
XRPC
Efficient Distributed Query Processing

on Heterogeneous XQuery Engines

Zhang Ying





XRPC
Efficient Distributed Query Processing

on Heterogeneous XQuery Engines

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de

Universiteit van Amsterdam,

op gezag van de Rector Magnificus

prof. dr. D. C. van den Boom

ten overstaan van een door het college

voor promoties ingestelde commissie,

in het openbaar te verdedigen in de Agnietenkapel

op donderdag 8 juli 2010, te 12:00 uur

door Zhang Ying ( )
geboren te ChongQing, China



Promotiecommissie:

Promotor: Prof. dr. Martin L. Kersten
CoPromotor: Dr. Peter A. Boncz

Overige leden: Prof. dr. Torsten Grust
Prof. dr. Arjen P. de Vries
Prof. dr. Maarten de Rijke

Dr. Maarten Marx

Faculteit:

Faculteit der Natuurwetenschappen, Wiskunde en Informatica
Universiteit van Amsterdam

The research reported in this thesis was finished at current position of the author at CWI, the
Dutch national research laboratory for mathematics and computer science, within the theme
Data Mining and Knowledge Discovery, a subdivision of the research cluster Information Sys-
tems.

SIKS Dissertation Series No. 2010-26.
The research reported in this thesis has been carried out under the auspices of SIKS, the Dutch
Research School for Information and Knowledge Systems.

ISBN 978-90-9025263-6



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Extending XQuery with Query Shipping . . . . . . . . . . . . . . . . 3
1.1.3 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.4 Stateless versus Stateful . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Related Work 11
2.1 P2P Data Management Systems . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Extending XQuery with Query-Shipping . . . . . . . . . . . . . . . 12
2.1.2 Distributed XML Querying in Structured P2P Systems . . . . . . . . 13
2.1.3 Distributed XML Querying in Unstructured P2P Systems . . . . . . . 16
2.1.4 PDMSs of Relational Data . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Related Query Processing Techniques . . . . . . . . . . . . . . . . . . . . . 19
2.2.1 XML Document Filtering . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Query Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 The XRPC Language Extension 23
3.1 Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 XRPC Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 SOAP XRPC Message Format . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 XRPC Request Messages . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 XRPC Response Messages . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.3 XRPC Error Message . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 XRPC Formal Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.1 Read-Only XRPC Semantics . . . . . . . . . . . . . . . . . . . . . . 32
3.4.2 XRPC Update Semantics . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Loop-lifted Implementation of XRPC . . . . . . . . . . . . . . . . . . . . . 38
3.5.1 Relational XQuery and Loop-Lifting . . . . . . . . . . . . . . . . . . 39
3.5.2 Bulk RPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

i



ii CONTENTS

4 Distributed XQuery With XPRC 45
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Cross-System Distributed XQuery . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Distributed XQuery Optimisation . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4 Deterministic Distributed Updates . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.1 Order-Correct Update Tags . . . . . . . . . . . . . . . . . . . . . . . 52
4.5 Distributed XRPC Transactions . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5.1 Heterogeneous Distributed 2PC . . . . . . . . . . . . . . . . . . . . 56
4.6 MonetDB/XQuery? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.6.1 Simple Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.6.2 Loose DHT Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.6.3 Tight DHT Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 XQuery Decomposition 63
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Semantic Differences with Pass-By-Value . . . . . . . . . . . . . . . . . . . 65
5.3 XQuery Core Rewrite Framework . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.1 XCore Dependency Graph . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.2 XRPCExpr Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4 Conservative Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4.1 By-Value Insertion Conditions . . . . . . . . . . . . . . . . . . . . . 71
5.4.2 Interesting Decomposition Points . . . . . . . . . . . . . . . . . . . 72
5.4.3 Normalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4.4 Distributed Code Motion . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5 By-Fragment Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.6 By-Projection Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.6.1 Extending Projected XML . . . . . . . . . . . . . . . . . . . . . . . 79
5.6.2 Runtime XML Projection . . . . . . . . . . . . . . . . . . . . . . . 81

5.7 Decomposition of XQUF Queries . . . . . . . . . . . . . . . . . . . . . . . 84
5.7.1 Distributing Normal XQUF Queries . . . . . . . . . . . . . . . . . . 84
5.7.2 Updating XCore Queries on Remote Documents . . . . . . . . . . . 86

5.8 Evaluation in MonetDB/XQuery . . . . . . . . . . . . . . . . . . . . . . . . 89
5.8.1 Read-Only Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.8.2 XQUF Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Correctness Proof of XQuery Decomposition 95
6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.1.1 Equality Relationships of Sequences . . . . . . . . . . . . . . . . . . 96
6.1.2 Equality Relationships of Sequences with Projection . . . . . . . . . 96
6.1.3 Equality Relationship of Read-Only Queries . . . . . . . . . . . . . 98
6.1.4 Equality Relationship of Updating Queries . . . . . . . . . . . . . . 100
6.1.5 Sequence Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.1.6 XPath Steps and distinct-doc-order . . . . . . . . . . . . . . . . 103

6.2 Static Properties Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



CONTENTS iii

6.2.1 Literal Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2.3 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2.4 for Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2.5 let Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2.6 Conditionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2.7 Typeswitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2.8 Value and Node Comparisons . . . . . . . . . . . . . . . . . . . . . 106
6.2.9 Order Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2.10 Node Set Expressions . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2.11 Constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2.12 XPath Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.2.13 Built-in Function Calls . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.2.14 Transform Expressions . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3 Conservative Correctness Proof . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.4 By-Fragment Correctness Proof . . . . . . . . . . . . . . . . . . . . . . . . 115
6.5 By-Projection Correctness Proof . . . . . . . . . . . . . . . . . . . . . . . . 120
6.6 XQUF Correctness Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.7 Code Motion Correctness Proof . . . . . . . . . . . . . . . . . . . . . . . . 130

7 StreetTiVo: Manage Multimedia Data Using A P2P XDBMS 131
7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.2 P2P Data Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.3 StreetTiVo Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.4 Next Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8 Conclusion and Outlook 141
8.1 Research Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A XML Schema Definition of the XRPC SOAP Messages 147

B XQuery Implementation Defined and Implementation Dependent Features 149
B.1 XQuery 1.0 and XPath 2.0 Data Model . . . . . . . . . . . . . . . . . . . . . 149
B.2 XQuery 1.0: An XML Query Language . . . . . . . . . . . . . . . . . . . . 150
B.3 XQuery 1.0 and XPath 2.0 Functions and Operators . . . . . . . . . . . . . . 153
B.4 XSLT 2.0 and XQuery 1.0 Serialization . . . . . . . . . . . . . . . . . . . . 155
B.5 XQuery Update Facility 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

C Static Property Analysis Rules for Built-in Functions 157
C.1 General Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
C.2 Accessory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
C.3 The Error Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
C.4 The Trace Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
C.5 Constructor Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158



iv CONTENTS

C.6 Functions and Operators on Numerics . . . . . . . . . . . . . . . . . . . . . 158
C.7 Functions on Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
C.8 Functions on anyURI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
C.9 Functions and Operators on Boolean Values . . . . . . . . . . . . . . . . . . 160
C.10 Functions and Operators on Durations, Dates and Times . . . . . . . . . . . 160
C.11 Functions Related to QNames . . . . . . . . . . . . . . . . . . . . . . . . . 163
C.12 Operators on base64Binary and hexBinary . . . . . . . . . . . . . . . . . . . 163
C.13 Operators on NOTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
C.14 Functions and Operators on Nodes . . . . . . . . . . . . . . . . . . . . . . . 164
C.15 Functions and Operators on Sequences . . . . . . . . . . . . . . . . . . . . . 164

C.15.1 General Functions and Operators on Sequences . . . . . . . . . . . . 164
C.15.2 Functions that Test the Cardinality of Sequences . . . . . . . . . . . 166
C.15.3 Equals, Union, Intersection and Except . . . . . . . . . . . . . . . . 166
C.15.4 Aggregate Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 166
C.15.5 Functions and Operators that Generate Sequences . . . . . . . . . . . 167

C.16 Context Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

References 169

Summary 177

Samenvatting 179

SIKS Dissertation Series 183



1
Introduction

1.1 Motivation
The use of the Internet as the means for individuals and organizations to interact and ex-
change information has significant consequences for data management technologies. The
data management research and industry communities have therefore embraced the W3C rec-
ommendations around XML, which is the de facto standard for information exchange on the
Internet1. Around XML an ecosystem of other Web standards has emerged, including XML
Schema, SOAP, WSDL, XSLT, XPath and XQuery. While the design of these Web standards
is in principle not a question of computer science research, rather one of design by commit-
tee, the fact that the Internet has adopted these standards as the means of (semi-) structured
data exchange creates a reality that provides relevance and urgency for finding answers to new
research questions, such as presented here in this thesis.

Generally speaking, one can view XML data on the Internet as a huge wide-area XML
database containing semi-structured information. The individual machines on the Internet
belong to truly billions of different individuals and millions of different organizations, and
consequently act as independent peers. The term “peer” is used here, as in principle there is
no hierarchy among these machines. Cooperative software systems where multiple peers work
together without necessarily a central point of control, are called Peer-to-Peer (P2P) systems.
Also, building systems that combine data from multiple peers on the fly is a new way to create
rich applications with little effort (“mashups”). As such, the question is how the creation of
such cooperative peer systems can be facilitated.

To ease the development of data-intensive P2P applications, we envision a P2P Database
Management System (P2P DBMS) that acts as a database middle-ware system. It manages
dynamic collections of heterogeneous data sources (peers, with different software installed)
and provides a uniform database abstraction to the application. The goal of this Ph.D. work at
large is to research which features such a database abstraction should offer, and how it can be
realized efficiently by extending and combining existing Database Management Systems with
P2P technologies.

Please note here, that P2P DBMS means something different than the common notion of
P2P systems, which the general public knows best as P2P file sharing systems, often used
for illegal downloading of copyrighted media. Whereas a P2P file sharing system typically
manages (binary) files, a P2P DBMS manages (semi-)structured information. In the context

1We could not resist using this by now infamous phrase.

1



2 1.1. MOTIVATION

of this study we focus on data in XML format, i.e., on P2P XML Database Management
Systems (P2P XDBMS). File sharing systems typically only allow simple queries, based on
meta data of the files, e.g. using keywords or simple properties. P2P XML database systems,
in contrast, allow users to query the contents and structures of the XML data, using an XML
query language. In the context of this thesis, we assume the query language to be XQuery
(which is a super-set of XPath).

In our quest for creating P2P XDBMS technology, we first focused on Distributed XDBMS
technology. The distinction between Distributed and P2P technology is that in the former,
users (e.g., application programmers) are aware of on which sites (i.e., peers) data are located.
Distributed queries typically involve specific and explicit locations where data is to be queried
from. In P2P systems that also target large environments, where users cannot keep track
which data is on which peer, and where the group membership is highly volatile (peers enter
and leave continuously and unpredictably), users are typically shielded from explicit knowl-
edge where data is located. We focused first on Distributed XDBMS technology as this area
also was unexplored, and Distributed XDBMS technology can be seen as a building block for
P2P XDBMS technology.

In this research work, we have hence focused on distributed XML DBMS aspects includ-
ing query execution, query optimisation, and transaction management. The result of this work
is XRPC (stands for Xquery RPC), a minimal XQuery extension that enables efficient dis-
tributed querying of heterogeneous XQuery data sources. In the remainder of this section, we
motivate the choices we made in the design and implementation of XRPC, and in how XRPC
is used for distributed XQuery processing over heterogeneous data sources.

1.1.1 Interoperability
The primary design goal of XRPC is to create a distributed query mechanism with which
different query processors at different sites can jointly execute queries. An important way
for a system to achieve interoperability with other systems is to adhere to published interface
standards. For this reason, our choice for the basic building bricks of XRPC naturally falls on
XML, XQuery, SOAP and HTTP – all well-defined and generally accepted Web standards.

After its first public revealing at the SGML 1990 Conference, XML has quickly gained
enormous popularity as a data exchange format among different applications and organiza-
tions. XML owns its success to several properties: (i) it is hardware and (to some extent)
software independent; (ii) it is a self-documenting format, i.e., a single document contains
both description of the structure and field names, and values; (iii) it is suitable for data with
or without a clear structure, thus one can capture plain text, and text with some structure, e.g.,
e-mails, all the way to very structured information such as tuples; and (iv) XML schemas are
extensible, which makes it easy to support backward compatibility. Consequently, the choice
for XML as the data model and XQuery as the query language – and web standards in general
– eases many aspects of distributed data management.

