
SciQL, A Query Language for Science Applications

M. Kersten, Y. Zhang, M. Ivanova, N. Nes
CWI, Netherlands

ABSTRACT
Scientific applications are still poorly served by contemporary re-
lational database systems. At best, the system provides a bridge
towards an external library using user-defined functions, explicit
import/export facilities or linked-in Java/C# interpreters. Time has
come to rectify this with SciQL1, a SQL query language for sci-
entific applications with arrays as first class citizens. It provides
a seamless symbiosis of array-, set-, and sequence- interpretation
using a clear separation of the mathematical object from its un-
derlying implementation. A key innovation is to extend value-
based grouping in SQL:2003 with structural grouping, i.e., fixed-
sized and unbounded groups based on explicit relationships be-
tween their dimension attributes. It leads to a generalization of
window-based query processing with wide applicability in science
domains. This paper is focused on the language features, exten-
sively illustrated with examples of its intended use.

1. INTRODUCTION
The sciences have long been struggling with the problem to archive

data and to exchange data between programs. Established file for-
mats are, e.g., NETCDF [25], HDF5 [14] and FITS [11], which
contain self-descriptive measurements in terms of units, instrument
characteristics, etc. Data-intensive sciences need to process very
large (sparse) multi-dimensional arrays or time series over numeric
data, e.g., (satellite) images and micro array sequences [16]. The
file header is often an XML-based description of the instrument and
the experiment properties. For heterogeneous environments, such
as in bio-sciences, the data itself is also cast in XML2.

Relational database management systems are the prime means to
fulfill the role of application mediator for data exchange and data
persistence. Nevertheless, they have not been too successful in the
science domain beyond the management of meta data and work-
flow status. This mismatch between application needs and database
technology has long been recognized [6, 30, 12, 15, 7, 16, 13, 4,
26]. In particular, an efficient implementation of array and time
series concepts is missing [12, 30, 20, 1]. The main problems en-

1SciQL is pronounced as ‘cycle’.
2http://www.gbif.org/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AD 2011, March 25, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0614-0/11/03 ...$10.00.

countered with relational systems in science can be summed up
as (a) the impedance mismatch between query language and array
manipulation, (b) the difficulty to express complex array-based ex-
pressions in SQL, (c) ARRAYs are not first class citizens, (d) inges-
tion of terabytes of data is too slow. The traditional DBMS simply
carries too much overhead. Moreover, much of the science process-
ing involves use of standard libraries, e.g., Linpack, and statistics
tools, e.g., R. Their interaction with a database is often confined to
a simplified import/export data set facility. The proposed standard
for mediation external data (SQL3/MED) has not materialized as
a component in contemporary system offerings. A workflow man-
agement system is indispensable when long running jobs on grids
and clusters are involved. It is realized mostly through middleware
and a web interface, e.g., Taverna [23].

Nevertheless, the array type has drawn attention from the database
research community for many years. The object-oriented database
systems allowed any collection type to be used recursively [2], and
multi-dimensional database systems took it as the starting point for
their design [13]. Several SQL dialects were invented in an attempt
to increase the functionality [24, 26, 17], but few systems in this
area have matured beyond the laboratory stage. A noticeable ex-
ception is RasDaMan [4].

Key to success is a query language that achieves a true sym-
biosis of the TABLE semantics with the ARRAY semantics in the
context of external software libraries. This led to the design of
SciQL, where arrays are made first class citizens by enhancing the
SQL:2003 framework along three innovative lines:

• Seamless integration of array-, set-, and sequence- seman-
tics.

• Named dimensions with constraints as a declarative means
for indexed access to array cells.

• Structural grouping to generalize the value-based grouping
towards selective access to groups of cells based on posi-
tional relationships for aggregation.

Arrays in SciQL are identified by explicitly named dimensional
attributes (for short: dimensions) using DIMENSION constraints.
Unlike a TABLE, every index value combination denotes an array
cell, where the value of each non-dimensional attribute is either
explicitly stored or derived from the DEFAULT clause of this at-
tribute. The array size is fixed if the DIMENSION clause limits it
explicitly. The size of unbounded arrays is derived from the actual
minimum and maximum values of their dimension representations.
The data type of a dimension can be any of the basic scalar data
types. Out of bound array cells carry a NULL value for each of its
non-dimensional attributes. A NULL value within the array bounds
denotes a ‘hole’. At the logical level both are indistinguishable, but
their underlying implementations may differ greatly. It is the task

of the SciQL runtime system to choose the best representation or to
maintain multiple representations.

Arrays may appear wherever a table expression is allowed in a
SQL expression, producing an array if the column list of a SELECT
statement contains dimension expressions. The SQL iterator se-
mantics associated with TABLEs carry over to ARRAYs, but itera-
tion is confined to cells whose non-dimensional attributes are not
NULL.

An important operation is to carve out an array slab for further
processing. The windowing scheme provided in SQL:2003 is a step
into this direction. Windows were primarily introduced to better
handle time series in business data warehouses and data mining.
In SciQL, we take it a step further by providing an easy to use
language feature to identify cell groups based on their dimension
relationships. Such groups form a pattern, called a tile, which can
be subsequently used in a GROUP BY clause to derive all possible
incarnations for, e.g., statistical aggregation.

Rather than revolutionizing the world of how scientists should
organize their data repositories, we foresee and bet on a symbiotic
architecture where declarative array-based processing and existing
science routine libraries come together. The aforementioned files,
e.g., FITS, need not be ingested explicitly, but instead they are ex-
ploited in an adaptive way by the SciQL query processing strategy.
Furthermore, we believe that a clean design and a modern column-
store database engine provides a sound basis to tackle the problems
at hand. The storage layer underpinning the SciQL implementa-
tion will therefore be based on the MonetDB [22] software stack,
which provides for a modular approach to tackle the issues arising
from storage representation and query optimization. A detailed de-
scription of this aspect, however, is beyond the scope of this paper.
Instead, we elucidate the language concepts using concrete exam-
ples from science domains.

The remainder of the paper is organized as follows. Section 2
introduces SciQL through a series of examples. Section 3 demon-
strates query functionality. Section 4 describes structural opera-
tors over arrays. Section 5 discusses SciQL’s support for two kinds
of user defined functions. Section 6 evaluates the language using
snippets from key algorithms in a few science domains. Section 7
discusses related work. We conclude in Section 8 with a summary
and an outlook on the open issues.

2. LANGUAGE MODEL
In this section we summarize the features offered in SciQL con-

cerning ARRAY definitions, instantiation, and modification, as well
as coercions between TABLE and ARRAY.

2.1 Array Definitions
We purposely stay as close as possible to the syntax and seman-

tics of SQL:2003. An ARRAY object definition can reuse the syntax
of TABLE with a few minor additions. First, the ARRAY definition
calls for at least one attribute tagged with a DIMENSION constraint,
which describes its value range. The data type of a dimension can
be any of the basic scalar data types. Thus data types, such as
FLOAT, VARCHAR, and TIMESTAMP are allowed. Second, all non-
dimensional attributes may use a DEFAULT clause to initialize their
values. Omission of the default or assignment of a NULL-value
produces a ‘hole’, which is ignored in the built-in aggregation func-
tions. The default value may be arbitrarily taken from a scalar ex-
pression, the cell dimension value(s), or a side-effect free function.

A TABLE and an ARRAY differ semantically in a straightforward
manner. A TABLE denotes a (multi-)set of tuples, while an AR-
RAY denotes a (sparsely) indexed collection of tuples, also denoted
as cells. For an ARRAY all cells covered by the dimensions exist
conceptually and their non-dimensional attributes are initialized to

a default value, while in a TABLE tuples only come into existence
after an insert operation. An ARRAY can be turned into a TABLE
readily by ignoring its dimension bounds and turning the dimen-
sions into a compound primary key. Likewise, a TABLE can be
turned into an ARRAY by specifying some of its columns as dimen-
sions and providing values for missing cells, e.g., using the default
value clause.

