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Step 1: data collection

I am interested in finding out the probability that you prefer Pierce Brosnan
over Sean Connery as James Bond Given Age.

Who is the best actor for James Bond (Sean Connery or Pierce Brosnan)
and what is your age?
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Step 2: choose and train our model

Many option to choose from
boosting
neural network
decision tree
random forest
logistic regression

But how to train our model?
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Today

How to guarantee that you are predicting as well as the best model
in class?

And how to use online learning to achieve our goal

1 statistical learning (batch setting)
2 online learning
3 online to batch conversion in expectation
4 online to batch conversion with high-probability
5 possible approach for fast logistic regression
6 self-concordant functions
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Statistical learning

1 The learner receives i.i.d. data D = (X1, Y1), (X2, Y2), . . . , (XT , YT )

2 The learner chooses f̄ : X → Y

Goal: control the excess risk

R = EX ,Y [ℓ(f̄ (X ), Y )] − min
f ∈F

EX ,Y [ℓ(f (X ), Y )]

either in expectation or with high-probability over D.
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Statistical learning: an interactive example

D = (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 0)

F = {0, 1}

Q: what is a reasonable predictor f̄ ?

Intuitive option: ERM (empirical risk minimization)

f̄ = arg min
f ∈F

1
T

T∑
t=1

ℓ(f (Xt), Yt)
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Logistic regression

Today’s objective is to control the logistic loss for linear F , i.e.

ℓ(x⊤θ, y) = −1[y = 1] log(σ(x⊤θ)) − 1[y = −1] log(1 − σ(x⊤θ)),

where σ(z) = 1
1+exp(z)

An alternative formulation:

ℓ(x⊤θ, y) = log(1 + exp(yx⊤θ))
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Logistic regression: improper excess risk

The excess risk is defined as:

R =EX ,Y

[
− 1[Y = 1] log(σ̄(X )) − 1[Y = −1] log(1 − σ̄(X ))

]
− min

θ∈B(b)
EX ,Y log(1 + exp(YX⊤θ))

We assume that ∥X∥ ≤ r almost surely.

Important our estimator might be improper: σ̄(x) is not necessarily equal
to σ(x⊤θ̂) for some θ̂.
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Excess risk of ERM

For logistic regression, in expectation over D, ERM is known to obtain

θERM = arg min
θ∈B(b)

1
T

T∑
t=1

log(1 + exp(Yt , X⊤
t θ))

R = O
(

min
{ br√

T
,
d exp(br)

T

})

But is it optimal?

Yes: for proper learners it is known that one can not do better than the
above rate.
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Excess risk of improper learners in expectation

All in big-O
Foster et al (2018)
excess risk: d log(rbT/d)

T runtime = poly(T , d)
Jezequel et al (2020), Agarwal (2021)
excess risk: drb log(T )

T runtime T (d2 + log(T ))
Mourtada and Gaiffas (2021)
excess risk: d+(rb)2

T runtime = ERM
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Excess risk of improper learners w.h.p.

All in big-O, with probability at least 1 − δ

Vijaykumar (2021) (*slightly stronger guarantee)
Excess risk: d

T log(T )(log(Trb) + log(1/δ)) runtime = ???
Puchkin and Zhivotovskiy (2023)
Excess risk: exp(br)(d+log(1/δ))

T runtime = ERM
Van der Hoeven et al (to appear 2023)
Excess risk: d

T log(Trb) + log(T ) log(1/δ)
T runtime = poly(d , T )
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How to obtain our bounds?