The only way for two different systems to communicate is to use an open protocol. How-
ever, to the best of our knowledge, none of the existing proposals of distributed XML query
processing use or define such an open standard protocol. Some of them use a non-open pro-
tocol, e.g., AXML [9], and some of them use a proprietary protocol, e.g., DXQ [70]. In such
systems, heterogeneity is hard to achieve, or impossible. Therefore, we choose to use an open
network protocol to enable communication among different XQuery engines. Although W3C
has a Candidate Recommendation XML Fragment Interchange [87] and SOAP has a SOAP



CHAPTER 1. INTRODUCTION 3

RPC subprotocol, these two standards have a common problem: the data types they support
do not match the data types defined by the XQuery Data Model (XDM) [71]. The XML
Fragment Interchange defines a way to send fragments of an XML document – regardless of
whether the fragments are predetermined entities or not – without having to send all of the
containing document up to the fragments in question. Thus, XML Fragment Interchange only
supports XML elements, but no atomic values; while SOAP RPC only supports exchanging
of atomic values without XML elements. Neither approach deals with (XQuery) sequences of
heterogeneous types.

As a result, XRPC also encompasses a SOAP-based network protocol, the SOAP XRPC
protocol. Network communication in XRPC uses XML messages over HTTP. There is ubiq-
uitous support for URIs, specifically HTTP networking, and XQuery engines are perfectly
equipped to process XML messages. Moreover, an XML-based message protocol makes it
trivial to support passing values of any type from XDM. The choice for SOAP brings as addi-
tional advantages seamless integration of XQuery data sources with web services and Service
Oriented Architectures (SOA) as well as AJAX-style GUIs.

1.1.2 Extending XQuery with Query Shipping

For efficient processing of XQuery queries in our target environments, the first task is to extend
XQuery with a query shipping model.

By default, the XQuery 1.0 standard already allows querying XML documents distributed
over the Internet, using a data shipping model. The built-in function fn:doc() fetches an
XML document from a remote peer to the local server, where it subsequently can be queried.
The recent W3C Candidate Recommendation XQuery Update Facility (XQUF) introduces a
built-in function fn:put() for remote storage of XML documents, which again implies data
shipping. In P2P settings such a data shipping model has several serious drawbacks [91, 92,
180]. It is highly inefficient in terms of network latency. For instance, aggregation queries
on huge remote XML documents that produce only small results incur large network costs,
because complete documents have to be transferred to queries’ local peers. This directly leads
to poor scalability both in sizes and in the number of remote documents involved in a query.
Bad load balancing is another drawback, because all query execution happens locally, i.e.,
at the query originator, missing possibilities of exploiting query processing capabilities of
remote peers.

There have been various proposals to equip XQuery with a query shipping model, espe-
cially the function shipping style distributed querying abilities [74, 134, 144, 172]. In this
research work, we choose to extend XQuery with a Remote Procedure Call (RPC) mecha-
nism, which we call XRPC (i.e., XQuery RPC). On the syntax level, we consider XRPC an
incremental development of the existing extensions, with specific advantages concerning sim-
plicity and optimisability. Considering simplicity, XRPC adds RPC to XQuery in the most
simple way: adding a destination URI to the XQuery equivalent of a procedure call (i.e., func-
tion application). XRPC is optimisable in that it makes explicit the input data (parameters) of
a remote query and its result type through the function signature, routinely identified during
query parsing in existing XQuery systems. Also, functions can be defined in XQuery mod-
ules, and compiled separately in advance, making it easy to do query plan caching and thus
accelerate distributed query processing.



4 1.1. MOTIVATION

1.1.3 Efficiency
In P2P settings (e.g., WAN), query execution times are mainly determined by network latency.
The study in [79] demonstrates on a real system that, in distributed systems, the key to scal-
ability is minimising the number of messages. Therefore, in the design of XRPC, we have
paid special attentions to minimize the number of messages exchanged among peers and also
the sizes of messages. Two new concepts have been introduced: Bulk RPC and runtime XML
projection.

Bulk RPC The XRPC extension allows maximal flexibility of making XRPC calls. An
XRPC call may be placed anywhere in an XQuery query, where a normal XQuery function
call is allowed. For example, XRPC calls can be included in for-loops, which often contain
large numbers of iterations. Clearly, a naive implementation that handles XRPC calls one-
at-a-time will not scale. The SOAP XRPC protocol supports a so-called Bulk RPC concept,
which allows the system to compute multiple applications of the same function (with differ-
ent parameters) in a single request/response network interaction2. Bulk RPC is much more
efficient than repeated single RPC as network latency is amortized over many calls, and per-
formance becomes bounded by network bandwidth or CPU throughput (hardware factors that
scale much better than network latency). Another way to look at Bulk RPC is that it exposes
bulk execution opportunities, such that e.g. a function that selects with a constant argument
is turned into a join against the sequence of all arguments. Bulk RPC thus has a direct corre-
spondence with set-oriented processing as offered by query algebras, and we believe it can be
generally applied in any algebraic XQuery implementation.

Runtime XML Projection XML projection3 [24, 60, 66, 125, 52, 31, 56, 83, 61, 111] is a
technique popularly used, e.g., by streaming systems, to reduce the amount of data that needs
to be processed for a query and to reduce memory usage. The basic idea of XML projection
is, for a given XQuery query Q and an XML document D , to extract a smaller part D ′ of D ,
which is used to execute Q such that Q(D) = Q(D ′). A projection technique usually conducts
a compile-time path analysis on Q, to derive a set of XPath expressions P that over-estimate
the nodes that Q touches. Then, a loading algorithm applies P on D (from a file or a stream)
to generate the projected document (or stream) D ′, which is queried with Q.

XML projection is also extremely interesting for distributed XQuery processing, as we
will see in Chapter 5, where we introduce a new concept called runtime XML projection.
When sending XML nodes, pruning huge subtrees, which will remain untouched at the remote
sites, can strongly reduce network bandwidth usage, as well as serialisation and deserialisation
effort. Our runtime XML projection technique has as additional advantages, compared with
compile-time techniques, higher accuracy and flexibility.

Considering accuracy, with the runtime technique, we are able to restrict the projected doc-
ument using the selection predicates found in expressions, thus, the resulting projected docu-
ment D ′ is often much smaller. For instance, consider the expression //person[@id=$pid].
A compile-time technique, lacking the ability to execute the predicate “@id=$pid”, has to
keep all person elements in D ′, while our runtime technique only projects the person ele-
ment, whose id attributed matches the given $pid.

2Note that Bulk RPC should not be confused with semi-join, although they both aim at improving efficiency. Bulk
RPC achieves this by reducing the impact of network latency, while semi-join reduces the amount of shipped data.

3Also called XML filtering or XML pruning.



CHAPTER 1. INTRODUCTION 5

Runtime projection is more flexible, because it can handle XPath steps on all axes and
the built-in functions that need to access XML nodes outside the subtree of their parameters
(i.e., fn:root(), fn:id(), fn:idref() and fn:lang()). While handling non-downwards
XPath steps (e.g., parent and ancestor) is a cumbersome task for many streaming systems,
the runtime projection technique makes it easy. Applying a parent step on a document at
runtime is only marginally different from applying a child step.

Thanks to the runtime projection technique, we can stick to a copy-based, stateless ap-
proach in the design of XRPC, which minimise network interactions (hence the impact of
WAN latency).

1.1.4 Stateless versus Stateful
When designing the basic SOAP XRPC protocol and its extensions, we made a conscious
choice for a by-value parameter passing mechanism. That is, during remote function execu-
tion, the calling peer (i.e., query originator) will send a request message containing a deep-
copy of the parameters to a remote peer, which executes the subexpression, and sends back a
response message containing a deep-copy of the result. If the function parameters or results
contain XML node-typed items, only the subtrees rooted at these items are serialised (i.e.,
deep-copied) into the XRPC messages. As a result of this, node-typed items lose their orig-
inal node identities and structural properties, when they are exchanged among peers, which
may affect the semantics of XQuery execution on such shipped nodes. This is an inevitable
situation, because when XML nodes must be shipped over the network, it means that, unless
one chooses to ship the entire XML document in order to preserve all structural relationships
(which defeats the purpose of function shipping), pieces/snippets of the XML document must
somehow be copied into the messages.

To illustrate the challenges of distributing XQuery, yet preserving XML node identity,
consider a subexpression f($a,$b) with two parameters $a and $b of type node(), that
is executed remotely. Complications may arise, for instance, if the subexpression f() tests
structural XML relationships among its parameters, such as $a/parent::b is $b. Similar
complications arise when transporting result values back over the network, and when the
results of two different function calls to the same remote peer end up at the same peer. It
therefore depends on the characteristics of the subexpressions f(), as well as on the way
parameters are marshalled in and out of the network messages, whether the distributed query
will behave correctly, that is, whether the distributed query is identical to local execution
(blindly copying all parameters into the message does not work in this example).

One could consider a simple “callback” way of handling XQuery distribution by not send-
ing XML snippets at all, but just some (global) node identifiers. Each time when a peer needs
to execute node-specific XQuery/XPath expressions on such node identifiers, this alternative
approach would communicate with the peer where the nodes originally came from, executing
the node-specific expressions on that peer and returning the results. While such an approach
circumvents semantic problems, it has many drawbacks: (i) it basically gives up on the desire
to move computation to more powerful peers; (ii) it introduces additional network round-trips;
(iii) it makes all distributed queries – even read-only queries – stateful: a single query might
consist of multiple (potentially many) network requests and the query processor on each peer
must keep a session context open to guarantee repeatable reads consistency, which causes
extra memory consumption and lock contention; and finally (iv) additional protocols would
be needed to properly terminate such stateful distributed queries, adding extra protocol com-



6 1.2. RESEARCH OBJECTIVE

plexity, bookkeeping overhead and network latencies. In contrast, the techniques introduced
with XRPC lead to flexible query distribution where subexpressions can be moved to the peer
that can most efficiently process them. Typically, each peer is visited only once, thus network
interactions are minimised and peers can handle the subqueries in a stateless manner.

Let us have a more precise look at the difference between a callback approach (i.e., state-
ful) and the XRPC approach (i.e., stateless). XRPC leads to O(PQ) number of network round
trips, where PQ is the number of different documents opened by the query Q. This is ob-
viously the minimal number of network round trips. A naive callback approach leads to
O(PQ ∗ (XQ +2BQ)) network round trips, where XQ is the number of XPath steps in the query
Q, and BQ the number of binary operators (e.g., is,�, union, etc). Although it is possible to
reduce the number of network round trips caused by a naive callback approach, what we are
trying to make clear here is that, in this research, the question is not so much whether XRPC is
better than a callback approach, but whether the XRPC approach is possible. This is a major
research question.

Additionally, one could also envision a network protocol that combines “callback” query
processing with our techniques, something that might be interesting for handling distributed
updating queries (because in the default XQUF semantics only locally stored documents can
be updated, hence one would have to “callback” to the peer where a node originated from, to
apply the update actions). However, given our target of Internet-wide P2P query processing
with high network latencies, we decided against the “callback” approach in our own prototype
construction, and fully focused on XQuery execution by moving XML snippets and computa-
tions on them over the network. In this research work, we have solved the problem brought by
this approach in preserving semantic correctness, and also demonstrate the efficiency of this
approach (Chapter 5).

1.2 Research Objective
The focus of this thesis is processing and optimisation of distributed XQuery queries. The
general research question addressed here is:

How to support efficient processing of full-fledged XQuery queries – in-
cluding those containing XQUF expressions – on large amounts of XML
data served by heterogeneous XQuery engines in P2P settings?

This question identifies three main issues: efficiency, interoperability, and scalability. To
better understand the research question, we have refined it into more specific questions:

1. How should we extend XQuery with a query shipping mechanism that is suitable for the
targeted environments?

Determined by the main research question, such an extension should provide the potential
for efficient, interoperable and scalable XQuery processing. Additionally, the extension
should be orthogonal to all XQuery features, and it should be kept as simple as possible. By
allowing any kind of XQuery expressions to be executed remotely, the extension provides
maximal possibilities for remote execution, which in turn provides more potential for query
optimisation. A simple design might look easy, but it is important for efficiency (think
of administrative overhead), interoperability (i.e., easy to understand) and scalability (an
extension requiring minimal administration is usually much faster than a complex one).



CHAPTER 1. INTRODUCTION 7

2. How can different XQuery engines be united to jointly evaluate a single query?

A single XQuery query could easily involve multiple remote XML documents served by
peers that are possibly capable of processing XQuery queries. In general, the best way
to handle such queries is to to exploit the query processing power on the remote peers,
i.e., executing subexpressions of a query on remote peers close to data sources. An open
protocol is a prerequisite for heterogeneous XQuery engines to communicate with each
other.