Array dimensions are either fixed or unbounded. An array is
also called fixed iff all its dimensions are fixed, otherwise it is un-
bounded. The range and size of a fixed dimension are exactly speci-
fied using the sequence pattern [<start>:<final>:<step>],
which is composed out of literal constants. The interval between
start and final has an open end-point, i.e., final is not in-
cluded. The data type of start, final, and step must conform
the data type of the dimension. For integer dimensions, the tra-
ditional syntax using an integer upper bound, [<size>], can be
deployed as a shortcut of the sequence pattern [0:<size>:1].
Alternatively, a SQL:2003 SEQUENCE object can be used to desig-
nate the range of validity3.

A dimension is unbounded if any of its start, final, or step
expression is identified by the pseudo expression *. Defining a di-
mension without a sequence pattern implies the most open pattern
[*:*:*]. Values of cells in an unbounded array can be filled in
and removed using INSERT and DELETE statements carried over
from the table semantics part. Unbounded arrays have an implic-
itly defined size derived from the minimal bounding rectangle that
encloses all cells with a non-NULL value in the ARRAY instance.

An unbounded dimension is typically used for a n-dimensional
spatial array where only part of the dimension range designates a
non-empty array cell. Time series are also prototypical examples
for representation with unbounded dimensions. The SciQL arrays
differ from ordinary tables in that for access of out-of-bound array
cells, the non-dimensional attributes are set to produce NULL. De-
fault values within the array bounds are derived from the DEFAULT
clauses of non-dimensional attributes.

The following declarations of a zero initialized array float A[4]
are semantically identical.

CREATE ARRAY A1 (
x INTEGER DIMENSION[4],
v FLOAT DEFAULT 0.0);

CREATE ARRAY A2 (
x INTEGER DIMENSION[0:4:1],
v FLOAT DEFAULT 0.0);

CREATE SEQUENCE range AS INTEGER
START WITH 0 INCREMENT BY 1 MAXVALUE 3;

CREATE ARRAY A3 (
x INTEGER DIMENSION [range],
v FLOAT DEFAULT 0.0);

SciQL arrays can take complex forms (see Figure 1). In addi-
tion to the C-style rectangular arrays, a grid can be defined as one
where the default value is indistinguishable from out of bound ac-
cess, i.e., some cells are explicitly excluded by carrying NULL non-
dimensional attribute values. A diagonal array is easily expressed
using a predicate over the dimensions involved. It is even possible
to carve out an array based on its content, thereby effectively nulli-
fying all cells outside the domain of validity and producing a sparse
array. This feature is of particular interest to remove outliers as an

3Then, the boundedness of the dimension depends on whether the
START WITH, INCREMENT BY and MAXVALUE options of the SE-
QUENCE object are all specified or not. Also note that a SQL:2003
SEQUENCE has a closed end-point, i.e., MAXVALUE is included.

Figure 1: SciQL Arrays

integrity constraint. Different array forms can lead to very different
considerations with respect to their physical representation, a topic
discussed in a companion paper. The following statements show
how the four arrays in Figure 1 are created in SciQL.

CREATE ARRAY matrix (
x INTEGER DIMENSION[4],
y INTEGER DIMENSION[4],
v FLOAT DEFAULT 0.0);

CREATE ARRAY stripes (
x INTEGER DIMENSION[4],
y INTEGER DIMENSION[4] CHECK(MOD(y,2) = 1),
v FLOAT DEFAULT 0.0);

CREATE ARRAY diagonal (
x INTEGER DIMENSION[4],
y INTEGER DIMENSION[4] CHECK(x = y),
v FLOAT DEFAULT 0.0);

CREATE ARRAY sparse (
x INTEGER DIMENSION[4],
y INTEGER DIMENSION[4],
v FLOAT DEFAULT 0.0 CHECK(v >= 0));

2.2 Time Series
Time series data - any value with a time stamp attached to it -

is commonly used in science applications. If experiments are con-
ducted at regular intervals, it is helpful to represent them as arrays
indexed by the time stamps with a fixed stride. This makes subse-
quent processing, such as interpolation and moving averages, eas-
ier. For example, the following query shows how SciQL is turned
into a time series support language by choosing a temporal domain
as a dimension range.

CREATE ARRAY experiment (
tick TIMESTAMP
DIMENSION[TIMESTAMP ‘2011-01-01’: * :

INTERVAL ‘1’ MINUTE],
payload FLOAT DEFAULT 0.0);

The DIMENSION type is a TIMESTAMP and its increment is a
temporal interval unit, e.g., a minute. Appended non-dimensional

attribute values will be associated with the current time from NOW(),
possibly overwriting any value that might already be stored for that
interval. The dimension range will in practice be sparsely popu-
lated and accessing an experiment with invalid time stamp will lead
to returning a zero initialized payload.

Time series with unbounded dimensions can be used to keep
irregular measurements. They are close to their tabular counter-
parts, because the bounds are derived from the results of actual in-
sert/delete operations. The intervals between elements may greatly
differ. The ARRAY semantics turns it into an ordered table and
the SciQL language constructs allow for ease of manipulation, i.e.,
without the need to resort to self-joins.

CREATE ARRAY timeseries (
tick TIMESTAMP DIMENSION,
payload FLOAT DEFAULT 0.0);

2.3 Array Modifications
The SQL update semantics is extended towards arrays in a straight-

forward manner. The array cells are initialized upon creation with
the default values. A cell is given a new value through an ordinary
SQL UPDATE statement. A dimension can be used as a bound vari-
able, which takes on all valid values of this dimension successively.
A convenient shortcut is to combine multiple updates into a single
guarded statement. The evaluation order ensures that the first pred-
icate that holds dictates the cells value. The refinement of the array
matrix is shown in the first query below. The cells receive a zero
only in the case x = y. The second and third UPDATE statements
below demonstrate setting cell values in the arrays diagonal and
stripes, respectively.

UPDATE matrix SET v = CASE
WHEN x>y THEN x + y
WHEN x<y THEN x - y
ELSE 0 END;

UPDATE diagonal SET v = x +y;

UPDATE stripes SET v = MOD(RAND(),16);

Assignment of a NULL value to an array cell leads to a ‘hole’
in the array, a place indistinguishable from the out of bounds area.
Such assignments overrule any predefined DEFAULT clause attached
to the array definition. For convenience, the built-in array aggregate
operations SUM(), COUNT(), AVG(), MIN() and MAX() are applied
to non-NULL values only.

Arrays can also be updated using INSERT and DELETE state-
ments. Since all cell elements semantically exists by definition,
both operations effectively turn into update statements. The DELETE
statement creates holes by assigning a NULL value for all qualified
cells. The INSERT statement simply overwrites the cells at posi-
tions as specified by the input columns with new values. The three
queries below illustrate how to delete a column in the array matrix
where x = 2, then shift the remaining columns, and set the last col-
umn of matrix to its default value. In the second and third queries,
the x and y dimensions of the array matrix are matched against the
projection columns of the SELECT statements. Cells at matching
positions are assigned new values.

DELETE FROM matrix WHERE x = 2;

INSERT INTO matrix
SELECT x-1, y, v FROM matrix WHERE x > 2;

INSERT INTO matrix
SELECT x, y, 0 FROM matrix WHERE x = 3;

The example below shows that if we only have a list of values
to be inserted, then the array is filled in the order of the dimension
bounds. For arrays with unbounded dimensions it would lead to a
single vector.