Online to batch conversion in expectation:
1 run an online learning algorithm sequentially over the data using the

original loss function
2 average the predictors of the online learning algorithm
3 use Jensen’s inequality

Online to batch conversion with high probability:
1 run an online learning algorithm sequentially over the data using a

shifted loss function
2 average the predictors of the online learning algorithm
3 use Jensen’s inequality + a version of freedman’s inequality for

martingales
4 cancel some quadratic terms
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The program

1 statistical learning
2 online learning
3 online to batch conversion in expectation
4 online to batch conversion with high-probability
5 possible approach for fast logistic regression
6 self-concordant functions
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Online learning

Online learning proceeds in rounds t = 1, . . . , T In each round t
1 the environment picks an outcome yt ∈ Y and reveals context

xt ∈ X

2 the learner chooses ft and issues prediction ft(xt) ∈ Y
3 the learner suffers ℓ(ft(xt), yt)
4 the environment reveals yt .

I assume that ℓ is α−exp concave and is known to the learner at the start
of the game.
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Goal: control the (expected) regret

RT =
T∑

t=1
ℓ(ft(xt), yt)︸ ︷︷ ︸

how did the learner do?

− min
f ∈F

T∑
t=1

ℓ(f (xt), yt)︸ ︷︷ ︸
how well does the best fixed prediction do?

Example: for any sequence of (X1, Y1), . . . , (XT , YT ), with α-exp
concave, the exponential weights algorithm guarantees a log(|F|)

α regret
bound, which is known to be optimal (up to constants).
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Exp-concavity

A function g : Z → [0, m] is called α-exp concave if

g̃(z) = exp(−αg(z))

is a concave function.

Alternatively a function is exp-concave if

α(g ′(z))2 ≤ g ′′(z)

Examples: squared loss (linear regression), log loss (density estimation),
logistic loss (logistic regression)

Dirk van der Hoeven Online to statistical learning April 19, 2023 16 / 49



Exp-concavity

A function g : Z → [0, m] is called α-exp concave if

g̃(z) = exp(−αg(z))

is a concave function. Alternatively a function is exp-concave if

α(g ′(z))2 ≤ g ′′(z)

Examples: squared loss (linear regression), log loss (density estimation),
logistic loss (logistic regression)

Dirk van der Hoeven Online to statistical learning April 19, 2023 16 / 49



Online learning: an interactive example

In each round t

1 I choose yt ∈ {0, 1} (there is no context)
2 You choose prediction ∈ {0, 1}
3 You suffer loss (ŷt − yt)2

4 I reveal yt
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Online learning: an interactive example

You: predict ŷt ∈ {0, 1}

I: give you the answer

Outcomes:

y1 = 1, y2 = 1, y3 = 1, y4 = 1, y5 = 1, y6 = 1, y7 = 0
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Why standard tools do not work

Methods relying solely on exp-concavity will not work because the logistic
loss is exp(−br)-exp concave:

ℓ′(z , y) = y exp(zy)
1 + exp(zy)

ℓ′′(z , y) = y2 exp(zy)
(1 + exp(zy))2

Tools based on α-exp concavity have bounds that scale with

1
α

which is why we need improper methods: these give us more leverage.
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Online to batch conversion
We will use:

σ̄ = 1
T

T∑
t=1

σµ,t

where σµ,t , . . . , σµ,t are the functions output by an online learning
algorithm.

For example, we could use Online Newton Step (ONS) to obtain some θt
and output

σµ,t(x) = (1 − µ)σ(x⊤θt) + µ1
2

Alternatively, we could use continuous exponential weights to obtain a
distribution Pt over θ to obtain

σt(x) = EPt [(1 − µ)σ(x⊤θ)] + µ1
2
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Online to batch conversion in Expectation over data

Let Dt−1 = (X1, Y1), . . . , (Xt−1, Yt−1)
By convexity of ℓ we have

EX ,Y ,D[ℓ(σ̄(X ), Y )]

≤ EX ,Y ,D[ 1
T

T∑
t=1

ℓ(σµ,t(X ), Y )]

= ED

[ 1
T

T∑
t=1

EXt ,Yt [ℓ(σµ,t(Xt), Yt)|Dt−1]
]

= ED

[ 1
T

T∑
t=1

ℓ(σµ,t(Xt), Yt)
]

why it’s easy in E
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Online to batch conversion in expectation over data