3. How are distributed updating queries supported?

With the introduction of XQUF, XQuery is no longer a read-only language. Since XRPC is
designed to be an orthogonal extension of XQuery, it also allows updating expressions to
be executed on remote peers. This requires a clear definition of the semantics of distributed
updating queries (e.g., updates on remote documents), which isolation levels are supported,
and how distributed transactions are supported.

4. How can we automatically decompose XQuery queries for distributed execution?

Decomposing queries to address multiple data sources is a well-studied optimisation prob-
lem in relational [175], object-oriented [115, 105], and semi-structured databases [166,
167]. While it is natural to assume that many of the existing techniques can be carried
over, the XML data model and the XQuery language introduce a number of particular chal-
lenges not met elsewhere, that revolve around XML node identities and structural (rather
than value-based) relationships between nodes. For this reason, automatic XQuery decom-
position must determine which subexpressions can be decomposed in order to guarantee
the correctness of the decomposed queries.

5. How can we integrate existing DBMS with P2P overlay networks to provide non-trivial
data management facilities to P2P applications?

Both DBMS and P2P networks are mature research fields, thus, instead of inventing a P2P
DBMS from scratch, our strategy for advancing the state-of-the-art in distributed DBMS is
to research how to couple existing XDBMS with Distributed Hash Table based P2P overlay
networks: which information should the underlying DHT overlays provide to the XDBMS,
and how should this information be exposed? How can the DHT overlays benefit from the
data management and query processing features supported by the XDBMS, to offer a finer
grained data sharing feature than file-based data sharing, and more powerful searching
facilities than keyword based search?

1.3 Thesis Outline
This thesis is further organised as follows. We start with a discussion of related work in
Chapter 2.

In Chapter 3, we introduce the XRPC language extension, which adds a Remote Procedure
Call (RPC) mechanism to XQuery. First, we specify the XRPC syntax and the SOAP XRPC
network communication protocol. Then, we spend considerable time in rigorously defining
the formal semantics of read-only as well as updating XRPC calls. Finally, we discuss the
implementation of XRPC in MonetDB/XQuery, including the correspondence of Bulk RPC
with the loop-lifting technique applied by the pathfinder compiler. This chapter addresses the
research questions 1 and 2, and is based on the following paper:



8 1.3. THESIS OUTLINE

• Y. Zhang, P. A. Boncz. XRPC: Interoperable and Efficient Distributed XQuery. In Proceed-
ings of the International Conference on Very Large Data Bases (VLDB), Vienna, Austria,
September 2007.

In Chapter 4, we discuss various uses of XRPC for distributed XQuery processing on het-
erogeneous XQuery engines. First, by using Saxon, we demonstrate how XRPC can be used
already with any XQuery system, using an XRPC wrapper that is capable of translating Bulk
RPC requests into XQuery. We also show how XRPC can be used to elegantly express various
distributed query processing strategies, including experiments in which MonetDB/XQuery
and Saxon work together over XRPC, using e.g. the distributed semi-join strategy. Then,
we turn our attention to the interaction between XRPC and XQUF. We first define a deter-
ministic distributed update semantics and show that a small extension to the SOAP XRPC
protocol enables the protocol to conform to the deterministic update semantics. We then de-
scribe how the industry standard Web Service Atomic Transaction[55] could be adapted to
support atomic distributed commits of XQUF queries on heterogeneous XQuery engines. Fi-
nally, we discuss our first step towards integrating an XDBMS and DHT-based overlays in
MonetDB/XQuery?. While XRPC already allows performing P2P queries, it still misses a
number of vital P2P functionalities (robust connectivity, peer and resource discovery, approx-
imate query/transaction processing). In Section 4.6, we propose two different ways to couple
an XDBMS with DHTs, i.e., a loose-coupling and a tight-coupling. This chapter addresses
the research questions 2, 3 and 5, and is based on the following papers (in the order of their
appearance):

• Y. Zhang, P. A. Boncz. XRPC: Interoperable and Efficient Distributed XQuery. In Proceed-
ings of the International Conference on Very Large Data Bases (VLDB), Vienna, Austria,
September 2007.

• Y. Zhang, P. A. Boncz. Loop-lifted XQuery RPC with deterministic updates. Technical
Report INS-E0607, CWI, Amsterdam, The Netherlands, November 2006.

• Y. Zhang, P. A. Boncz. Distributed XQuery and Updates Processing with Heterogeneous
XQuery Engines. In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, Vancouver, Canada, (Demo Paper), June 2008.

• Y. Zhang, P. A. Boncz. Integrating XQuery and P2P in MonetDB/XQuery? In Proceed-
ings of the 1st Workshop on Emerging Research Opportunities for Web Data Management
(EROW), volume 229 of CEUR Workshop Proceedings. CEURWS.org, Barcelona, Spain,
January 2007.

In Chapter 5, we present an XQuery decomposition framework and three decomposition
algorithms that automatically decompose any XQuery query into subqueries for remote exe-
cution under different parameter passing semantics. We start with identifying the semantic
differences of remote XQuery pass-by-value function evaluation with respect to standard,
local function evaluation. We then describe an XQuery Core based query decomposition
framework. This leads in to a conservative XQuery decomposition strategy that avoids se-
mantic problems simply by refraining from decomposition in all problem cases. To make
our rewrites more effective and robust against syntactic variation, we also describe normalisa-
tion and code motion rewrite strategies. To broaden the possibility of query distribution, we



CHAPTER 1. INTRODUCTION 9

extend the pass-by-value semantics with a new pass-by-fragment message format that con-
serves more structural relationships between nodes passed in a message, and allows more
predicates to be distributed. The pass-by-fragment semantics is subsequently refined to a
pass-by-projection semantics by means of a novel runtime XML projection technique, which
we use to generate messages that conserve all needed structural relationships between trans-
ferred XML nodes, and thus allows even more freedom in query decomposition. As a runtime
technique, it is able to prune XML data much more than previously described compile-time
projections[52, 31, 111]. Then, we discuss how updating queries can be handled, both in
the normal XQUF semantics, as well as under an extension in which we allow non-local
documents to be updated. Finally, we give an evaluation of the performance benefits of our
techniques in the context of MonetDB/XQuery. This chapter addresses the research question
3 and it is based on the following papers:

• Y. Zhang, N. Tang, P. A. Boncz. Efficient Distribution of Full-Fledged XQuery. In Pro-
ceedings of the 25th International Conference on Data Engineering (ICDE), pages 565-576.
IEEE, ShangHai, China, April 2009.

• Y. Zhang, N. Tang, P. A. Boncz. Projective Distribution of XQuery with Updates. IEEE
Transactions on Knowledge and Data Engineering, 2010. To appear.4

In Chapter 6, we formally prove the correctness of the three decomposition algorithms
proposed in Chapter 5. We first prove, for each algorithm, that executing allowed subexpres-
sions of a query remotely over XRPC will produce the same results as the original query,
under the XQuery deep-equal semantics. Then, we prove the correctness of the algorithms
on XCore queries containing XQUF expressions, and the correctness of the distributed code
motion technique.

In Chapter 7, we illustrate how the described P2P XDBMS in Chapter 4 can be used
in StreetTiVo. StreetTiVo is a demo application for multimedia meta-data for the so-called
Home Theatre PCs. We first describe the current system architecture of StreetTiVo, and its
major components, beside XRPC, ASR and PF/Tijah. This first version of StreetTiVo was
chosen to be simple, so that we could quickly demonstrate the cooperation between XRPC,
ASR, PF/Tijah in a non-trivial application setting, thus a distributed architecture is adopted, in
which all StreetTiVo users (i.e., clients) are managed by a central server. Then, we explain the
envisioned P2P model and discuss the challenges on our way to make StreetTiVo a truly P2P
application. This chapter presents some preliminary ideas to address the research question 4,
and is based on the following paper:

• Y. Zhang, A.P. de Vries, P.A. Boncz, D. Hiemstra, and R. Ordelman. StreetTiVo: Us-
ing a P2P XML Database System to Manage Multimedia Data in Your Living Room. In
Proceedings of the Joint International Conferences on Advances in Data and Web Manage-
ment (APWeb/WAIM), volume 5446 of Lecture Notes in Computer Science, pages 404-415.
Springer, SuZhou, China, April 2009

Finally, we conclude the thesis and discuss future work in Chapter 8.

4The extended version of the ICDE 2009 Conference paper accepted by the TKDE for its Special Issue on the
Best Papers of ICDE2009, scheduled for publication in 2010.





2
Related Work

This Ph.D. work is related to a large body of research works in the area of query processing,
query optimisation and transaction management. For more literature, we would like to refer
the readers to the surveys [178] and [114]. The books [57] and [135] give comprehensive
overviews of techniques involved in all aspects of distributed DBMSs. In this chapter, we first
discuss in Section 2.1 related research work in Peer Data Management Systems (PDMSs),
with focus on distributed XML querying. Then, we discuss in Section 2.2 two particular
techniques that are often used for efficient distributed (XML) query processing, namely XML
document filtering and query decomposition.

2.1 P2P Data Management Systems
The tremendous size of the Internet and the popular use of P2P applications have presented
new challenges to distributed DBMS researchers. Several visionary papers and surveys have
been published that identify new issues in data management in large-scale heterogeneous P2P
systems, and introduce possibilities or survey the state of the art on PDMS.

In [86], Gribble et al. raise the question how data management can be applied to P2P and
what the database community can learn from it and how they can contribute. The authors
discuss the challenges of data placement in P2P environments and introduce the Piazza sys-
tem [103], a peer data management system that enables sharing heterogeneous relational data
using schema mapping. In [33], Bernstein et al. introduce the Local Relational Model (LRM)
to also address issues in data management in P2P environments. LRM assumes that the data
residing in different databases have semantic inter-dependencies, and allows peers to specify
coordination formulas that explain how the data in one peer must relate to data in an acquain-
tance. Thus, LRM does not require a global schema. Sung et al. give a nice survey of data
management in P2P systems in [168]. This paper gives a comprehensive overview of existing
unstructured and structured P2P network systems. It also discusses the data integration issues
that P2P systems must deal with when sharing structured data, query processing techniques
in both P2P file sharing and data sharing systems, and data consistency issues that the cache
manager and update manager must address when data duplication is supported. Bonifati et
al. [44] carefully compare the characteristics of P2P databases with those of distributed, fed-
erated and multi-databases to gain better insight to the P2P data management technology. The
authors provide a taxonomy of the most prominent research efforts toward the realisation of
full-fledged P2P DBMSs for relational data. [99] is another extensive survey of the state of
the art of PDMS. The authors examine open research directions in several areas of PDMS,

11



12 2.1. P2P DATA MANAGEMENT SYSTEMS

including system model, semantics, query planning schemes and maintenance.
Among the material published, [113] is a survey dedicated to distributed processing of

XML data in P2P systems. It focuses on data management issues including indexing, cluster-
ing, replication and query processing and routing. In [113], P2P DBMSs are classified based
on (i) the degree of decentralisation, (ii) the topology of the overlay network, (iii) the way
information is distributed among the nodes, and (vi) the type of data they store.

In the remainder of this section, we first describe other XQuery extensions that equip
XQuery with a query-shipping model (Section 2.1.1). We then discuss related work on dis-
tributed XML query processing in P2P systems. Proposals are grouped by the topology of
their underlying overlay networks, i.e., structured P2P systems (Section 2.1.2) and unstruc-
tured P2P systems (Section 2.1.3). Finally, in Section 2.1.4, we discuss some prominent work
of PDMSs of relational data.

2.1.1 Extending XQuery with Query-Shipping
XQueryD XQueryD [144, 29] extends XQuery with a new statement “execute at”, which
supports remote execution of free-form XQuery queries (specified in the “xquery { ...}”
block following an “execute at” statement). XQueryD uses a runtime rewriter to scan the
XQuery expressions in the xquery block for variables and to substitute them with the runtime
values. XQueryD has two main features that distinguish it from other XQuery extensions.

XQueryD is the only XQuery (query-shipping) extension that has a mechanism to explic-
itly catch and handle exceptions. For each xquery statement, one can define multiple handle
clauses to specify how to react to certain exceptions. The necessity of such an error handling
mechanism in XQuery has been confirmed by the recently published W3C Working Draft
XQuery 1.1 [149], which proposes to add try...catch expressions to the XQuery language.