INSERT INTO matrix(v) SELECT v FROM stripes;

The timeseries example above does not carry a temporal unit
step size, which means that any event time stamp up to a micro-
second difference would be acceptable. The dimension merely en-
forces an event order. In such an unbounded case, a default value
for a non-dimensional attribute might cause a huge table upon ma-
terialization of all cells.

The unbounded time series with irregular temporal steps can be
cast into a series with regular steps using interpolation. A simpli-
fied version based on the built-in functions NEXT() and PREV() to
access nearest temporal events is shown below. It assumes that the
time series does not contain more than one event per minute, other-
wise a more elaborate expression is needed to gather those first.

INSERT INTO experiment
SELECT tick,

(NEXT(payload) - payload) /
CAST(NEXT(tick)-tick AS MINUTE)

FROM timeseries;

2.4 Array and Table Coercions
One of the strong features of SciQL is to switch easily between

a TABLE and an ARRAY perspective. Any array is turned into a
corresponding table by simply selecting its attributes. The dimen-
sions form a compound key. For example, the matrix defined ear-
lier becomes a table using the expression SELECT x, y, v FROM
matrix or using a CAST operation like CAST(matrix AS TABLE).
Note that the semantics of an array leads to materialization of all
cells, even if their value was set to a non-NULL default. A selection
excluding the user specified default values may solve this problem.

An arbitrary table expression can be coerced into an ARRAY if
the column list of the SELECT statement contains dimension quali-
fiers, indicated by square brackets around a projection column, i.e.,
[<expr>]. Here, the <expr> is a <column name> or a value
expression. The result is an array with unbounded dimensions. The
extent of an array of unbounded type is, however, bounded. The
minimum and maximum values of the dimensions determine the
bounds of the array extent. Furthermore, if the table expression
produces duplicate values for a dimension, one of them ends up
in the resulting array, because semantically the rows of the table
expression are inserted one-by-one into the target array.

Let mtable be the table produced by casting the array matrix
to a table. It can be turned into a (sparse) array by picking the
columns forming the primary key in the column list as follows:
SELECT [x], [y], v FROM mtable or using the reverse cast op-
eration CAST(mtable AS ARRAY(x,y)). The minimum and maxi-
mum values of the dimensions [x] and [y] determine the array bounds.
The default values of all non-dimensional attributes are inherited
from the default values in the original table.

3. QUERY MODEL
From a query perspective there is hardly any difference from

querying a TABLE and an ARRAY. In both cases elements are se-
lected based on predicates, joins, and groupings. The result of any
query expression is a table unless the column list contains dimen-
sion qualifiers ([<expr>]). A novel way to use GROUP BY, called
tiling, is introduced to improve structure based querying.

3.1 Cell Selections
The examples below illustrate a few simple array queries. The

first query extracts values from the array matrix into a table. The
second one constructs a sparse array from the selection, whose di-
mension properties are inherited from the result sets. The dimen-
sion qualifiers introduce a new dimension range, i.e., a minimal
bounding box is derived from the result set, such that the answers
fall within its bounds. The last query shows how elements of in-
terest can also be obtained from both arrays and tables using an or-
dinary join expression. It assumes that the table T has a collection
of numbers, then the expression extracts the subarray from matrix
and sets the bounds to the smallest enclosing bounding box defined
by the values of the columns T.k and y. The actual bounds of an
array can always be obtained from the built-in functions MIN() and
MAX() over the dimension attributes.

SELECT x, y, v FROM matrix WHERE v >2;

SELECT [x], [y], v FROM matrix WHERE v >2;

SELECT [T.k], [y], v
FROM matrix JOIN T ON matrix.x = T.i;

3.2 Array Slicing
An ARRAY object can be considered an array of records in pro-

gramming language terms. Therefore, the language also supports
positional index access conforming to the dimension order in the
array definition. All attributes (dimensional and non-dimensional)
of interest should be explicitly identified. A range-pattern, bor-
rowed from the programming language arena, supports easy slic-
ing over individual dimensions. The array slicing sequence pattern
is [<start>:<final>:<step>], where the interval between
start and start has an open end-point (i.e., final not in-
cluded). The shortened sequence pattern [<start>:<final>]
uses the default increment from the array definition. The pattern
[<pos>] directly specifies a single position in a dimension. The
dimension sequence pattern [*] denotes all values of a dimension
or an unbounded list. To illustrate this, we show a few slicing ex-
pressions over the arrays defined earlier:

SELECT matrix[1][1].v;

SELECT matrix[*][1:3].v;

SELECT sparse[0:2][0:2].v;

The SQL SET statement is extended to also take array expres-
sions directly. This leads to a more convenient and compact nota-
tion in many situations. The bounds of the subarray are specified
by a sequence pattern of literals. Again, a sequence of updates act
as a guarded function. The array dimension attributes are used as
bound variables that run over all valid dimension values. This is
illustrated using the queries below:

UPDATE matrix SET matrix[0:2].v = v * 1.19;

UPDATE matrix SET matrix[x].v = CASE
WHEN matrix[x].v < 0 THEN x
WHEN matrix[x].v >10 THEN 10 * x END;

3.3 Array Views
A common case is to embed an array into a larger one, such that

a zero initialized bounding border is created, or to shift a vector be-
fore moving averages are calculated. To avoid possible significant
data movements, the array view constructor can be used instead.

The first two queries below illustrate an embedding, i.e., to trans-
pose an array, and a shift, respectively. In the SELECT clause, the
x and y columns are used to identify the cells in the vmatrix to
be updated. The last example illustrates how the aforementioned
example of shift with zero fill of a column (see the second group
of queries in Section 2.3) can be modeled as a view. Note that the
results of all SELECT statements in the examples below are tables,
thus in the third query, the ordinary SQL UNION semantics applies.

CREATE ARRAY vmatrix (
x INTEGER DIMENSION[-1:5:1],
y INTEGER DIMENSION[-1:5:1],
w FLOAT DEFAULT 0.0) AS

SELECT y, x, v FROM matrix;

CREATE ARRAY vector (
x INTEGER DIMENSION[-1:5:1],
w FLOAT DEFAULT 0.0) AS

SELECT A.x, (A.v+B.v)/2
FROM matrix AS A JOIN

(SELECT x+1 AS x, v FROM matrix) AS B ON A.x = B.x;

CREATE ARRAY vmatrix2 (
x INTEGER DIMENSION[-1:5:1],
y INTEGER DIMENSION[-1:5:1],
w FLOAT DEFAULT 0.0) AS

SELECT x, y, v FROM matrix WHERE x < 2
UNION
SELECT x-1, y, v FROM matrix WHERE x > 2
UNION
SELECT x, y, 0.0 FROM matrix WHERE x = 3;

3.4 Aggregate Tiling
A key operation in data warehouse applications is to perform

statistics on groups. They are commonly identified by an attribute
or expression list in a GROUP BY clause. This value-based group-
ing can be extended towards structural grouping for ARRAYs in a
natural way. Large arrays are often broken into smaller pieces be-
fore being aggregated or overlaid with a structure to calculate, e.g.,
a Gaussian kernel function. SciQL supports fine-grained control
over breaking an array into possibly overlapping tiles using a slight
variation of the SQL GROUP BY clause semantics. Therefore, the
attribute list is replaced by a parametrized series of array elements,
called tiles. Tiling starts with an anchor point identified by the di-
mension attributes, which is extended with a list of cell denotations
relative to the anchor point. The value derived from a group ag-
gregation is associated with the dimension value(s) of the anchor
point.