Similarly

min
f ∈F

EX ,Y [ℓ(f (X ), Y )] ≥ ED[min
f ∈F

1
T

T∑
t=1

ℓ(ft(Xt), Yt)]

and thus

EX ,Y ,D[ℓ(σ̄(X ), Y )] − min
f ∈F

EX ,Y ,D[ℓ(f (X ), Y )] ≤ ED[ 1
T RT ]

We have converted the guarantees of an online learning algorithms to the
statistical learning (batch) setting

Dirk van der Hoeven Online to statistical learning April 19, 2023 22 / 49



Intermission: the problem with improper methods

Consider a simple setting where F = {0, 1} and Y = {0, 1}.
Audibert (2007) showed that there exists a δ ∈ [0, 1] such that with
probability at least δ, for the squared loss and OTB of exponential weights
must suffer

EX ,Y [ℓ(f̄ (X ), Y )] − min
f ∈F

EX ,Y [ℓ(f (X ), Y )] ≥ c
√

log(eδ−1)
T

for some c > 0.

The cause of this behaviour is at the heart of several issues of improper
learners: sometimes better than the best in class, sometimes worse than
the best in class, which leads to high variance.

Foster et al (2018) did not account for this behavior in their high-probability
bound.
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Star aggregation

Audibert (2007) also showed that for the squared loss an algorithm called
star aggregation does in fact guarantee that, with probability at least 1 − δ

EX ,Y [ℓ(f̄ (X ), Y )] − min
f ∈F

EX ,Y [ℓ(f (X ), Y )] ≤ C log(δ−1) + log(|F|)
T

for some C > 0

But..... it is horrifically slow.

The algorithm of Vijaykumar (2021) is based on this idea.
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A look at the problem with OTB

Recall Dt−1 = (X1, Y1), . . . , (Xt−1, Yt−1)

By convexity of ℓ we have

EX ,Y [ℓ(σ̄(X ), Y )]

≤ 1
T

T∑
t=1

EXt ,Yt [ℓ(σµ,t(Xt), Yt)|Dt−1]

How to recover the loss suffered by the learner, i.e.
∑T

t=1 ℓ(σµ,t(Xt), Yt)?
Or perhaps, how to recover the regret?
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Martingales

Denote by f ⋆ = arg minf ∈F EX ,Y [ℓ(f (X ), Y )]

Let

rt = ℓ(σµ,t(Xt), Yt) − ℓ(f ⋆(Xt), Yt)
Zt = EXt ,Yt [rt |Dt−1] − rt

Z1, . . . , ZT can be recognised as a martingale difference sequence, for which
standard concentration results exist.
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Martingales

Suppose that |Zt | ≤ K (!!) almost surely

Azuma-Hoeffding: with probability at least 1 − δ

T∑
t=1

Zt ≤ K
√

T log(1/δ)

hopeless because of the
√

T ...
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Martingales

Suppose that |Zt | ≤ K almost surely

(A version of) Freedman’s inequality: for a fixed λ ∈ (0, 1/K ], with
probability at least 1 − δ

T∑
t=1

Zt ≤ log(1/δ)
λ

+ λ
T∑

t=1
E[Z 2

t |Dt−1]

Nicer, but how to deal with the
∑T

t=1 EXt ,Yt [Z 2
t |Dt−1]?
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Exp-concavity to the rescue

Lemma

Suppose that g : Z → [0, m] is an α-exp-concave function. Let
γ = 4 max

{
m, 1

α

}
. Then

g
(1

2x + 1
2z
)

≤ 1
2g(x) + 1

2g(z) −
(
g(x) − g(z)

)2

4γ
, for all x , z ∈ Z .

