 \ 1, {+10}
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MCTS - Example

1,{+14} 0%

o
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MCTS - Example

o
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MCTS - Example
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MCTS - Example
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MCTS - Example
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MCTS - Example
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MCTS - Example
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MCTS - Example

NOTE: the statistics maintained, represent
an estimate of Q(s,a)
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MCTS - Example
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MCTS - Example
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MCTS - Example
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MCTS - Example
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MCTS - Example
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MCTS - Example
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MCTS - Example
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Convergence...?

* Does this converge...?
2 {+14,+9}H___‘___1_
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Convergence...?

* Does this converge...?
2 {+'I4,+9}H______h_

*Yes... but not trivial...
conflicting requirements:

* accurate value estimates: 1
- try all actions infinitely often
* estimates of an optimal policy

- be greedy in sub-tree e

190




Action Selection Iin the tree?

* \What actions to select?

2, {+14,+9}

-
-
-
-
-
-
-
-
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Action Selection Iin the tree?

* \What actions to select? &

2, {+14,+9}

-
-
-
-
-
-
-
-

a1
* Balance: ﬂ L.

* exploitation: focus on good branches

* exploration: see if there could be better
branches
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Action Selection Iin the tree?

* \What actions to select?

2, {+14,+9} 2 ) 1, {+4}
a, a, 1, {+6}
* Balance: .ﬂ_ 00 L -

* exploitation: focus on good branches |
* exploration: ¢

b h »Typical approach: exploration bonus
rancnes »E.qg., the “UCT"” algorithm [Kocsis&Szepesvari'06]

U(h,a)=Q(h,a)+cylog(N,+1)/N

a

upper confidence \ .
bound of node h mean return  exploration bonus




Action Selection Iin the tree?

* \What actions to select?

* Balance:

2, {+14,+9}

-
-
-
-
-
-
-
-

* exploitation: focus on good branches

* exploration: ¢

branches

if a tried more often —»
less bonus

» Typical approach: exploration bonus
»E.g., the “UCT"” algorithm [Kocsis&Szepesvari'06]

-" S~

bound of node h mean return  exploration bonus




Action Selection Iin the tree?

e \\/hat actiong to gelect?

WIS AN WD

14,49}

“Optimism in the face of uncertaintzy

a, 0.4 %/ \&: 1, +6)
* Balance: R 0, § 100

[l = B - | | 3
* exploitation: focus on good branches |

* exploration: ¢
b h » Typical approach: exploration bonus
rancnes »E.g., the “UCT” algorithm [Kocsis&Szepesvari'06]

-" S~

U(h,a)=Q(h,a)+clog(N, +1)/N

upper confidence ™ \x ________

if @ tried more often » bound of node h mean return  exploration bonus

less bonus
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