Consider the 4× 4 matrix and tiling it with a 2× 2 matrix by
extending the anchor point matrix[x][y] with structure elements
matrix[x+1][y], matrix[x][y+1] and matrix[x+1][y+1]. The
tiling operation performs a grouping for every valid anchor point in
the actual array dimensions (see Figure 2). The individual elements
of a group need not belong to the domain of the array dimensions,
but then their values are assumed to be the outer NULL value, which
are ignored in the statistical aggregate operations. This way we
break the matrix array into 16 overlapping tiles. The number can
be reduced by explicitly calling for DISTINCT tiles. This leads to
considering each cell for one tile only, leaving a hole behind for the
next candidate tile. Furthermore, in this case all tiles with holes do
not participate in the result set. Note that this means that for irregu-
larly formed tiles there is no guarantee that all array cells have been
taking part in the grouping. The dimension range sequence pattern
can be used to concisely define all values of interest. The following
queries show how the tiles of matrix, as depicted in Figure 2, are
created (in the order from left to right and from top to bottom).

Figure 2: SciQL Array Tiling

SELECT [x], [y], AVG(v) FROM matrix
GROUP BY matrix[x:x+2][y:y+2];

SELECT [x], [y], AVG(v) FROM matrix
GROUP BY DISTINCT matrix[x:x+2][y:y+2];

SELECT [x], [y], AVG(v) FROM matrix
GROUP BY matrix[x-1:x+1][y-1:y+1];

SELECT [x], [y], AVG(v) FROM matrix
WHERE x > 0 AND y > 0
GROUP BY DISTINCT matrix[x][y], matrix[x-1][y],

matrix[x+1][y], matrix[x][y-1], matrix[x][y+1];

Tiling can also be controlled to incorporate knowledge about a
zero initialized enclosure, using the earlier defined array vmatrix,
which embeds matrix with zero initialized borders:

SELECT [x], [y], avg(v) FROM vmatrix
GROUP BY vmatrix[x-1:x+1][y-1:y+1];

A recurring operation is to derive check sums over array slabs.
In SciQL this can be achieved with a simple tiling on, e.g., the x
dimension. In this case, the anchor point is the value of x. For
example:

SELECT [x], SUM(v) FROM matrix
GROUP BY matrix[x][*];

A discrete convolution operation is only slightly more complex.
For, consider each element to be replaced by the average of its
four neighboring elements. The extended matrix vmatrix is used
to calculate the convolution, because it ensures a zero value for all
boundary elements. The aggregates outside the bounds [0:4][0:4]
are not calculated by using an array slicing in the FROM clause.

SELECT [x], [y], AVG(v)
FROM vmatrix[0:4][0:4]

GROUP BY vmatrix[x][y], vmatrix[x-1][y], vmatrix[x+1][y],
vmatrix[x][y-1], vmatrix[x][y+1];

Value based selection and structure based selection can be com-
bined. An example is the nearest neighbor search, where the struc-
ture dictates the context over which a metric function is evaluated.
Most systems dealing with feature vectors deploy a default metric,
e.g., the Euclidean distance. The example below assumes such a
distance function that takes an argument ?V as the reference vector.
It generates a listing of all columns with the distance from the refer-
ence vector. Ranking the result produces the K-nearest neighbors.

SELECT x, distance(matrix, ?V) AS dist
FROM matrix
GROUP BY matrix[x][*]
ORDER BY dist
LIMIT 10;

Using the dimensions in the grouping clause permits arbitrary
complex structures to be defined. It generalizes the SQL:2003 win-
dowing functions, which are limited to aggregations over sliding
windows over a sequence. The SciQL approach can be generalized
to support the equivalent of mask-based tile selections. For this we
simply need a table with dimension values, which are used within
the GROUP BY clause as a pattern to search for.

4. STRUCTURAL OPERATORS
The structural grouping is a powerful method to iterate with a

template over an existing ARRAY. In the same line it is necessary
to provide cheap implementations of shape modifications, such as
dimensions adjustments, shape restructuring and array gluing.

4.1 Coordinate Systems
Consider a Landsat image stored as an array of 1024×1024 pix-

els in the database. One of the steps in the processing pipeline is
to align the image with known positions on the earth and to adjust
the coordinates accordingly. In practice, this amounts to calibration
process against some known sources in the image with those in the
database to derive an x- and y- shift. Often a stretching or contrac-
tion is needed to fit one image over another or anchor it against a
reference image. There are two cases to consider in materialization
of this shift in the image array. If the array has fixed dimensions,
we can update the SciQL catalog by dropping the dimension con-
straints and replace it with another. For example, we can shift the
image along the x axis 5 steps to the left as follows:

ALTER ARRAY img ALTER x DIMENSION[-5:*];

If the dimensions are not fixed in the catalog, we have to shift all
cells with a normal update statement:

ALTER ARRAY matrix ADD r FLOAT
DEFAULT SQRT(POWER(x,2) + POWER(y,2));

ALTER ARRAY matrix ADD theta FLOAT DEFAULT (CASE
WHEN x > 0 AND y > 0 THEN 0
WHEN x > 0 THEN ARCSIN(CAST(x AS FLOAT) / r)
WHEN x < 0 THEN -ARCSIN(CAST(x AS FLOAT) / r) + PI()

END);

4.2 Dimension Reduction
In many applications array regridding is a key operation. The

canonical example is to break a large array into distinct tiles, per-
form an aggregation function over each tile, and construct a new

array out of these values. The SciQL tiling constructs address this
point for the larger part. The first query below compresses the 4×4
matrix into a 2×2 matrix by averaging over the values in each tile.

CREATE ARRAY tmp (
x INTEGER DIMENSION,
y INTEGER DIMENSION,
v FLOAT) AS

SELECT x/2, y/2, AVG(v) FROM matrix
GROUP BY DISTINCT matrix[x:x+2][y:y+2] WITH DATA;

An alternative is to condense the sparse array produced by tiling
using a flooding into the target array with properly defined dimen-
sions. Since the sliding tile may extend over the border of the array,
its value becomes dependent on the NULL filled outer space. Pre-
embedding the matrix in a larger NULL-valued outer space may
avoid this problem.

CREATE ARRAY tmp2(
x INTEGER DIMENSION[2],
y INTEGER DIMENSION[2],
v FLOAT);

INSERT INTO tmp2(v)
SELECT AVG(v) FROM matrix
GROUP BY DISTINCT matrix[x:x+2][y:y+2];

4.3 Array Composition
Taking multiple arrays to form a larger object is one of the fea-

tures advocated in array database systems. It directly stems for
matrix algebra considerations, where the valence of the arrays is
precisely controlled and a constraint for most operations. In SciQL
the valence or shape play a lesser role. However, the declarative
structure permits much more complex combinations to be spelled
out precisely. The SciQL approach is to start with a definition of
the desired array shape and to inject the operands of the concatena-
tion into this object. This gives precise control on the where abouts
of each cell in the final structure. For example, a ’zipper’ array
can be constructed by obtaining all elements at even positions from
one source array (WHITE), and the elements at odd positions - from
another array (BLACK).

CREATE SEQUENCE whiterange AS INTEGER
START WITH 0 INCREMENT BY 2 MAXVALUE 62;

CREATE SEQUENCE blackrange AS INTEGER
START WITH 1 INCREMENT BY 2 MAXVALUE 63;

CREATE ARRAY white (
i INTEGER DIMENSION [whiterange],
color CHAR(5) DEFAULT ‘white’);

CREATE ARRAY black (
i INTEGER DIMENSION [blackrange]
color CHAR(5) DEFAULT ‘black’);

CREATE ARRAY zipper (
i INTEGER DIMENSION[64],
color CHAR(5));

INSERT INTO chessboard
SELECT i, color FROM white
UNION
SELECT i, color FROM black

5. USER DEFINED OPERATORS
A query language, most notably one aimed at scientific applica-

tions, should support easy extension of the operators defined. This
amounts to two function classes to be considered. The white-box
functions defined in terms of SciQL language primitives and black-
box functions whose implementation is taken from a linked in li-
brary.