The primary goal of the XQueryD project is to develop tools to help neuroscientists under-
stand language organisation in the brain. In this context, data sources using totally different
data models must be integrated. Therefore, XQueryD also allows an “execute at” statement
to be used to invoke queries in a foreign language, other than XQuery.
Galax XButler and the Yoo-Hoo! Service Galax Yoo-Hoo! [72] is a user-presence ser-
vice that uses XButler [134] to integrated user-presence information from multiple service
providers and to provide Yoo-Hoo! clients with information such as “the requested subscriber
is on-line at Jabber” or “the subscriber’s cell phone is busy”. XButler extends XQuery with
a new statement “import service” to import WSDL [62] modules, which enables access to
Web services from within XQuery queries:

import service namespace foo="http://example.org" name "UserProfile";
let $c := foo:getContact("user1", 4) return ($c/name, $c/tel)

In the above query, the call to foo:getContact() will trigger a SOAP call to the appropriate
Web service. Parameter values and results are passed between the caller and the callee using
SOAP RPC messages. Thus, once a service module is imported, all operations defined in this
service module could be called in an XQuery query, as if they were normal XQuery functions.

When a WSDL module is imported, each operation defined in this module is compiled into
an XQuery stub function with the same name and parameters as the WSDL operation. The
stub function takes care of generating SOAP RPC request messages with the actual parameter
values, exchanging messages with the Web service, and extracting results from the SOAP
RPC response message. XButler also provides a tool xquery2soap to deploy a SOAP service



CHAPTER 2. RELATED WORK 13

from a given XQuery module. In [134], a binding between XQuery and WSDL is given which
is based on the relationship between XQuery modules and WSDL portTypes.

Related to XButler is the work proposed by Fourny et al. in [78, 77], which also adds a
Web service importing feature to XQuery to allow (asynchronous) accessing of Web services.
In [78, 77], the authors have extended JavaScript to allow execution of XQuery expressions
(including updating expressions) in Web browsers. Such an extension could ease the develop-
ment of AJAX-style applications, because programming the browsers involves mostly XML
navigation and manipulation, and the XQuery family of W3C standards were designed exactly
for this purpose.

DXQ DXQ [74, 70] is a distributed XQuery processing framework developed as an extension
of Galax. The basic idea of DXQ is that functions in an imported module can be executed
on an arbitrary number of remote DXQ servers. DXQ allows remote updates, by means of
supporting XQueryP [59]. A small change in module importing is that DXQ distinguishes
a module’s interface from its implementation, thus, in DXQ, multiple servers can export the
same module interface, but each provides its own, potentially unique implementation. Next to
synchronous remote executions, DXQ also provides an asynchronous execution model. This
useful feature opens more opportunities for (distributed) query optimisation.

A major difference between DXQ and other XQuery extensions is that DXQ depends on
distributed query plans, in terms of the internal Galax execution algebra, generated by the
Galax optimiser. This has certain advantages, such as better control over the capabilities of
the distributed nodes and possibly better physical plans and optimisation, but the use of an
internal algebra makes it hard to achieve cross-system DXQ.

2.1.2 Distributed XML Querying in Structured P2P Systems
We start with a detailed discussion of the Active XML project and its related KadoP system
in a dedicated subsection, because it is by far the most important related work in distributed
processing of XML data that has achieved notable results [28, 19, 20, 165, 12, 18, 5, 9, 36,
154, 11, 16, 37, 15, 14, 4, 6, 8, 13, 30, 155, 10, 3, 127, 138, 7].

2.1.2.1 Active XML and KadoP

Active XML Active XML (for short: AXML) is a declarative framework that uses Web
services (WSDL) for distributed XML data management. The framework is based on AXML
documents, which are XML documents that may contain embedded calls to Web services;
and AXML services, which are Web services capable of exchanging AXML documents. An
AXML peer is a repository of AXML documents that can act both as client when invoking
the embedded service calls, and as server when providing AXML services. A comprehensive
overview of AXML features can be found in [9]. In [18, 20], the authors give a formal analysis
of the behaviour of AXML systems, in particular, to verify the temporal properties of AXML
documents. In this section, we highlight several AXML aspects that are closely related to our
work.

A service call in an AXML document is denoted using a special axml:call element,
which has one service attribute to specify the service to be invoked. An axml:call element
can also contain additional attributes to specify, for instance, the mode, in which the call is
activated, and for how long its results are valid. Parameter values of the called services are
included as the descendants of the call element [9, 30]. In an AXML document, axml:call



14 2.1. P2P DATA MANAGEMENT SYSTEMS

elements are allowed to appear anywhere in the document. This is not a problem for XML
documents without schemas, as AXML documents are syntactically valid XML documents.
However, adding axml:call elements to an XML document with a schema would either
invalidate the original document, or require the schema to be modified.

After a service call has been invoked, its results are materialised, i.e., added into the doc-
ument. The service call could either be replaced by its results, or be kept next to its results for
re-evaluation, which enables data refreshing and nested calls. Service functions are defined in
AXML using an XML query language X-OQL[22], in the open-source implementation [28],
which itself does not allow distributed evaluation (an embedding piece of AXML is always
needed). The SOAP protocol used for AXML uses a document/literal encoding to represent
XML subtree values. However, it has not been specified formally.

AXML has shown the value of distributed query optimisation, identifying lazy evaluation
schemes and various rewrite strategies [6]. AXML has also shown its value in many different
areas of distributed XML processing, including mobile systems [138], data warehousing [13,
14, 5], event systems [4], and workflow systems [164, 165].

KadoP An important application of AXML in P2P systems is KadoP [13, 14], a distributed
infrastructure for warehousing XML resources in a P2P framework. KadoP builds on DHTs
as a peer communication layer and AXML as a model for constructing and querying the re-
sources in the network. A KadoP query is a tree pattern whose nodes represent data items and
whose edges represent containment relationships among the nodes. Both nodes and edges are
indexed in the underlying DHT network. The usefulness of KadoP has been demonstrated by
the EDOS system [11, 17] and the WebContent platform [5]. EDOS is a distribution system for
efficient dissemination of open-source software through the Internet using a publish-subscribe
infrastructure. WebContent is a platform for managing distributed repositories of XML and
semantic Web data. In [12], the authors describe techniques to address some of the scalability
limitations of KadoP. The authors introduce a technique based on partitioning and distributing
index blocks to greatly reduce query response time. Structural Bloom Filters are used to re-
duce network traffic by filtering out peers that surely do not have certain XML nodes needed
by a query.

2.1.2.2 XPath Query Processing over DHTs

A considerable number of proposals on supporting XPath queries over DHT overlays al-
ready exist, e.g., Galanis et al. [79], XP2P [46, 45], XPeer [142], Skobeltsyn et al. [161]
and XCube [120]. These proposals are similar to each other, in the sense that they all focus on
efficient processing of the ‘/’ and ‘//’ XPath steps, with minor differences in additionally sup-
ported XPath language features. The work proposed by [79, 46, 142, 120] support selection
predicates, and the work proposed by [142, 161] support the wildcard ‘∗’. In addition, XCube
supports tag-based queries, e.g., (title, “Database”). These proposals differ mainly in
the used indexing techniques, which, in turn, affect the way queries a processed. To the best
of our knowledge, there is no existing system that supports full-fledged XQuery over DHTs.

Galanis et al. In [79], XML tag names are used as hash keys. The authors try to address
the scalability issue in large-scale P2P systems by sending queries only to the repositories
that have data relevant to the query without relying on a centralised catalog infrastructure.
Therefore, the authors propose a catalog framework that is distributed across the data sources
themselves. A fully decentralised catalog service allows data providers to join and make their



CHAPTER 2. RELATED WORK 15

data query-able by all peers in the systems. To balance query workload, catalog information
is split or replicated dynamically.

XP2P XP2P [46, 45] is built on top of Chord [162]. The system assumes that each peer stores
a set of XML fragments. Each fragment is unambiguously identified by its distinct linear
absolute path. The search key of a fragment is the hash value of its path. To compute the hash
values, a special fingerprinting technique is used which produces shorter hash keys (than those
produced by Chord) and supports a concatenation property that allows the computation of the
tokens associated with path expressions to proceed incrementally. XPath queries that only
contain child steps (potentially with positional predicates) can be answered in XP2P extremely
fast, since the actual query can serve as the search key in the DHT network. For descendant
steps, a separate algorithm is presented that achieves a O(N f × log(N)) complexity, where N f
is the number of fragments and N the number of peers in the network.

XPeer XPeer [142]1 maintains indices at three different levels of granularity, i.e., DHT hashes
of complete XML documents, XPath expressions, and XML elements. Although these indices
might accelerate query execution, the authors did not discuss the costs of creating and main-
taining the indices.

Skobeltsyn et al. Similar to XP2P, Skobeltsyn et al. [161] also index XPath steps containing
only the child axis ‘/’. The P-Grid [1, 2] DHT overlay network is used, which uses a binary
trie topology. The hash key of a query is the longest sequence of element tags in the query
that are only divided by ‘/’. If only one peer is responsibly for the hash key, the query result
can be computed. Otherwise, a shower algorithm is used to broadcast the query to all peers in
the subtrie defined by the hash key. To overcome the high costs imposed by large broadcasts
(when the hash key is short), intermediate results are cached.

XCube XCube [120] is a tag-based scheme that manages XML data in a hyperCube overlay
network to support XPath and tag-based queries. An advantage of tag-based queries is that
they do not require users to know the structure of a document before querying the document.
Like XPeer [142], documents in XCube are indexed at different levels of granularity. That is,
an XML document is compactly represented as a triple: a bit vector derived from the distinct
tag names in the document, a synopsis of the document and a bit map of the content summary.
A query is processed in four phases. First, the bit vector derived from the query tags is used
to locate the query’s anchor peer, which contains a superset of the synopses of all potentially
matching answers. Second, the query is compared against all synopses at its anchor peer and
forwarded to the anchor peer of each document with matching synopsis according to its bit
vector. Third, at the anchor peer of a document, the predicates in the query are examined based
on the bit maps stored on this peer. Documents that satisfy the structural requirements but not
the predicates in the query are pruned. Finally, the query is forwarded to all owner peers in
the answer set for evaluation. Unlike previous approaches, e.g., [79, 46, 45, 142, 161], XCube
does not put any limitations on the supported XPath expressions. Regretfully, the experiment
results do not show how well XCube would perform when processing XPath steps on reverse
and horizontal axes.

1This XPeer project should not be confused with another XPeer project proposed by Sartiani et al. [156], which
supports the FLWOR expressions of XQuery on top of a superpeer network.



16 2.1. P2P DATA MANAGEMENT SYSTEMS

2.1.3 Distributed XML Querying in Unstructured P2P Systems

Mutant Query Plans Similar to AXML, query execution in Mutant Query Plans (MQPs) [136,
137] also happens by exchanging XML documents containing both resulting XML data and
unevaluated subqueries, and it is also independent of any central coordinators. However, ex-
changing (system specific) query plans would suffer from the same interoperability problem
as we have pointed out in DXQ. In an XML query language, the usual way to reference data
source is to use their URLs. An MQP is a query plan graph serialized in XML that, in addition
to URLs, can refer to abstract resources using URNs and include verbatim XML data. In a
system using MQP, each peer maintains a local catalog that maps each URN to either a URL,
or to a set of peers that know more about this URN. When a peer receives an MQP, it first re-
solves all URNs in the MQP it knows about. Then, the peer (re)optimises the plan and creates
subplans that can be evaluated locally, with associated costs. Next, the peer’s policy manager
will decide to accept or reject the mutant plans (e.g., costs are too high), and how much of a
(sub)plan can be evaluated locally. Finally, the peer substitutes each evaluated subplan with
its results, as an XML fragment, to get a new mutated query plan. If the plan is not yet fully
evaluated, the peer chooses the next peer to forward the plan to, by consulting its local catalog.
Otherwise, the plan is the final result of the query (in the form of an XML document, without
any URNs) and it is forwarded to the query’s destination, which may be different from its
origin.

XPeer XPeer [156]2 is a P2P XDBMS for sharing and querying XML data on top of a
superpeer network. Peers export a tree-shaped DataGuide description of their data that is
automatically inferred by a tree search algorithm. The query language supported is the FLWR
subset of XQuery without universally quantified predicates and sorting operations. Query
compilation is performed in two phases by the superpeers. First, the peer that issues the
query translates it into a location-free algebraic expression. Then, the query is sent to the
superpeer network for the computation of a location assignment. After the location assignment
is completed, the query is sent back to the peer that issued it for execution to minimize the load
of the superpeer network. The peer applies common algebraic rewriting and then starts query
execution: the query is split into single-location subqueries that are sent to the corresponding
peers. Subqueries are locally optimized and the results are returned to the initial peer, which
executes operations such as joins involving multiple sources. The query algebra of XPeer
takes data dissemination, data replication and data freshness explicitly into account.