"inequalities write papers"
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How to use the inequality

Recall ℓ(p(x), y) = −y log(p(x)) − (1 − y) log(1 − p(x)). This is not
bounded in a nice manner!
Instead: we predict with σµ,t(x) = (1 − µ)σt(x) + µ1

2 .
For µ ≤ 1

2 we can show that

ℓ(p(x), y) ≥ ℓ((1 − µ)p(x) + µ1
2 , y) − 2µ

We use ℓµ(p(x)) = ℓ((1 − µ)p(x) + µ1
2 , y) ∈ [0, log(2/µ)]. We have that

ℓ(σµ,t(x), y) − ℓ(p(x), y) ≤ ℓµ(σt(x), y) − ℓµ(p(x), y) + 2µ
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How to use the inequality

Alternatively, we can set µ = 0 and simply use that

log(1 + exp(z)) ≤ log(2) + |z | (1)
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How to use the inequality

Let f ⋆(x) = σ(x⊤θ⋆)
Recall that rt = ℓ(σµ,t(Xt), Yt) − ℓ(f ⋆(Xt), Yt)

Since ℓ is 1-exp concave in its first argument, we can use the inequality to
show that

rt ≤ 2ℓµ(σt(Xt), Yt) − 2ℓµ(1
2 f ⋆(Xt) + 1

2σt(Xt), Yt) − (rt)2

2γ
+ 2µ

We can now use
∑T

t=1 − (rt)2

2γ to compensate for
∑T

t=1 EXt ,Yt [Z 2
t |Dt−1]

from Freedman’s inequality!
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But wait...

How do we deal with
T∑

t=1

(
ℓµ(σt(Xt), Yt) − ℓµ(1

2 f ⋆(Xt) + 1
2σt(Xt), Yt)

)
?

Define ℓ̃t(σ(θ⊤Xt)) = ℓ(1
2σ(θ⊤Xt) + 1

2σt(Xt), Yt) and bound the shifted
regret

T∑
t=1

(
ℓµ(σt(Xt), Yt) − ℓµ(1

2 f ⋆(Xt) + 1
2σt(Xt), Yt)

)
=

T∑
t=1

(
ℓ̃t(σt(Xt)) − ℓ̃t(f ⋆(Xt))

)
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Online learning to the rescue!

Because − log is 1-exp concave we have that ℓ̃t is also 1-exp concave. This
means that we can run our favorite algorithm (exponential weights with a
uniform prior over the ball) on losses ℓ̃t to guarantee that

R̃T =
T∑

t=1

(
ℓ̃t(σt(Xt)) − ℓ̃t(f ⋆(Xt))

)
≤ Cd log(1 + brT/d)

For some constant C > 0
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Combining it all

Theorem

Suppose that the loss function ℓ : Y × Y → [0, m] is α-exp concave in its
first argument. Then the risk of the averaged estimator

f̄ = 1
T

T∑
t=1

ft

satisfies, with probability at least 1 − δ with respect to the random draw of
(Xt , Yt)T

t=1,

EX ,Y [ℓ(f̄ (X ), Y )] − min
f ∈F

EX ,Y [ℓ(f (X ), Y )] ≤ 2R̃T + 2γ log(1/δ)
T

where γ = 4 max
{

m, 1
α

}
.
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Interpreting it all

The results implies that we online need to run our online learning algorithms
on the shifted losses ℓ̃t to obtain high-probability bound on the excess
risk

For logistic regression, this implies that we have an algorithm with runtime
poly(dT ) that obtains a

O( d
T log(Trb) + log(T ) log(1/δ)

T )

excess risk bound with probability at least ≥ 1 − δ.

Alternative excess risk bound with µ = 0: O( d
T log(Trb) + rb log(1/δ)

T )

Dirk van der Hoeven Online to statistical learning April 19, 2023 36 / 49



Interpreting it all

The results implies that we online need to run our online learning algorithms
on the shifted losses ℓ̃t to obtain high-probability bound on the excess
risk

For logistic regression, this implies that we have an algorithm with runtime
poly(dT ) that obtains a

O( d
T log(Trb) + log(T ) log(1/δ)

T )

excess risk bound with probability at least ≥ 1 − δ.