5.1 White-box Functions
Complex arrays in SciQL can be created with ARRAY produc-

ing functions, much like table producing functions in the Persistent
Stored Module of SQL:2003. The functions are side-effect free.
They take arguments possibly of the type ARRAY and return a new
array instance. Below we illustrate a few built-in functions, in-
spired by the MATLAB library. The first function returns a vector
of random numbers. The last example illustrates a matrix transpo-
sition, which is simplified by our facility to manipulate the dimen-
sions explicitly.

CREATE SEQUENCE seq AS INTEGER START WITH 0
INCREMENT BY 1 MAXVALUE 10;

CREATE FUNCTION random ()
RETURNS ARRAY (i INTEGER DIMENSION, v FLOAT)

BEGIN RETURN SELECT[seq], RAND() FROM SEQUENCES seq; END;

CREATE FUNCTION transpose (
a ARRAY (i INTEGER DIMENSION,

j INTEGER DIMENSION, v FLOAT))
RETURNS ARRAY (i INTEGER DIMENSION,

j INTEGER DIMENSION, v FLOAT)
BEGIN RETURN SELECT [j],[i], a[i][j].v FROM a; END;

5.2 Black-box Functions
A query language for science applications cannot ignore the fact

that most operations needed are already defined, tested, and opti-
mized in widely available software libraries. A symbiosis between
SciQL and these well-tested and broadly used libraries should be
created. The SQL:2003 standard supports black-box functions by
tagging a signature with an external name and a possible host lan-
guage name. In most cases, the externally defined function is a
wrapper, that translates the database specific storage structure into
something understood by the library function being called. For ex-
ample, we may want to use a matrix algebra package to perform a
Markov chain operation over a matrix:

CREATE FUNCTION markov (
input ARRAY (x INT DIMENSION, y INT DIMENSION, f FLOAT),
steps INT)

RETURNS ARRAY (x INT DIMENSION, y INT DIMENSION, f FLOAT)
EXTERNAL NAME ‘markov.loop’;

Note that the physical representation of the matrix in SciQL may
differ from the one expected in the library. For example, small
arrays can be represented in a column oriented fashion, while the
external library calls for a row-major order representation of the
array elements. Then at each call the internal format has to be re-
cast. This is a potentially expensive operation and a possible focus
for shifting to a white-box implementation instead.

6. FUNCTIONAL EVALUATION
One way to evaluate SciQL is to confront the language with a

functional benchmark. Unfortunately, the area of array- and time
series databases is still too immature to expect a (commercially)
endorsed and crystallized benchmark. Instead, we focus on test
suites defined in the context of AML [21] and ordered SQL [17, 9].
In combination with the black box function libraries, they provide
an outlook in the feasibility of SciQL.

6.1 Image Analysis
The AML benchmark suite [21] context is a single LandSat im-

age composed of 1024× 1024 pixels along 7 channels. Such im-
ages undergo a cleansing and scrubbing process before being pub-
lished as an image product. In this process, errors induced by the

remote scanning sensors over time are compensated. Valid data in
one of the channels must be normalized against data of the other
channels. The AML suite contains five algorithms: TVI, NDVI,
DESTRIPE, MASK and WAVELET. The queries all focus on a sin-
gle channel against the Landsat array:

CREATE ARRAY landsat (
channel INTEGER DIMENSION[7],
x INTEGER DIMENSION[1024],
y INTEGER DIMENSION[1024],
v INTEGER);

6.1.1 Destripe
The destriping algorithm is an image cleaning and restoration

operation. It is used to correct the errors that may have occurred
in the individual channels due to sensor aging. This results in rel-
atively higher or lower values along every sixth line occurring in a
specific channel. Assume that the drift delta for channel 6 is de-
rived using statistics [19] and that the noise of each pixel is to be
reduced with the function noise() for the scan lines 1, 7, 13, etc.

UPDATE landsat SET v = noise(v,delta)
WHERE channel = 6 AND MOD(x,6) = 1;

6.1.2 TVI
A common earth observation enhancement technique is to com-

pute vegetation indexes using between-band differences and ratios.
A scalar function tvi defined as follows encapsulates this heuris-

tics: ftvi(b3,b4) =
[

b4−b3
b4+b3

+0.5
]0.5

, where bi denotes the radiance
in the i-th band.

CREATE FUNCTION tvi (b3 REAL, b4 REAL) RETURNS REAL
RETURN POWER(((b4 - b3)/ (b4 + b3) + 0.5), 0.5);

Each of the bands is first pre-processed by a noise-reduction
technique. In the original suite [21] this is done by a convolu-
tion filter that computes the noise-reduced pixel radiance using the
radiances of the pixel’s eight immediate neighbors. The filter is
implemented as a SciQL function that takes as an argument a 2-
dimensional array of size 3× 3, i.e., the radiance of the pixel and
its neighbors, and returns the noise-reduced value:

CREATE FUNCTION conv (
a ARRAY(i INTEGER DIMENSION[3],

j INTEGER DIMENSION[3],
v FLOAT))

RETURNS FLOAT
BEGIN
DECLARE s1 FLOAT, s2 FLOAT, z FLOAT;
SET s1 = (a[0][0].v + a[0][2].v +

a[2][0].v + a[2][2].v)/4.0;
SET s2 = (a[0][1].v + a[1][0].v +

a[1][2].v + a[2][1].v)/4.0;
SET z = 2 * ABS(s1 - s2);
IF ((ABS(a[1][1].v - s1)> z) or

(ABS(a[1][1].v - s2)> z))
THEN RETURN s2;
ELSE RETURN a[1][1].v;
END IF;

END;

Having the tvi and the conv functions defined, the TVI index of the
satellite image is computed by the following SciQL query:

SELECT [x], [y],
tvi(conv(landsat[3][x-1:x+2][y-1:y+2]),

conv(landsat[4][x-1:x+2][y-1:y+2]))
FROM landsat;

Note that in the above example, the function conv() does not take
into account the possibility that its array parameter a can contain
outer NULL values. In such cases, the value of s1 or s2 is NULL and
the function will always return a[1][1].v. To overcome this prob-
lem, without adding many statements to explicitly deal with the
NULL values, one can embed each image along each channel into a
larger array. Another alternative is to use the SciQL tiling approach
described in Section 3.4, as shown in the function conv2() below:

CREATE FUNCTION conv2 (
a ARRAY(i INTEGER DIMENSION[3],

j INTEGER DIMENSION[3],
v FLOAT))

RETURNS FLOAT
BEGIN

DECLARE s1 FLOAT, s2 FLOAT, z FLOAT;
SET s1 = (SELECT AVG(v) FROM a

WHERE a.i = 1 AND a.j = 1
GROUP BY a[i-1][j-1], a[i-1][j+1],

a[i+1][j-1], a[i+1][j+1]);
SET s2 = (SELECT AVG(v) FROM a

WHERE a.i = 1 AND a.j = 1
GROUP BY a[i-1][j], a[i][j-1],

a[i][j+1], a[i+1][j]);
SET z = 2 * ABS(s1 - s2);
IF ((ABS(a[1][1].v - s1)> z) or

(ABS(a[1][1].v - s2)> z))
THEN RETURN s2;
ELSE RETURN a[1][1].v;
END IF;

END;

6.1.3 NDVI
The normalized difference vegetation index (NDVI) is computed

directly from the AHVRR bands over two successive bands us-
ing the formula NDV I = (b2−b1)

(b2+b1)
with bi the data in channel i.

The NDVI produces arrays where vegetation has positive values,
clouds, water and snow have negative values, the remainder de-
notes rock and bare soil. The values for bi are preferably in radi-
ance rather than pixel intensity values. Suppose that the pixel in-
tensities in bands b1 and b2 are in the range of 0..255. Then, pixel
intensity and radiance are related using the formula [19]: bout =
(LMAX − LMIN)/255× bin + LMIN, where bout is the absolute
spectral radiance value, while bin is the pixel intensity. The global
variables LMIN and LMAX are sensor specific.