HePToX HePToX [43, 42] is a heterogeneous P2P XDBMS that supports a subset of XQuery.
A key idea is that whenever a peer enters the system, it provides a mapping between its
schema and a small number of the existing peer schemas. The peers chosen by the entering
peer are called its acquaintances. Although (semi-)automatic schema mapping tools could be
used to provide the mappings, HePToX also allows a peer database administrator to supply
simple correspondences between the peer’s schema and the schemas of its acquaintances.
The correspondences are used as a basis for automatically inferring a mapping expression,
expressed in the form of Datalog-like rules. HePToX implements a more expressive extension
of Global-Local-as-View (GLaV) mappings, called data schema interplay, where mappings
exploit correspondences between attribute values and names of schema elements.

2This XPeer project should not be confused with another XPeer project proposed by Rao et al. [142], which is an
XML-based content query system built on DHT systems.



CHAPTER 2. RELATED WORK 17

Piazza Piazza [86, 95, 94, 93, 171, 103] is a well-known PDMS that enables sharing and
integration of heterogeneous data. It can handle the mapping of both relational data [95,
171] and XML data [103]. Piazza assumes that participating peers are willing to share their
data and define pairwise mappings between their schemas. In [103] Tatarinov et al. describe
several methods for optimising schema-based reformulation of XML queries. In [103], data
is represented in XML, peers schemas in XML Schema, and mappings are described as query
expressions using a subset of XQuery. Peers are considered as connected through semantic
paths of such mappings. Peers may store mappings, data or both. Instead of a local index,
each peer maintains mappings between its own schema and the schemas of its immediate
neighbours. Query evaluation is incremental with an additional logical-level search where data
are located based on schema-to-schema mappings. Query processing starts at the issuing peer
and is reformulated over its immediate neighbours, which, in turn, reformulate the query over
their immediate neighbours and so on. Whenever the reformulation reaches a peer that stores
data, the appropriate query is posed on that peer, and additional results may be appended to the
query result. Various optimisations are considered regarding the query reformulation process
such as pruning semantic paths based on XML query containment, minimizing reformulations
and pre-computing some of the semantic paths.

Bremer et al. [51] introduces a distribution approach for a virtual XML repository. XML
data are fragmented based on a global conceptual schema and allocated among peers. Frag-
ments allocation is done using existing allocation models for relational databases [26, 135].
The information of fragments allocation, i.e., which fragments are allocated at which peer(s),
is kept in a global context. Query processing is done by shipping index entries among nodes
and evaluating chains of local joins of indices. By using the global context, the peer, on which
a query is started, can compute the remote peers that contain fragments needed by the query.

Koloniari et al. In [112], the authors propose a content-based approach to route XPath
queries in a hierarchical P2P network. In this network, peers with similar content are clus-
tered together. Each peer maintains two types of filters: a local filter summarising the docu-
ments stored locally at the peer, and one or more merged filters summarising the documents
of the peer’s neighbours. These filters are used to route a query only to those peers that may
contain relevant documents. Two multi-level Bloom filters are proposed for summarising hi-
erarchical data which exploit the structure of data. Like many proposals for processing XPath
queries over DHTs discussed in Section 2.1.2, the work in [112] only supports the child and
descendant XPath steps. The proposed approach is more effective for simple linear XPath
expressions, but not precise for finding answers for descendant axes. [112] is one of the few
approaches that considers updates. When a document is updated, inserted or deleted at a peer,
the peer updates its local filter and propagates the updates to merged filters on other peers
that use this local filter. The propagation algorithm ensures that only the changed parts of the
multi-level filter are transferred, not the whole filter.

Distributed Evaluation of Semistructured Data [167] is one of the first works about eval-
uation of path expressions on distributed (though non-P2P) semistructured data. In this work,
semistructured data is modeled as a rooted, labeled graph, and queries are regular path expres-
sions with complex data restructuring and subqueries. Distribution is implemented by having
links from the local XML data to XML objects at remote peers. The model distinguishes
between local links that point to local objects and cross-links that point to remote objects.
Every peer determines which of its data have incoming edges from other peers (input data



18 2.1. P2P DATA MANAGEMENT SYSTEMS

nodes) and which have outgoing edges to remote objects (output data nodes). Given a query,
an automaton is computed and sent to every node. Each node traverses only its local graph
starting at every input data node and with all states in the automaton. When the traversal
reaches an output data node, it constructs a new output data node with the given state. Simi-
larly, new input data nodes are also constructed. Once the result fragments, which consist of
an accessibility graph that has the input and output data nodes and edges between them, are
computed they are sent to the origin of the query. The originating peer of the query assembles
these fragments by adding missing cross-links, and computes all data nodes accessible from
the root. The algorithms guarantee that the size of the data exchanged depends only on the
number of cross links and the size of the query answer.

2.1.4 PDMSs of Relational Data
Much research work has been done on querying relational data in P2P settings. In this section,
we will discuss some prominent work in this area.
UniStore UniStore [107, 108] is a triple storage system built on top of the P-Grid [2] DHT
overlay, which is based on the ideas of a Universal Relational Model and the Resource De-
scription Framework (RDF). It proposes a structured query language Vertical Query Language
(VQL), which is derived from SPARQL [139]. Query plans are processed in a similar way as
the Mutant Query Plans [136, 137].
Hyperion Hyperion [27, 150, 186] is a PDMS built on top of its own unstructured P2P
network, which supports SQL queries over heterogeneous relational data. Like UniStore,
Hyperion avoids the need of a global schema by defining mappings between acquaintances.
However, unlike UniStore (which requires that acquaintances must be defined at the time a
peer enters the system), acquaintances are formed dynamically at runtime, and it does not use
a database administrator. Mappings are defined in so-called mapping tables which specify
relations between values of attributes of data records residing on different peers rather than
on schema elements. Distributed Event-Condition-Action (ECA) rules are used to enable and
coordinate data sharing.
PeerDB PeerDB [132] is built on top of the BestPeer network [131], a two layer hierarchical
network that integrates mobile agents. Thus, PeerDB adopts mobile agents to assist in query
processing. On each peer, a MySQL database is used to manage data. PeerDB proposes a
mechanism to share data of similar but different schemas. It uses a simple data integration
algorithm with some user interference and it relies on a central directory server.
The APPA System The APPA (Atlas Peer-to-Peer Architecture) system [23, 126, 174] pro-
vides high-level data sharing services in large-scale distributed environments by combining
Grid and P2P technologies. The architecture of APPA consists of three layers. The P2P Net-
work layer provides network independence with services that are common to different P2P
networks. Thus, APPA can combine different P2P networks (e.g., JXTA, Chord and CAN) to
exploit their relative advantages. The Basic Services layer provides elementary services, e.g.,
persistent data management, communication cost management and group membership man-
agement. The Advanced Services layer provides advanced services for semantically rich data
sharing including schema management, replication, query processing, security, etc., using the
basic services.
System P In System P [152, 151], query plans are computed decentralised, locally at the
peers. Based on the given Local-as-View (LaV) and Global-as-View (GaV) peer mappings, a



CHAPTER 2. RELATED WORK 19

local rule-goal tree is created at the peer receiving the original query, as well as at every peer
that is contacted during query processing. System P balances the completeness of the query
result and execution cost by pruning the query plan at mappings that are estimated to yield
only few result tuples. For query execution, the authors propose a budget driven approach,
where peers are assigned a budget to use for query answering. This is similar to the economic
execution model of Mariposa [163].

2.2 Related Query Processing Techniques
In this section, we discuss related work in two specific techniques for efficient distributed
(XML) query processing, namely XML document filtering and query decomposition.

2.2.1 XML Document Filtering
XML document projection or filtering is a technique popularly used by both streaming sys-
tems and main memory XQuery processors to drastically reduce the size of the data model
representation, which in turn can accelerate query processing.

Marian et al. [125] originally introduce this concept and propose a static analysis algo-
rithm to compute, at compile time, for a given XQuery query the set of projection paths which
include a set of used paths and a set of returned paths. Before the query is evaluated, a load
algorithm uses the projection paths to compute projected documents, which could be much
smaller than the original documents. The query is then applied on the projected documents in-
stead. This compile-time XML projection technique is used to address memory limitations in
main memory XQuery processors. Our runtime XML projection technique [183, 184] (Chap-
ter 5) is an extension of the compile-time XML projection. Instead of only supporting XPath
steps on downward axes (e.g, self, child and descendant), the runtime technique supports
XPath steps on all axes and the built-in functions fn:root(), fn:id(), fn:idref() and
fn:lang() which need to access nodes outside the subtree of their node parameters. Com-
paring with the compile-time projection technique, runtime projection is much more accurate,
because predicates on XPath steps are processed before the projection. In such cases, the re-
sulting projected documents of runtime projection are usually much smaller than the results
of compile-time projection.

Much research work has been done on filtering XML documents in streaming systems
for efficient query processing [24, 60, 66, 52, 31, 56, 83, 61, 111]. We will take a look at
several of these approaches. XFilter [24] aims at efficient matching of XML documents to
large numbers of user profiles that are expressed as XPath queries. It is the first approach that
uses a Finite State Machine for each XPath query to quickly locate relevant profiles when an
XML document arrives. Based on XFilter, Diao et al. propose YFilter [66] that combines all
XPath queries into a single Nondeterministic Finite Automaton. Bressan et al. [52] introduce
a precise XML pruning technique for a subset of XQuery FLWOR expressions, based on the
a priori knowledge of a data guide for underlying XML data. However, it does not handle
XPath predicates, backward axes and XQuery-like languages. A type-based XML projection
technique [31] is studied to improve current solutions with comparable or higher precision and
less pruning overhead, and supporting backward XPath axes. This technique is only applicable
for XML documents that have a DTD. Koch et al. [111] also propose runtime XML projection
techniques. Based on the static compilation of runtime lookup-tables and a runtime automaton
from projection paths and a DTD, an input XML document can be filtered efficiently using



20 2.3. CONCLUSION

string matching algorithms. This technique improves efficiency, but still lacks the power
of supporting reverse XPath axes and XQuery built-in functions. This reflects a common
limitation of the XML filtering techniques: they only support efficient processing of subsets
of XPath.

2.2.2 Query Decomposition
Decomposing queries to address multiple data sources has been applied in a large variety
of research areas, including relational databases [175, 106], object-oriented databases [34,
105, 115], distributed databases [98, 119], multi-databases [117], heterogeneous distributed
databases [173, 123], P2P data management systems [33], and semi-structured databases [166,
167]. Decomposition techniques have been proposed based on ontologies [177], topics (i.e.,
Topical Query Decomposition) [40, 169], and (hyper-)trees [76, 157, 82].

Proposals exist that study decomposing XML queries, but none of them address the prob-
lems that revolve around XML node identity and structural (rather than value-based) relation-
ships between nodes when queries are decomposed and distributed automatically. In [166,
167], the author discusses the decomposition of unstructured query languages on a semi-
structured database (a rooted, labeled graph). In [118], Le et al. propose a bottom-up approach
for distributed XDBMSs using Global-As-View to transform a global XPath expression into
local XPath expressions executable in local schemas. This approach requires structural infor-
mation about peers to supervise decomposition. In [160], Silveira et al. present a query decom-
position mechanism that allows a query stated at the conceptual level, using CXPath (a Con-
ceptual XPath language defined by the authors), to be decomposed into an XQuery statement
at the XML level. Other works in distributed XML query evaluation, such as [53, 63, 170],
only focus on a restricted set of XQuery/XPath queries, and do not address the problem of
transparent query decomposition, such that these challenges do not play a role.

For instance, in [170], the authors consider optimizing the cost of communication in an-
swering XPath queries over distributed data based on the client-server model. Minimal views
that contain results of a single query or a set of queries are used to avoid the redundancy met
in such results where the same data may appear many times. The system leaves part of the
evaluation of the query to the client that may have to extract all the answers from the minimal
view to obtain the results to the initial queries. At a receiving peer (i.e., the client side), the
system ensures that only downwards XPath steps will be applied on the received data, avoid-
ing problems around XML node identities and structural relationships between nodes that can
be caused by executing non-downward XPath steps (e.g., ancestor and preceding) on the
received data.