Alternative excess risk bound with µ = 0: O( d
T log(Trb) + rb log(1/δ)

T )

Dirk van der Hoeven Online to statistical learning April 19, 2023 36 / 49



Open problems

1 We do not understand logistic regression fully. Is there a fast algorithm
with a nice bound w.h.p.?

2 Extensions to self-concordant losses?
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A new hope

Suppose that |u|, |z | ≤ br

Recent works are able to use the lower bound

log(1 + exp(yu)) ≥ log(1 + exp(yz))

+ y exp(yz)
(1 + exp(yz))(u − z) + 1

br + 1
exp(yz)

(1 + exp(yz))2 (u − z)2

To obtain a O(dbr log(T ) regret bound with Õ(d2T ) runtime.
Their magic idea: let parameter θt in σt(x⊤θt) depend on feature xt
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Why we need to work
Denote by κt = 1

br+1
exp(YtX⊤

t θt(Xt))
(1+exp(YtX⊤

t θt(Xt)))2 , βt = Yt
exp(YtX⊤

t θt(Xt))
1+exp(YtX⊤

t θt(Xt))

ℓt(θ) = βt(X⊤
t θ − X⊤

t θt(Xt)) + κt(X⊤
t θt(Xt) − X⊤

t θ)2

Suppose that we use σ̄(x) = 1
T
∑T

t=1 σ(x⊤θt(x)). We have that

R ≤ 1
T

T∑
t=1

EX ,Y [ℓt(θt(Xt)) − ℓt(θ⋆)|Dt−1]

= 1
T

( T∑
t=1

EX ,Y [βt(X⊤
t θt(Xt) − X⊤

t θ⋆) − 1
2κt(X⊤

t θt(Xt) − X⊤
t θ⋆)2|Dt−1]

− 1
2 EX ,Y [κt(X⊤

t θt(Xt) − X⊤
t θ⋆)2|Dt−1]

)
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Why we need to work

Applying Friedman to conclude that, with probability at least 1 − δ

T∑
t=1

EX ,Y [βt(X⊤
t θt(Xt) − X⊤

t θ⋆) − 1
2κt(X⊤

t θt(Xt) − X⊤
t θ⋆)2|Dt−1]

≤
T∑

t=1
βt(X⊤

t θt(Xt) − X⊤
t θ⋆) − 1

2κt(X⊤
t θt(Xt) − X⊤

t θ⋆)2 + log(1/δ)
λ

+ λ

T∑
t=1

EX ,Y

[(
βt(X⊤

t θt(Xt) − X⊤
t θ⋆) − 1

2κt(X⊤
t θt(Xt) − X⊤

t θ⋆)2
)2

|Dt−1
]
,

for some fixed λ ∈ [0, 1
R ], where R is such that 2|ℓt(θ⋆)| ≤ R
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Why we need to work

Since 1
2κt(X⊤

t θt(Xt) − X⊤
t θ⋆)2 ≤ 2(br)2 we have that

EX ,Y

[(
βt(X⊤

t θt(Xt) − X⊤
t θ⋆) − 1

2κt(X⊤
t θt(Xt) − X⊤

t θ⋆)2
)2

|Dt−1
]

≤ EX ,Y

[
2
(

β2
t (X⊤

t θt(Xt) − X⊤
t θ⋆)2 + 4κt(X⊤

t θt(Xt) − X⊤
t θ⋆)2

)2
|Dt−1

]
Thus, setting λ = α

(br)2 for some fixed α ∈ [0, 1
2 ] we find...