First, we define an SQL function that returns the spectral radi-
ance given pixel intensity and the sensor parameters:

CREATE FUNCTION intens2radiance (
b INT, lmin REAL, lmax REAL)

RETURNS REAL
RETURN (lmax-lmin) * b /255.0 + lmin;

Next, we create the target array ndvi with attributes to hold the
intermediate steps:

CREATE ARRAY ndvi (
x INT DIMENSION[1024],
y INT DIMENSION[1024],
b1 REAL, b2 REAL, v REAL);

UPDATE ndvi SET
ndvi[x][y].b1 = (
SELECT intens2radiance(landsat[1][x][y].v, lmin, lmax)
FROM landsat),

ndvi[x][y].b2 = (
SELECT intens2radiance(landsat[2][x][y].v, lmin, lmax)
FROM landsat);

UPDATE ndvi SET
ndvi[x][y].v = (ndvi[x][y].b2 - ndvi[x][y].b1) /

(ndvi[x][y].b2 + ndvi[x][y].b1);

6.1.4 Mask
In image analysis a bit-valued array is often used to mask a por-

tion of interest. They are typically derived from performing a filter
over the pixel values followed up with, e.g., a flooding algorithm
to derive a coherent slab. For example, consider construction of
an n× n mask image derived from the landsat image using aver-
aging over 3×3 elements and keeping only those within the range
[10,100]. The computation is easily expressed by the tiling con-
struct of SciQL with associated predicate on the tiles:

SELECT [x], [y], AVG(v) FROM landsat
GROUP BY landsat[x-1:x+2][y-1:y+2]
HAVING AVG(v) BETWEEN 10 AND 100;

Note, that the border tiles may contain NULL-valued cells, which
will be ignored by the build-in AVG function. Alternatively, the
original matrix can be embedded in a larger one with borders, ini-
tialized with an application-dependent default values.

6.1.5 Wavelet
Multi-resolution image processing is based on wavelet transforms.

An image is decomposed into many components so that it can be
reconstructed in multiple resolutions. Consider a step in wavelet
reconstruction where two n

2 ×
n
2 images are used for reconstruction

of a higher-resolution image of size n× n
2 . Assume that the img ar-

ray has been defined with dimension attributes x and y, and a value
attribute v, to hold the result of the wavelet reconstruction of arrays
d and e4.

UPDATE img
SET v = (SELECT d.v + e.v * POWER(-1,img.x) FROM d, e

WHERE img.y = d.y AND img.y = e.y AND
d.x = img.x/2 AND e.x = img.x/2);

Alternatively, we can specify the computation using the array slic-
ing notation:

UPDATE img
SET img[x][y].v = (
SELECT d[x/2][y].v + e[x/2][y].v * POWER(-1,x)
FROM d, e);

For convenience, the computation can be encapsulated in a SciQL
array-valued function taking the arrays d and e as parameters. This
provides a concise notation when a number of successive calls are
needed, while keeping the computation in a white box amendable
for optimizations.

6.1.6 Matrix-vector Multiplication
Many array manipulations require multiplication of matrices. Let

A be a 2-dimensional array with dimensions named x and y, and B
be a 1-dimensional vector with dimension named k, matching the
size of A on dimension y:

CREATE ARRAY m (
x INT DIMENSION[1024],
v INT);

UPDATE m
SET m[x].v = (SELECT SUM(a[x][y].v * b[k].v)

FROM a,b
WHERE a.y = b.k
GROUP BY a[x][*]);

4We skip the complementary step reconstructing an image of size
n×n from two n× n

2 images, which can be similarly expressed.

6.2 Astronomy
The Flexible Image Transport System (FITS) [11], is a standard

file format for transport, analysis, and archival storage of astro-
nomical data. Originally designed for transporting image data it
has evolved to accommodate more complex data structures and ap-
plication domains.

The content of a FITS file is organized in HDUs, header-data
units, each containing metadata in the header, and a payload of
data. The file always contains a primary HDU, and may contain a
number of extensions. The data formats supported by the standard
are images, ASCII and binary tables. The fact that arrays and tables
are the only standard extensions in FITS after almost 30 years of
use is a positive indicator that a language where both tables and
arrays are first-class citizens will offer sufficient expressive power
for the needs of astronomy community.

The image extension is used to store an array of data. The array
may have from 1 to 999 dimensions. Fixed number of bits represent
data values. Multi-dimensional arrays are serialized the Fortran-
way, where the first axis varies most rapidly. Dimension ranges
always begin with 1 and have increment of 1.

ASCII and binary table extensions allow for storage of catalogs
and tables of astronomical data. The binary tables provide more
features and are more storage efficient than ASCII tables. An im-
portant enhancement is the ability of a field in a binary table to
contain an array of values, including variable length arrays.

FITS is a mature standard that during the years has accumulated
lots of software packages. It has interface libraries for the major
procedural languages, visualization and editing tools. Typical pro-
cessing of FITS files includes column and row filtering, for instance
add a column derived through an expression from other columns,
or filter rows based on time interval or spatial region filtering. The
tools create a temporary copy in memory which is supplied to the
the application program.

FITS files can contain entire database about an experiment. Data
in FITS files can be mapped to the SciQL model as follows. The
ASCII and binary table extensions have straightforward represen-
tation as database tables. The metadata about the table structure
(the number of columns, their names and types) are described as
compulsory keywords in the extension header. The image exten-
sion directly corresponds to the array concept in SciQL. The array
metadata (number and size of dimensions, the type of elements) are
again specified in respective header keywords.

6.2.1 SciQL Use Cases
In X-ray astronomy events are stored in a 2-column FITS ta-

ble (X ,Y), where X and Y are the coordinates of detected photons.
The corresponding image is created by binning the table that pro-
duces a 2-dimensional histogram with a number of events in each
(X ,Y) bin. Assume that the FITS table with events is loaded into
event(x,y) database table. The image array is then created by the
following SciQL statement:

CREATE ARRAY ximage (
x INTEGER DIMENSION,
y INTEGER DIMENSION,
v INTEGER DEFAULT 0);

INSERT INTO ximage SELECT [x], [y], count(*)
FROM events GROUP BY x,y;

For binning of size bigger than one, we can use the tiling fea-
ture of SciQL. For instance, image with binning of size 16 can be
derived as follows:

SELECT [x/16], [y/16], SUM(v)
FROM ximage

GROUP BY DISTINCT ximage[x:x+16][y:y+16];

FITS images have integral array dimensions that range in value
from 1 to sizei, the size in dimension i. As a first processing step
pixel coordinates need to be mapped to some of the world coordi-
nate systems (WCSs, e.g., Celestial, Spectral) presented through a
set of keywords in the header section of the image HDU. The first
mapping step is a linear transformation applied via matrix multipli-
cation qi = ∑

N
j=1 mi j(p j − r j), where r j are the pixel coordinates

of the reference point, mi j are the elements of the linear transfor-
mation matrix, j indexes the pixel axis, and i indexes the world
coordinate system axis. The result intermediate pixel coordinates
are offsets that are then scaled to physical units by a scalar vector
multiplication: xi = si×qi.

Assume that an image extension has been imported to SciQL sys-
tem as a 2-dimensional array img, the keyword-defined transforma-
tion matrix into a 2-dimensional array m, and the scaling vector and
the reference point coordinates into a 1-dimensional arrays s and
re f , resp. We use the concept of array view, introduced in Sec. 3.3,
to compute the alternative representation of the image with dimen-
sions presenting the WCS coordinates. The computation uses the
matrix-vector multiplication and scaling described above.