2.3 Conclusion
From the related research work, we can conclude that the topic of distributed XML querying
has attracted quite some research interest. Within this area, two major approaches have been
studied: i) extending the XQuery standard with a query shipping model, and ii) accelerating of
XPath queries on distributed XML documents. XQuery/XPath has been generally accepted as
the language to query XML data. DHT is a popularly used mechanism to manage underlying
networks, because DHT networks have several properties (e.g., O(logN) scalability) that make
them particularly suitable for P2P settings. However, plenty of issues are still left open.



CHAPTER 2. RELATED WORK 21

This Ph.D. research addresses three open issues. First of all, interoperability is an almost
untouched topic by any of the existing proposals, while it is a main issue in P2P settings, where
peers are highly heterogeneous. Although XButler uses the standard SOAP RPC protocol
as its communication protocol, due to the limitations of SOAP RPC, it is restricted to only
support XQuery functions with atomic value parameters and results. This in turn reduces
the interoperability of XButler. Secondly, supporting full-fledged XQuery is an open issue.
Most of the existing work only focuses on efficient distributed processing of small subsets of
XQuery/XPath. This greatly reduces the expressive power of the XQuery language and also
the interoperability of the proposed techniques. Moreover, with XQUF [58], XQuery is no
longer a read-only language. This raises several questions, such as what are the semantics of
remote updates, how can distributed transactions be supported, which consistency level should
be provided and how can it be integrated into the language. Thirdly, the issue of dealing
with challenges imposed by the XML data model is unaddressed. Query decomposition is an
often used mechanism in distributed query processing. However, the existing techniques were
developed for relational data, which are only value based, while in the XML world, XML
nodes have node identities and structural properties. It has not been studied if and how the
existing techniques can be applied to the XML data model, while respecting the semantics of
XML data.





3
The XRPC Language Extension

In this chapter, we introduce the XRPC language extension. We start with a discussion of the
design criteria that the XRPC extension must satisfy. Then, we give the definition of XRPC
syntax in Section 3.2, and the SOAP XRPC message format in Section 3.3. In Section 3.4,
we spend considerable time in rigorously defining the formal semantics of XRPC. Finally, in
Section 3.5, we outline the initial implementation of XRPC in MonetDB/XQuery, including
the correspondence of Bulk RPC with the loop-lifting technique applied by the pathfinder
compiler.

3.1 Design Considerations
The XRPC language extension must satisfy the following design criteria:

• The extension must be orthogonal to all XQuery features, including XQUF.

• The extension must support all XDM data types.

• The extension must be unambiguous, i.e., if a query containing our extension is run on
systems that do not support this extension, the query must not produce unexpected results.

• The extension must allow functions in the same module to be executed both locally and
remotely, and it must also allow functions from different modules to be executed remotely.

• The extension should be clean, i.e., only require minimal changes to the XQuery standard.

• The extension should be well-defined and have easy to understand semantics.

• The extension should provide potentials for efficiency and scalability.

• The extension should be easy to support by heterogeneous XQuery engines.

Besides the existing proposals [74, 134, 144, 75], we have considered several alternatives,
which all satisfy the first two design criteria:

1. Use a special namespace prefix, e.g., rpc, to indicate that all functions from an imported
module, bound to this special namespace prefix, will be executed remotely (for short, we
call modules that contain functions that will be executed at a remote peer as RPC modules):

import module namespace rpc = "rpc-functions"
at "http://example.org/foo.xq", "http://example.org/bar.xq";

rpc:foo("foo.example.org", rpc:bar("bar.example.org", 42))

23



24 3.1. DESIGN CONSIDERATIONS

This approach is easy to understand. However, its semantics is ambiguous because names-
pace prefixes do not have significant meaning in XQuery. Query writers could accidentally
use the special namespace prefix, causing queries to return unexpected results on different
XQuery systems. Moreover, functions in the imported modules could only be run either
locally or remotely, as the XQuery standard [38] does not allow the same module to be
loaded twice in a query: “It is a static error [err:XQST0047] if more than one module
import in a Prolog specifies the same target namespace.”.

This approach allows multiple different modules to be imported by listing multiple module
location URLs in the at-hint. The drawback of this approach is that multiple modules are
loaded under the same namespace, which is restrictive and can lead to clashes. To over-
come this problem, one could, instead of using one special namespace prefix, use names-
pace prefixes that start with a predefined string, e.g., “rpc-”, to import RPC modules:

import module namespace rpc-foo = "rpc-functions" at "http://example.org/foo.xq";
import module namespace rpc-bar = "rpc-functions" at "http://example.org/bar.xq";
rpc-foo:foo("foo.example.org", rpc-bar:bar("bar.example.org", 42))

However, this alternative is even less clean: it is even more likely that query writers would
accidentally use a namespace rpc-∗ that causes queries to behave differently on systems
with our extension.

2. Use a special namespace, e.g., “http://www.w3.org/TR/soap/”, to indicate RPC modules:

import module namespace rpc = "http://www.w3.org/TR/soap/" at "http://example.org/foo.xq";
import module namespace bar = "http://example.org/bar" at "http://example.org/bar.xq";
rpc:foo("foo.example.org", bar:bar(42))

Comparing with the first approach, this approach is much cleaner by assigning special se-
mantics to a namespace, which has significant meaning in XQuery. However, this approach
allows only one module with the special target namespace to be imported in a query, which
is a major limitation. Similar as for the first approach, this problem might be alleviated
by defining a special namespace prefix, e.g., “http://www.w3.org/TR/soap/”, and all
modules, whose target namespaces start with this prefix, are recognised as RPC modules:

import module namespace foo = "http://www.w3.org/TR/soap/foo" at "http://example.org/foo.xq";
import module namespace bar = "http://www.w3.org/TR/soap/bar" at "ttp://example.org/bar.xq";
foo:foo("foo.example.org", bar:bar("bar.example.org", 42))

On the other hand, this workaround intensifies a next problem: modules declared using this
special SOAP namespace (as a prefix) cannot be used as normal, local modules, unless the
module definitions are duplicated using a different target namespace (the same situation
exists in the first approach). This is bad for software re-use and maintenance.

3. Use the at-hint to indicate an RPC module:

import module namespace foo = "http://example.org/foo.xq" at "http://www.w3.org/TR/soap/";
import module namespace bar = "http://example.org/bar.xq" at "http://www.w3.org/TR/soap/";
foo:foo("foo.example.org", bar:bar("bar.example.org", 42))

Comparing with previous approaches and their alternatives, this approach is more favor-
able. First of all, the semantics of this approach is completely legal under the XQuery
specification, because XQuery 1.0 [38] has specified that “The URILiterals that follow



CHAPTER 3. THE XRPC LANGUAGE EXTENSION 25

the at keyword are optional location hints, and can be interpreted or disregarded in an
implementation-defined way.”. Moreover, this approach allows multiple RPC modules to
be imported using different namespace prefixes bindings, avoiding introducing unneces-
sary clashes. Nevertheless, modules still cannot be imported both as local modules and as
RPC modules.

The major disadvantage of this approach is the at-hint, whose semantics is very counter-
intuitive. The original intention of the XQuery specification is to use the at-hint to specify
the physical location of the module, while in this approach, the at-hint contains a logical
namespace. Additionally, this approach forces modules to have the same target namespaces
as their physical location, defeating the purpose of target namespaces that should be logical
identifiers of modules. A workaround of the latter disadvantage would be to include the
special namespace “http://www.w3.org/TR/soap/” in the at-hint as an additional URL,
whose semantics is different than other URLs in the at-hint:

import module namespace foo = "http://example.org/foo"
at "http://example.org/foo.xq", "http://www.w3.org/TR/soap/";

import module namespace bar = "http://example.org/bar"
at "http://example.org/bar.xq", "http://www.w3.org/TR/soap/";

foo:foo("foo.example.org", bar:bar("bar.example.org", 42))

but this mix of at-hint containing both physical and logical hints makes the design even
more messy.

4. Extend the XQuery language with a new module importing feature:

import rpc-module namespace foo = "http://example.org/foo" at "http://example.org/foo.xq";
import rpc-module namespace bar = "http://example.org/bar" at "http://example.org/bar.xq";
import module namespace foo-loc = "http://example.org/foo" at "http://example.org/foo.xq";
foo:foo("foo.example.org", bar:bar("bar.example.org", 42)),
foo-loc:foo(bar:bar("bar.example.org", 42))

With such a language extension, the semantics of the imported modules are clear. Modules
can be imported both as local modules and as RPC modules. However, this approach is a
language extension, while one of our design criteria is to limit the change to the XQuery
standard to a minimum.

All four approaches discussed above suffer from a common problem: they do not have an
elegant, flexible way to specify the destination of the remote peer on which a function is
to be executed. The signature of each function is implicitly extended with an additional
leading string parameter to hold the URL of the destination peer. Such a design could be
considered unclean. In the next two approaches, more attention is paid on where and how
the destination URLs should be specified.

5. Put RPC calls in extension expressions and specify in the pragmas of the extension expres-
sions which functions should be executed remotely and on which peers:

import module namespace foo = "http://example.org/foo" at "http://example.org/foo.xq";
import module namespace bar = "http://example.org/bar" at "http://example.org/bar.xq";
declare namespace rpc = "http://www.w3c.org/TR/SOAP";
(# rpc:rpc-call (foo:foo, "foo1.example.org", "foo2.example.org") #)
{foo:foo(bar:bar(42),

(# rpc:rpc-call (bar:bar, "bar1.example.org", "bar2.example.org") #)
{bar:bar(24)})} + 10



26 3.1. DESIGN CONSIDERATIONS

As shown in the example above, we identify in a pragma the exact function that should be
executed remotely, followed by a list of URLs of the remote peers. In this way, modules
only need to be imported once, but can be used both as local and as RPC modules. We
can specify per function, instead of per module, whether it should be executed remotely or
not. At the syntax level, this approach is much more flexible than the previous approaches,
since pragmas are allowed everywhere where a path expression would be allowed. Thus,
certain sub-expressions of a query could live within, while other sub-expressions could
exist outside the scope of a pragma. Another advantage of using a pragma is that the se-
mantics of the extension expressions is unambiguous, since it has been specified by the
XQuery standard that: “An extension expression is an expression whose semantics are
implementation-defined. Typically a particular extension will be recognised by some im-
plementations and not by others.” This makes pragma an ideal place to define additional
language features.

However, pragmas are often considered to be difficult to understand, and have not been
generally adopted. From the above example, it can already be seen that allowing pragmas
everywhere in a query will quickly make a query unreadable. Query writers are also re-
quired to have a very good understanding of the exact semantics of pragmas, since they
apply to the whole expression enclosed in the curly braces behind them. For instance, in
the above example, the two calls to the function bar:bar() should be executed on differ-
ent peers (i.e., the first one is a local function call while the second one is an RPC call),
this requires that the second pragma is only specified for the second bar:bar(); otherwise
the query will have very different semantics, e.g.,:

(# rpc:rpc-call (foo:foo, "foo1.example.org", "foo2.example.org") #)
(# rpc:rpc-call (bar:bar, "bar1.example.org", "bar2.example.org") #)
{foo:foo(bar:bar(42), bar:bar(24))} + 10

6. Extend the XQuery language with a new function application syntax, i.e., QName(...)@
(URILiteral (‘,’ URILiteral)*):

import module namespace foo = "http://example.org/foo" at "http://example.org/foo.xq";
import module namespace bar = "http://example.org/bar" at "http://example.org/bar.xq";
foo:foo( bar:bar(42)@("bar.example.org") )@("foo1.example.org", "foo2.example.org")

The pros and cons of this approach are similar to that of the pragma approach. It allows
modules to be imported once and used both as local and as RPC modules. The syntax is
very flexible, as destinations can be specified for each function, and remote function calls
can be made everywhere in a query where a function call is allowed. The semantics is easy
to understand and is less error-prone, as the list of destinations only applies to its associated
function.

Our final choice is to introduce a language extension by adding one new statement to
XQuery to allow remote function application. At the syntax level, our language extension
is inspired by that of [144]. By comparing different alternatives of adding a query shipping
feature to XQuery, we conclude that a language extension results in a cleaner and more flexible
design than extending existing XQuery features with new semantics. We consider one new
statement to be a minimal change to the XQuery standard. Later in this chapter, we discuss



CHAPTER 3. THE XRPC LANGUAGE EXTENSION 27

::=
::=
::=

... | FunctionCall | XRPCCall | ...
“excute” “at” “{”ExprSingle“}” “{”FunctionCall “}”
QName “(” (ExprSingle (“,” ExprSingle)*)?“)”

PrimaryExpr
XRPCCall
FunctionCall

Table 3.1: The XQuery 1.0 grammar rules extended with XRPCCall.

in detail all features included in our XQuery extension, and it will be clear that this extension
satisfies all criteria we have defined.