Dirk van der Hoeven Online to statistical learning April 19, 2023 41 / 49



Why we need to work

with probability at least 1 − δ

R ≤ 1
T

( T∑
t=1

βt(X⊤
t θt(Xt) − X⊤

t θ⋆) − 1
2κt(X⊤

t θt(Xt) − X⊤
t θ⋆)2

︸ ︷︷ ︸
regret

+ α

(br)2 EX ,Y

[
2
(

β2
t (X⊤

t θt(Xt) − X⊤
t θ⋆)2|Dt−1

]
+ (4α − 1

2)EX ,Y [κt(X⊤
t θt(Xt) − X⊤

t θ⋆)2|Dt−1]
)

+ (br)2 log(1/δ)
α

Now, setting α < 1/16....

Dirk van der Hoeven Online to statistical learning April 19, 2023 42 / 49



Why we need to work

with probability at least 1 − δ

R ≤ 1
T

( T∑
t=1

βt(X⊤
t θt(Xt) − X⊤

t θ⋆) − 1
2κt(X⊤

t θt(Xt) − X⊤
t θ⋆)2

︸ ︷︷ ︸
regret = (?) O(dbr log(T ))

+ α

(br)2 EX ,Y

[
2
(

β2
t (X⊤

t θt(Xt) − X⊤
t θ⋆)2|Dt−1

]
− 1

4 EX ,Y [κt(X⊤
t θt(Xt) − X⊤

t θ⋆)2|Dt−1]︸ ︷︷ ︸
use to compensate the positive quadratic?

)
+ (br)2 log(1/δ)

α
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Why we need to work

recall

β2
t = exp(2YtX⊤

t θt(Xt))
(1 + exp(YtX⊤

t θt(Xt)))2

κt = 1
br + 1

exp(YtX⊤
t θt(Xt))

(1 + exp(YtX⊤
t θt(Xt)))2

This suggest us to set α = O((br)−1 exp(−br)) to find ...
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Why we need to work

with probability at least 1 − δ

R ≤ 1
T

( T∑
t=1

βt(X⊤
t θt(Xt) − X⊤

t θ⋆) − 1
2κt(X⊤

t θt(Xt) − X⊤
t θ⋆)2

︸ ︷︷ ︸
regret = (?) O(dbr log(T ))

+ exp(br)br log(1/δ)

= O(dbr log(T ) + exp(br)(br) log(1/δ)
T )

There is still hope though: the algorithm that obtains the O(dbr log(T ))
regret bound does not use that β2 ≤ exp(br)κt , even though this is the
standard approach in online learning.
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Other approaches?

boosting improper learners: standard idea relies on Markov’s inequality
for the excess risk...
Mourtada and Gaiffas (2021) obtain a d+(rb)2

T excess risk bound in E:
try to get a high-probability version of their algorithm?
Other approaches?
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Second open problem

If g satisfies

2(g ′′(x))3/2 ≥ g ′′′(x)

Then g is called self-concordant and

g(x) − g(u) ≤ g ′(x)(x − u) −
√

(x − u)2g ′′(x) + ln(1 +
√

(x − u)2g ′′(x))

g(x) − g(u) ≤ g ′(u)(x − u) −
√

(x − u)2g ′′(u) − ln(1 −
√

(x − u)2g ′′(u))

Is this sufficient to avoid scaling L and/or b for α-exp concave g where
|g ′(x)| ≤ L and ∥x∥ ≤ b in high-probability bounds?
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Second open problem: why
The high-probability part of our bound scales with 1

α + m, where m is such
that ℓ(f (x), y) ∈ [0, m]. W.p. at least 1 − δ

R = O
(

1
T

(
RT +

( 1
α

+ m
)

log(1/δ)
))

= O

 1
T

(
RT +

( 1
α

+ Lb
)

︸ ︷︷ ︸
Lb can be big

log(1/δ)
)

Application in portfolio selection, logistic regression(?), statistical learning
(MLE of covariance matrices, s.c. huber loss), and generally quite nice.
Also, if the function is also a barrier for a domain then no need for
projections anymore!

Reason for hope:
recent results for portfolio selection show that regret bounds do not
need to scale with L
Self-concordance is used in optimization for similar gains.
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