CREATE ARRAY wcs_img (
wcs_x FLOAT DIMENSION,
wcs_y FLOAT DIMENSION,
v INTEGER DEFAULT 0) AS

SELECT s[0].v * (m[0][0].v * (img.x - ref[0].v) +
m[0][1].v * (img.y - ref[1].v)),

s[1].v * (m[1][0].v * (img.x - ref[0].v) +
m[1][1].v * (img.y - ref[1].v)),

img.v
FROM img, m, ref, s;

7. RELATED WORK
Already in the 80’s, Shoshani et al. [27] identified common char-

acteristics among the different scientific disciplines. The subse-
quent paper [28] summarizes the research issues of statistical and
scientific databases, including physical organization and access meth-
ods, operators and logical organization. Application considerations
led Egenhofer [10] to conclude that SQL, even with various spa-
tial extensions, is inappropriate for the geographical information
systems (GIS). Similar observations were made by e.g., Davidson
in [8] on biological data. Maier et al. [20] injected “a call to or-
der” into the database community, in which the authors stated that
the key problem for the relational DBMSs to support scientific ap-
plications is the lack of support for ordered data structures, like
multidimensional arrays and time series. The call has been well
accepted by the community, considering the various proposals on
DBMS support (e.g., [4, 6, 7, 13, 16, 26]), SQL language exten-
sions (e.g., [3, 17, 24]) and algebraic frameworks (e.g., [7, 18, 21])
for ordered data.

The precursors of SQL:1999 proposals for array support focused
on the ordering aspect of their dimensions only. Examples are the
sequence language SEQUIN [26] and SRQL [24]. SEQUIN uses
the abstract data type functionality of the underlying engine to re-
alize the sequence type. SRQL is a successor of SEQUIN which
treated tables as ordered sequences. SRQL extends the SQL FROM
clauses with GROUP BY and SEQUENCE BY to group by and sort
the input relations. Both systems did not consider the shape bound-
aries in their semantics and optimization schemes. AQuery [17]
inherits the sequence semantics from SEQUIN and SRQL. How-
ever, while SEQUIN and SRQL kept the tuple semantics of SQL,
AQuery switched to a fully decomposed storage model.

Query optimization over array structures led to a series of at-
tempts to develop a multidimensional array-algebra, e.g., AML [21]
and RAM [7]. Such an algebra should be simple to reason about
and provide good handles for efficient implementations. AML is
focused on decomposition of an array into slabs, applying func-
tions to their elements, and finally merging slabs to form a new
array. AQL [18] is an algebraic language with low-level array ma-
nipulation primitives. Comparing with array-algebras, SciQL has a
much more intuitive approach where the user focuses on the final
structure.

Despite the abundance of research effort, few systems can han-
dle sizable arrays efficiently. A good example is RasDaMan [4],
which is a domain-independent array DBMS for multidimensional
arrays of arbitrary size and structure. Arrays are decomposed into
tiles, which form the unit of storage and access. The tiles are stored
as BLOBS, so theoretically, it can be ported to any DBMS. The
RasDaMan server acts as a middleware, which maps the array se-
mantics to a simple “set of BLOB” semantics. RasDaMan provides
a SQL-92 based query language RasQL [3] to manipulate raster im-
ages using foreign function implementations. It defines a compact
set of operators, e.g., MARRAY creates an array and fill it by eval-
uating a given expression at each cell; CONDENSE aggregates cell
values into one scalar value; SORT slices an array along one of its
axes and reorders the slices. RasQL queries are executed by the
RasDaMan server, after the necessary BLOBs have been retrieved
from the underlying DBMS.

A recent attempt to develop an array database system from scratch
is undertaken by the SciDB group [30]. Its mission is the closest
to SciQL, namely, building array database with tailored features to
fit exactly the need of the science community. Version 0.5 and the
design documents, however, indicate that their language is a mix
of SQL syntax and algebraic operator trees, instead of a seamless
integration with SQL:2003 syntax and semantics. SciQL takes lan-
guage design a step further.

8. SUMMARY AND FUTURE WORK
SciQL has been designed to lower the entry fee for scientific ap-

plications to use a database system. The language stands on the
shoulders of many earlier attempts. SciQL preserves the SQL:2003
flavor using a minimal enhancements to the language syntax and
semantics. Convenient syntax shortcuts are provided to express ar-
ray expressions using a conventional programming style. We illus-
trated the needs for array-based query capabilities in the science
field. In most cases the concise description in SciQL brings rela-
tional and array processing symbiosis one step closer to reality.

Future work includes development of a formal semantics for
the array extensions, development of an adaptive storage scheme,
and exploration of the performance on functionally complete sci-
ence applications. A prototype implementation of SciQL within
the MonetDB [5, 22] framework is underway.

9. ACKNOWLEDGEMENT
The work reported here has partly been funded by the EU-FP7-

ICT projects TELEIOS and PlanetData.

10. REFERENCES
[1] A. Ailamaki, V. Kantere, and D. Dash. Managing scientific data.

Commun. ACM, 53(6):68–78, 2010.
[2] F. Bancilhon, C. Delobel, and P. C. Kanellakis, editors. Building an

Object-Oriented Database System, The Story of O2. Morgan
Kaufmann, 1992.

[3] P. Baumann. A database array algebra for spatio-temporal data and
beyond. In NGITS’2003, pages 76–93, 1999.

[4] P. Baumann, A. Dehmel, P. Furtado, R. Ritsch, and N. Widmann.
The multidimensional database system RasDaMan. SIGMOD Rec.,
27(2):575–577, 1998.

[5] P. Boncz. Monet: A Next-Generation DBMS Kernel For
Query-Intensive Applications. PhD thesis, UVA, Amsterdam, The
Netherlands, May 2002.

[6] P. G. Brown. Overview of SciDB: large scale array storage,
processing and analysis. In SIGMOD’10, pages 963–968, 2010.

[7] R. Cornacchia, S. Heman, M. Zukowski, A. P. de Vries, and P. A.
Boncz. Flexible and efficient IR using Array Databases. VLDB
Journal, special issue on IR&DB integration, 17(1):151–168,
January 2008. Published online: Saturday, September 29, 2007.

[8] S. B. Davidson. Tale of two cultures: Are there database research
issues in bioinformatics? In SSDBM’02, page 3, Washington, DC,
USA, 2002. IEEE Computer Society.

[9] Dennis Shasha. Time series in finance: the array database approach.
http://cs.nyu.edu/shasha/papers/jagtalk.html.

[10] M. J. Egenhofer. Why not SQL! International Journal of
Geographical Information Systems, 6(2):71–85, 1992.

[11] FITS. Flexible Image Transport System.
http://heasarc.nasa.gov/docs/heasarc/fits.html, July 2008.

[12] J. Gray, D. T. Liu, M. A. Nieto-Santisteban, A. S. Szalay, D. J.
DeWitt, and G. Heber. Scientific data management in the coming
decade. SIGMOD Record, 34(4):34–41, 2005.

[13] M. Gyssens and L. V. S. Lakshmanan. A foundation for
multi-dimensional databases. In VLDB, pages 106–115, 1997.

[14] HDF5. HDF5:API specification reference manual. National Center
for Supecomputing Applications, 2010.

[15] B. Howe and D. Maier. Algebraic manipulation of scientific datasets.
VLDB J., 14(4):397–416, 2005.

[16] P. J. Killion, G. Sherlock, and V. R. Iyer. The longhorn array
database (lad): An open-source, miame compliant implementation of
the stanford microarray database (smd). BMC Bioinformatics, 4:32,
2003.

[17] A. Lerner and D. Shasha. Aquery: query language for ordered data,
optimization techniques, and experiments. In vldb’2003, pages
345–356. VLDB Endowment, 2003.