The above discussion concerns language design at the calling sites. At the remote sites
(i.e., receivers of RPC calls), the following questions must be considered:

• How can remote peers know which functions to execute?
• How can remote peers access the implementation of the functions it should execute?
• How can remote peers get the actual parameter values?

The answers to these questions are presented in Section 3.3, where we also argue our
choice to specify our own SOAP XRPC message format for function parameter and result
(un)marshalling over using the standard SOAP RPC format.

3.2 XRPC Syntax
Remote function applications take the XQuery syntax:

“execute” “at” {ExprSingle} {FunApp(ParamList)}

where ExprSingle is an XQuery xs:string expression that specifies the URI of the peer on
which FunApp is to be executed. The function to be applied can be a built-in or a user-defined
function. For user-defined functions, we currently restrict ourselves to functions defined in an
XQuery Module. A small (future) extension to the network protocol would also allow func-
tions defined inside the query to be executed over XRPC. Thus, the defining parameters of an
XRPC call are: (i) a module URI, (ii) a function name, and (iii) the actual parameters (passed
by value). The module URI is the one bound to the namespace identifier in the function ap-
plication. Just like an import module statement, the module URI may be supplemented by
a so-called at-hint, which also is a URI. For a precise syntax definition, Table 3.1 shows the
rules of the XQuery 1.0 grammar that were changed.

The current choice to allow functions defined in XQuery modules is due to efficiency
and security reasons. XQuery modules have the advantage that they may be pre-loaded and
cached, and our choice to let XRPC use modules as the query transport mechanism also opens
the possibility to reap performance profit from module pre-processing. The feature of pre-
pared queries is well-known for an RDBMS, allowing a parametrised query plan to be parsed
and optimised off-line, such that an application can quickly enter actual parameters in the
prepared plan and execute it. MonetDB/XQuery has a mechanism for supporting prepared
queries that does not need specific API support. Exploiting the fact that a prepared query is in
essence a function with parameters, MonetDB/XQuery caches all query plans for (loop-lifted)
function calls, for functions defined in XQuery modules. Queries that just load a module and
call a function in it with constant values as parameter, are detected by a pre-parser. The
pre-parser then extracts the function parameters, and feeds them into a cached query plan.
In MonetDB/XQuery, queries on small data sets can be accelerated ten-fold by this mech-
anism [41]. For security reasons, by allowing only modules, it is trivial to specify which



28 3.2. XRPC SYNTAX

modules are allowed to be executed or not. XRPC can be easily extended to support free form
queries, with some extra work on preserving the efficiency and security issues.
The XRPC URI Scheme We also introduce a new URI scheme, named xrpc to indicate that
the remote peer specified in an xrpc URL is able to process XRPC requests. The generic form
of such URIs is:

xrpc://〈host〉[: port] [/[path]]
The “xrpc://” indicates the network protocol. The second part “〈host〉[: port]” identifies a
remote peer. The third part “[/[path]]” is an optional local path at the remote peer.

The xrpc URI scheme is accepted in the destination URI of execute at. Moreover, we
have extended the built-in functions fn:put() and fn:doc() to accept the xrpc URI scheme
in their $uri parameters. Given a URL xrpc://P/D , fn:put() stores the XML tree rooted
at its $node parameter on the remote peer P as document D , which possibly overwrites the
existing D . With fn:doc(), D could then be retrieved (over HTTP) from (the XRPC server
on) peer P . As we will see in Section 5.7, this extension enables supporting updates on remote
documents identified by xrpc:// URIs.
Examples As a running example, we will assume a set of XQuery database systems (peers)
that each store a movie database document “filmDB.xml” with contents similar to:
<films>

<film><name>The Rock</name><actor>Sean Connery</actor></film>
<film><name>Goldfinger</name><actor>Sean Connery</actor></film>
<film><name>Green Card</name><actor>Gerard Depardieu</actor></film>

</films>

We assume an XQuery module “film.xq” stored at “x.example.org” that defines a function
filmsByActor():
module namespace film="films";
declare function film:filmsByActor($actor as xs:string) as node()*
{doc("filmDB.xml")//name[../actor=$actor]};

We can execute this function on remote peer “y.example.org” to get a sequence of films
from the remote film database in which Sean Connery plays:
import module namespace f="films" at "http://x.example.org/film.xq";
<films> {

execute at {"xrpc://y.example.org"} {f:filmsByActor("Sean Connery")}
} <films> (Q3-1)

This example yields: 〈films〉〈name〉The Rock〈/name〉〈name〉Goldfinger〈/name〉〈/films〉.
A more elaborate example demonstrates the possibility of multiple remote function calls

to a peer:
import module namespace f="films" at "http://x.example.org/film.xq";
<films> {

for $actor in ("Julie Andrews", "Sean Connery")
let $dst := "xrpc://y.example.org"
return execute at {$dst} {f:filmsByActor($actor)}

} </films> (Q3-2)

To make it a bit more complex, we could do multiple function calls to multiple remote peers:

import module namespace f="films" at "http://x.example.org/film.xq";
<films> {

for $actor in ("Julie Andrews", "Sean Connery")
for $dst in ("xrpc://y.example.org", "xrpc://z.example.org")
return execute at {$dst} {f:filmsByActor($actor)}

} </films> (Q3-3)



CHAPTER 3. THE XRPC LANGUAGE EXTENSION 29

Complex communication patterns may be programmed with XRPC, especially if recursive
functions are used. The query below executes the RPC on a set of destination peers, uniting
all results, and does so by constructing a binary spanning tree of recursive RPC calls.
module namespace film="films";
declare function film:recursiveActor($destinations as xs:string*, $actor as xs:string) as node()
{ let $cnt := fn:count($destinations)

let $pos := ($cnt / 2) cast as xs:integer
let $dsts1 := fn:subsequence($destinations, 1, $pos)
let $dsts2 := fn:subsequence($destinations, $pos+1)
let $peer1 := $destinations[1]
let $peer2 := $destinations[$pos]
return
(if ($cnt $>$ 1) then execute at {$peer1} {film:recursiveActor($dsts1, $actor)} else (),
doc("filmDB.xml")//name[../actor=$actor],
if ($cnt $>$ 2) then execute at {$peer2} {film:recursiveActor($dsts2, $actor)} else ())

}; (Q3-4)

3.3 SOAP XRPC Message Format
The Simple Object Access Protocol (SOAP) is the XML-based message format used for web
services [128, 89, 90], and we propose the use of SOAP messages over HTTP as the net-
work protocol underlying XRPC. SOAP web service interactions usually follow an RPC (re-
quest/response) pattern, though the SOAP protocol is much richer and allows multi-hop com-
munications, and highly configurable error handling. For the simple RPC use of SOAP over
HTTP, a subprotocol called “SOAP RPC” is in common use [90]. SOAP RPC is oriented
towards binding with programming languages such as C++ and Java, and specifies parameter
marshalling of a certain number of simple (atomic) data types, and also allows passing arrays
and structs of such data-types. However, its supported atomic data types do not match directly
those of the XQuery Data Model (XDM) [71], and the support for arrays and structs is not
relevant in XRPC, where there rather is a need for supporting arbitrary-shaped XML nodes as
parameters as well as sequences of heterogeneously typed items. This is the reason, why our
SOAP XRPC message format, while supporting the general SOAP standard over HTTP with
the purpose of RPC, implements a new parameter passing subformat (SOAP XRPC 6= SOAP
RPC).

3.3.1 XRPC Request Messages
SOAP messages consist of an envelope, with a (possibly empty) header and a body. Inside the
body, we define a request that specifies a module URI, an at-hint location, a function name
method and its arity. The module definition must be accessible (via an HTTP connection)
for the remote peer at the location given by the at-hint. In this way, we can rely on the
XQuery facility to import the module from an arbitrary URL. The actual parameters of a
single function call are enclosed by a call element. Each individual parameter consists of
a sequence element, that contains zero or more values. Below we show the XRPC request
message for the first example query that looks for films with Sean Connery:

<?xml version="1.0" encoding="utf-8"?>
<env:Envelope xmlns:xrpc="http://monetdb.cwi.nl/XQuery"

xmlns:env="http://www.w3.org/2003/05/soap-envelope"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://monetdb.cwi.nl/XQuery http://monetdb.cwi.nl/XQuery/XRPC.xsd">

<env:Body>



30 3.3. SOAP XRPC MESSAGE FORMAT

<xrpc:request xrpc:module="films" xrpc:method="filmsByActor" xrpc:arity="1"
xrpc:location="http://x.example.org/film.xq" xrpc:updCall="false">

<xrpc:call>
<xrpc:sequence>
<xrpc:atomic-value xsi:type="xs:string">Sean Connery</xrpc:atomic-value>

</xrpc:sequence>
</xrpc:call>

</xrpc:request>
</env:Body>

</env:Envelope>

Atomic Values Atomic values are represented with atomic-value elements, and are anno-
tated with their (simple) XML Schema Type in the xsi:type attribute. Thus, the heteroge-
neously typed sequence consisting of an integer 2, a double 3.1 and a string “abc” would
become:

<xrpc:sequence>
<xrpc:atomic-value xsi:type="xs:integer">2</xrpc:atomic-value>
<xrpc:atomic-value xsi:type="xs:double">3.1</xrpc:atomic-value>
<xrpc:atomic-value xsi:type="xs:string">abc</xrpc:atomic-value>

</xrpc:sequence>

Node Typed XML Elements XML nodes are passed by value in an 〈element〉 element:

<xrpc:sequence>
<xrpc:element><name>The Rock</name></xrpc:element>
<xrpc:element><name>Goldfinger</name></xrpc:element>

</xrpc:sequence>

Similarly, the XML Schema “XRPC.xsd” defines enclosing elements for document, text,
attribute, processing-instruction, and comment nodes. A document node is repre-
sented in the SOAP message as a 〈document〉 element that contains the serialised docu-
ment root. The text, comment and processing-instruction nodes are serialised textu-
ally inside the respective elements 〈text〉, 〈comment〉 and 〈processing-instruction〉. An
attribute node is serialised inside an 〈attribute〉 element, for example, the attribute node
x=“y” is serialised as: 〈xrpc:attribute x=“y”/〉.
User-Defined Types XRPC fully supports the XDM, a requirement for making it an orthogo-
nal language feature. This implies that XRPC also supports passing of values of user-defined
XML Schema types, including the ability to validate SOAP messages. XQuery already al-
lows importing XML Schema files that contain such definitions. Values of user-defined
named types are enclosed in SOAP messages by 〈element〉 elements, with an xsi:type
attribute annotating their type. The XQuery system implementing XRPC should include
an xsi:schemaLocation declaration as well as an xmlns namespace definition inside the
〈Envelope〉 element when values of such imported element types occur in the SOAP mes-
sage. If a parameter has an anonymous user-defined schema type, its type information is lost.
However, this can be avoided exploiting a future protocol extension (discussed in Section 5.5)
by including the lowest ancestor-or-self element with a named schema type in the SOAP mes-
sages.

3.3.2 XRPC Response Messages
XRPC response messages follow the same principles. Inside the body is now an XRPC
response element that contains the result sequence of the remote function call:



CHAPTER 3. THE XRPC LANGUAGE EXTENSION 31

<?xml version="1.0" encoding="utf-8"?>
<env:Envelope xmlns:xrpc="http://monetdb.cwi.nl/XQuery"
xmlns:env="http://www.w3.org/2003/05/soap-envelope"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://monetdb.cwi.nl/XQuery http://monetdb.cwi.nl/XQuery/XRPC.xsd">

<env:Body>
<xrpc:response module="films" method="filmsByActor">

<xrpc:sequence>
<xrpc:element><name>The Rock</name></xrpc:element>
<xrpc:element><name>Goldfinger</name></xrpc:element>

</xrpc:sequence>
</xrpc:response>

</env:Body>
</env:Envelope>

3.3.3 XRPC Error Message
If an XRPC server discovers an error during the processing of an XRPC request, it immedi-
ately stops execution and sends back an XRPC error message, using the format of the SOAP
Fault message ([128], [89]). Thus, any error will cause a run-time error at the site that orig-
inated the query. Updating queries with 2PC enabled behave similarly, since update effects
will only be applied if a query succeeds. If 2PC is not enabled, a failed updating query might
already have applied changes somewhere. The exact semantics of updating queries is dis-
cussed in Section 3.4.2. As an example, the following SOAP Fault message indicates that a
required module could not be loaded:

<?xml version="1.0" encoding="utf-8"?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"

<env:Body>
<env:Fault>

<env:Code><env:Value>env:Sender</env:Value></env:Code>
<env:Reason><env:Text xml:lang="en">Could not load module!</env:Text></env:Reason>

</env:Fault>
</env:Body>

</env:Envelope>

Remarks Our discussion of SOAP XRPC message is not fully done yet. In the next section,
we will extend the format with support for isolation and updates. Then, in Section 3.5.2
we describe the Bulk RPC feature, that allows a single message to request multiple function
calls. Finally, in Section 4.4.1 we describe a small extension to include tag attributes in call
elements that allows keeping track of a deterministic distributed update order. The XML
Schema Definition of the XRPC SOAP messages is given in Appendix A,

3.4 XRPC Formal Semantics
In defining the semantics of XRPC, we take care to attach proper database semantics to the
concept of RPC to ensure that all RPCs being done on behalf of a single query see a con-
sistent distributed database image and commit atomically. It is known that full serialisability
in distributed queries can come at a high cost, and therefore we also define certain less strict
isolation levels that still may be useful to certain applications.