[18] L. Libkin, R. Machlin, and L. Wong. A query language for
multidimensional arrays: design, implementation, and optimization
techniques. SIGMOD Rec., 25(2):228–239, 1996.

[19] T. M. Lillesand and R. W. Kiefer. Remote Sensing And Image
Interpretation. John Wiley and Sons, New York, 1999.

[20] D. Maier and B. Vance. A call to order. In PODS ’93: Proceedings
of the twelfth ACM SIGACT-SIGMOD-SIGART symposium on
Principles of database systems, pages 1–16, New York, NY, USA,
1993. ACM.

[21] A. P. Marathe and K. Salem. Query processing techniques for arrays.
VLDB J., 11(1):68–91, 2002.

[22] MonetDB. http://monetdb.cwi.nl/.
[23] T. Oinn, M. Addis, J. Ferris, D. Marvin, T. Carver, M. R. Pocock,

and A. Wipat. Taverna: A tool for the composition and enactment of
bioinformatics workflows. Bioinformatics, 20:2004, 2004.

[24] R. Ramakrishnan, D. Donjerkovic, A. Ranganathan, K. S. Beyer, and
M. Krishnaprasad. Srql: Sorted relational query language. In
SSDBM, pages 84–95, 1998.

[25] R. Rew, G. Davis, S. Emmerson, H. Davies, and E. Hartnett. the
NetCDF Users Guide - Data Model, Programming Interfaces, and
Format for Self-Describing, Portable Data - NetCDF Version 4.1.
Unidata Program Center, March 2010.

[26] P. Seshadri, M. Livny, and R. Ramakrishnan. The design and
implementation of a sequence database system. In VLDB’96, pages
99–110. Morgan Kaufmann, 1996.

[27] A. Shoshani, F. Olken, and H. K. T. Wong. Characteristics of
scientific databases. In VLDB’84, pages 147–160, San Francisco,
CA, USA, 1984. Morgan Kaufmann Publishers Inc.

[28] A. Shoshani and H. K. T. Wong. Statistical and scientific database
issues. IEEE Trans. Softw. Eng., 11(10):1040–1047, 1985.

[29] SQL:2003. Information technology - Database languages - SQL -
Part 2: Foundation (SQL/Foundation). ISO/IEC 9075-2:2003 (E),
2003.

[30] M. Stonebraker et al. Requirements for science data bases and
SciDB. In CIDR. www.cidrdb.org, 2009.

APPENDIX
A. SCIQL EXTENSIONS TO THE SQL:2003

GRAMMAR RULES
In this section, we list the new grammar rules introduced by

SciQL and highlight the major changes to the existing grammar
rules of SQL:2003. All modifications are denoted using a bold
typeface. In the new grammar rules, unchanged uses of existing
terminals or non-terminals as defined by the SQL/Functional of
the SQL:2003 standard [29] are denoted using bold italic typeface.
Definitions of unchanged terminals or non-terminals are omitted
and we refer to [29] instead.

A.1 Array Creation
The following rules extend <SQL schema definition state-

ment> and <schema element>with a new statement <array def-
inition> to allow creating arrays containing named dimensions
with constraints.

<SQL schema definition statement> ::=
<schema definition>

| <table definition>
| <array definition>
| ...

<schema definition> ::=
CREATE SCHEMA <schema name clause>
[<schema character set or path>] [<schema element>...]

<schema element> ::=
<table definition>

| <array definition>
| ...

<array definition> ::=
CREATE [<table scope>] ARRAY <array name>
‘(’ <array element list> ‘)’
[ON COMMIT <table commit action> ROWS]

<array name> ::= <local or schema qualified name>

<array element list> ::=
<column definition>

| <array element list> ‘,’ <column definition>

<column definition> ::=
...

| <column name> [<data type or domain name>]
<dimension definition> [<default clause>]
[<dimension constraint definition>]

<dimension definition> ::=
DIMENSION [<dimension range>]

<dimension range> ::=
‘[’ <dimension expression> ‘:’
<dimension expression> ‘:’
<dimension expression> ‘]’

| ‘[’ <dimension expression> ‘:’
<dimension expression> ‘]’

| ‘[’ <dimension expression> ‘]’
| ‘[’ <sequence generator name> ‘]’

<dimension constraint definition> ::=
[<constraint name definition>]
<check constraint definition>
[<constraint characteristics>]

<dimension expression> ::=
<signed numeric literal>

| <unsigned numeric literal>
| ‘*’

<reserved word> ::=
... | DETERMINISTIC | DIMENSION | DISCONNECT | ...

A.2 Array Modification
The following rules extend <SQL schema manipulation sta-

tement> to alter or drop arrays, and <SQL data change state-
ment> to delete, insert, update or merge array contents.

<SQL schema manipulation statement> ::=
...

| <alter table statement>
| <alter array statement>
| <drop table statement>
| <drop array statement>
| ...

<alter array statement> ::=
ALTER ARRAY <array name> <alter array action>

<alter array action> ::=
<add column definition>

| <alter column definition>
| <drop column definition>

<alter column definition> ::=
ALTER [COLUMN] <column name> <alter column action>

| ALTER [COLUMN] <column name> SET DEFAULT
<simple value>

<simple value> ::=
<literal>

| <datetime value function>
| <implicitly typed value specification>

<drop array statement> ::=
DROP ARRAY <array name> <drop behavior>

<SQL data change statement> ::=
<delete statement: positioned>

| <delete statement: searched>
| <insert statement>
| <update statement: positioned>
| <update statement: searched>
| <merge statement>

<delete statement: searched> ::=
DELETE FROM <target> [[AS] <correlation name>]
[WHERE <search condition>]

<delete statement: positioned> ::=
DELETE FROM <target> [[AS] <correlation name>]
WHERE CURRENT OF <cursor name>

<insert statement> ::=
INSERT INTO <insertion target> <insert columns and source>

<insertion target> ::= <table name> | <array name>

<update statement: positioned> ::=
UPDATE <target> [[AS] <correlation name>]
SET <set clause list> WHERE CURRENT OF <cursor name>

<update statement: searched> ::=
UPDATE <target> [[AS] <correlation name>]
SET <set clause list> [WHERE <search condition>]

<merge statement> ::=
MERGE INTO <target> [[AS] <merge correlation name>]
USING <table reference>
ON <search condition> <merge operation specification>

<target> ::=
<table name>

| <array name>
| ONLY ‘(’ <table name> ‘)’
| ONLY ‘(’ <array name> ‘)’

A.3 Array Querying
To enable querying arrays, we merely need to extend the places

where tables are referred to with references to arrays, and where
columns are referred to with references to array elements. For in-
stance, in the rules below, adding <array name> to <table or
query name> effectively extends <table reference>with arrays,

since <table or query name> is used by <table reference>.
This way, arrays can be referred to in, for instance <from clause>
and <joined table>. Similarly, adding <array element ref-
erence> to <column reference> automatically enables the SciQL
structural grouping feature, since <column reference> is used
in <grouping column reference> in <grouping element> in
<group by clause>.

<table or query name> ::=
<table name>

| <transition table name>
| <query name>
| <array name>

<column reference> ::=
<basic identifier chain>

| <basic identifier chain> <array element reference>
| MODULE ‘.’ <qualified identifier> ‘.’ <column name>
| MODULE ‘.’ <qualified identifier> ‘.’
<array element reference>

<array element reference> ::=
<index expression list> [‘.’ <identifier>]

<index expression list> ::=
<index expression>

| <index expression list> <index expression>

<index expression> ::=
‘[’ <index term> ‘:’ <index term> ‘:’ <index term>‘]’

| ‘[’ <index term> ‘:’ <index term> ‘]’
| ‘[’ <index term> ‘]’

<index term> ::=
<common value expression> | <column name> | ‘*’