32 3.4. XRPC FORMAL SEMANTICS

Notations We use the following notation and terms in this section:

• P denotes a set of peer identifiers. We use the peer identifier p0 to denote the local peer, on
which a particular query is started. All other peers pi ∈ P are remote peers. In practice, a
peer identifier is a URI from the xrpc protocol that contains a host and (optionally) a port
number.

• F denotes a set of XRPC function applications. An XRPC call f pi→p j that triggered from
pi that causes function f to be executed at p j is an updating XRPC call ( f

pi→p j
u ∈ Fu), if it

calls an updating function; otherwise, it is a non-updating XRPC call ( f
pi→p j
r ∈ Fr). If the

evaluation of an XRPC call f pi→p j requires evaluation of other XRPC call(s) at p j, we term
f pi→p j a nested XRPC call.

• M denotes a set of XQuery modules. A module consists of a number of function definitions
d f . Each XRPC call f pi→p j must correspond to a definition d f from some module m f ∈M.

• An XRPC query is an XQuery query q which contains at least one XRPC call f pi→p j ∈ Fq,
where Fq denotes the set of all function calls performed during execution of q. We call a
query in which only one, non-nested XRPC call appears a simple XRPC query. An XRPC
query q is an updating XRPC query, if it contains at least one update command or a call to
an updating (XRPC) function.

• Each query operates in a dynamic context. The XQuery 1.0 Formal Semantics [67] defines
that each expression is normalised to a core expression, which then is defined by a semantic
judgment dynEnv ` Expr ⇒ val. The semantic judgment specifies that in the dynamic
context dynEnv, the expression Expr evaluates to the value val, where val is an instance
of the XQuery Data Model (XDM). For now, we simplify the dynamic environment to
a database state db (i.e., the documents and their contents stored in the XML database):
dynEnv' db. The dynEnv.docValue from the XQuery Formal Semantics [67] corresponds
to db used here. To indicate a context at a particular peer p, we write dbp.

• When considering that a database may be changed by updates, we can view it as a function
over time t as dbp(t). In our formal rules, the default assumption on database states is that
they stay equal over time, unless otherwise stated. When the time context t is clear, the
shorthand notation dbp is used to refer to the current database state.

3.4.1 Read-Only XRPC Semantics
Basic Read-Only XRPC The semantics of executing a read-only function f p0→px ( f ∈ Fr)
is defined by extending the XQuery 1.0 semantic judgments with a new rule1:

dbp0 (t0) ` 〈call〉{s2n(v1), . . . ,s2n(vn)}〈/call〉 ⇒ call;
sendp0→px request(m, fr,call); tx ≥ t0

dbpx (tx) ` s2n( fr(n2s(call/∗[1]), . . . ,n2s(call/∗[n])))⇒ res;
sendpx→p0 reply(res);

dbp0 (t0) ` n2s(res)⇒ vres;
dbp0 (t0) ` f p0→px

r (v1, . . . ,vn)⇒ vres

(RFr )

This rule RFr states that execution at p0 of the read-only XRPC call f p0→px(v1, . . . ,vn) in the
dynamic context dbp0(t0) (without further assumption on t0) starts with constructing a 〈call〉
element that contains the SOAP representation of all parameters vi. This XML representation,

1In our rules, we use the ‘;’ sign to suggest an order in the evaluation of the statements.



CHAPTER 3. THE XRPC LANGUAGE EXTENSION 33

described in the previous Section 3.3, is created by the sequence-to-node marshalling function
s2n(), discussed below. Then, the request (m, f ,call) is sent to peer px. Here, m is the
module URI (plus at-hint) in which function fr is defined. The function fr is then evaluated
as a normal local function in the dynamic context of the remote peer dbpx(tx), where we only
assume tx ≥ t0. The parameters of fr, are obtained by using the inverse node-to-sequence
marshalling function n2s() to produce the result node res. This result res is sent back to peer
p0, which finally converts res into the result sequence vres.

This definition inductively relies on the XQuery Formal Semantics to evaluate f locally
at px, and thus may trigger the evaluation of additional XRPCs if these happen to be present
in the body of f . Also, this definition covers execution of XRPC calls in the current database
state dbp0 , which we need for our basic purpose of defining the semantics of XRPC queries
(in which case t0 is the current time point). Finally, this XRPC rule does not produce a new
current local database state dbp0 , nor any new remote database state dbpx (i.e., it defines read-
only semantics).
Parameter Marshalling The SOAP representation of a sequence $seq is created in a new
〈sequence〉 node by the function:

declare function s2n($seq as item*) as node()

The inverse transformation (from 〈sequence〉 representation to real item sequence) is
provided by:

declare function n2s($n as node()) as item*

For example, we get (“abc”,42) from calling:

n2s(<xrpc:sequence>
<xrpc:atomic-value xsi:type="xs:string">abc</xrpc:atomic-value>
<xrpc:atomic-value xsi:type="xs:integer">42</xrpc:atomic-value>

</xrpc:sequence>)

An important characteristic of the function n2s() is that it guarantees that for node-
typed parameters (i.e., those represented as 〈element〉, 〈text〉, 〈document〉, 〈attribute〉,
〈comment〉 and 〈processing-instruction〉) an XDM node of the correct type is returned as
a separate XML fragment. This guarantees that evaluating the upwards and horizontal XPath
axes on such nodes will return empty results. It may be tempting to return element nodes under
the identity found in the message (i.e., $request/xrpc:call/xrpc:sequence[i]/xrpc:
element/*), but this would allow a query to navigate to e.g. the SOAP envelope element, or
the other function parameters.

One should note that n2s() and s2n() are internal functions only that do not need to be
exposed to XRPC users, and in fact do not need to exist in reality, as each XRPC system
implementation may have its own internal (efficient) mechanisms to process SOAP messages.
In case of MonetDB/XQuery, beyond shredding the SOAP request and response messages, we
do not spend any effort in n2s() nor s2n() on element construction to retrieve node values
of the correct type, as our implementation directly chops up the shredded XML message in
separate XML fragments per function parameter, and modifies node types internally (as the
SOAP messages are invisible to the user, their integrity can be compromised at will by the
system). It is possible, though, to implement n2s() and s2n() purely in XQuery, as we
will show when we discuss the XRPC wrapper, that allows arbitrary XQuery processors to
participate in distributed XRPC queries in Section 4.2.



34 3.4. XRPC FORMAL SEMANTICS

qp0z }| {
↙ ↓ ↘
f p1
1 . . . f pi

i↙ ↓ ↘ ↙ ↓ ↘
f

p j
j . . . f pk

k f pl
l . . . f pm

m

...
...

...
...

...
...

Figure 3.1: Nested XRPC calls

A final detailed remark on parameter marshalling is that XRPC requires the caller to per-
form parameter up-casting. The rationale is that such casting is already part of the standard
function application code generated by any XQuery system, thus it is easy to do at the caller
for XRPC calls, and it makes it easier to implement XRPC handlers that have no or limited
XQuery capabilities (e.g. wrapped outside web services as in [134]).

Pass-By-Value An important choice implied by making n2s() and s2n() explicit in our
Formal Semantics is to enforce by-value parameter passing in XRPC. If nodes are passed as
parameters of an XRPC call, they will be serialised into a SOAP message, shipped to the
remote side, and there new nodes will be constructed virtually of the correct type with equal-
valued contents, but with different node identifiers. This can lead to a number of semantic
differences between local and remote function application. We already mentioned that XPath
navigation from node parameters over non-downwards axes (e.g. parent, following) will
always produce empty results on the remote side. More subtly, if a function is invoked over
XRPC with two nodes as parameters that have a descendant-or-self relationship, XRPC
parameter marshalling will destroy this relationship at the remote side2. Finally, the XQuery
Formal Semantics specifies that some consistent order should be enforced over nodes from
different documents, but our semantics will not respect this order on their copies when shipped
over XRPC.

The rationale behind this by-value choice is that a by-reference semantics would lead to
complications when the upwards or sideways XPath axes are invoked on node parameters (or
results) of XRPC calls. Correctly supporting that would either lead to the need to ship the
full XML data fragment for all node parameters upfront (defeating the purpose of function
shipping) or cause implicit communication when navigating beyond the descendants of such
nodes. Obviously, call-by-value semantics complicate life when XRPC is used as the target
language for automatic query distribution (as opposed to explicit XRPC query processing,
where we can assume the query writer to be aware of the call-by-value semantics). In that
case, the query optimiser has the task to make sure by-value parameter passing does not affect
query semantics. The simplest solution is to refrain from function shipping in problematic
cases, but more sophisticated solutions may be found for some query patterns.

2In Section 5.5, we discuss a future XRPC protocol extension that allows node parameters to be referred to
using an xrpc:fragid and an xrpc:nodeid attribute that together identify a node serialised earlier in a special
〈fragment〉 section of an XRPC message. This alternative node representation can be used for nodes that are a
descendant-or-self of another parameter that is fully serialised in the SOAP message. The s2n() function would then
be altered to return nodes from the XML fragment that corresponds with that fully serialised parameter. This change
of semantics ensures that ancestor/descendant relationships among parameters at the calling peer are preserved at the
remote XRPC peer. This indirect addressing is useful for compressing the SOAP message. Moreover, if applied
maximally, the resulting pass-by-fragment result/parameter passing, allows an distributed XRPC rewriter to relocate
parts of certain query predicates that do depend on node identity (i.e., node-valued join conditions whose predicates
only contain descendant/ancestor XPath steps).



CHAPTER 3. THE XRPC LANGUAGE EXTENSION 35

Nested XRPC Calls The general pattern of XRPC function applications generated by a query
is a tree, as each XRPC call may again perform more XRPC calls. This happens when a query
contains multiple XRPC function applications, or when such a function application occurs
inside a for-loop. In Figure 3.1, the arrow ‘→’ should be read as “XRPC call”. The peers
p0, p1, . . . , pi, p j, . . . , pk, . . . , pl , . . . , pm are not necessarily unique: some peer pi (or in fact
many such peers) may occur multiple times in this tree. When considering rule RFr , the
dynamic environment dynEnvpi containing the current database state dbpi may thus be seen
multiple times during query evaluation. In between those multiple function evaluations, other
transactions may update the database and change dbpi . Thus, those different XRPC calls to
the same remote peer pi from the same query q may see different database states. This will not
be acceptable for some applications and therefore, we deem it worthwhile to define repeatable
read isolation for queries that perform XRPC calls.

Repeatable Read XQuery users can control per query which semantics is used by using the
XQuery declare option feature, setting xrpc:isolation either to “none” (rule RFr ) or
“repeatable”, defined by rule R ′Fr :

dbp0 (t p0
q ) ` 〈call〉{s2n(v1), . . . ,s2n(vn)}〈/call〉 ⇒ call;

sendp0→px request(q,m, fr,call);
dbpx (t px

q ) ` s2n( fr(n2s(call/∗[1]), . . . ,n2s(call/∗[n])))⇒ res;
sendpx→p0 reply(q,res);

dbp0 (t p0
q ) ` n2s(res)⇒ vres;

dbp0 (t p0
q ) ` f p0→px

r (v1, . . . ,vn)⇒ vres

(R ′Fr )

The above rule R ′Fr specifies that for evaluating XRPC calls on behalf of query q, peer
px always uses the same database state dbpx(t px

q ). Time t px
q is typically the time that the first

XRPC request of query q reached px; but we place no specific restriction on it. Observe that
a unique query identifier q is now passed as an extra parameter in the XRPC request so that a
peer can recognise which XRPC calls belong to the same query and it can associate an isolated
database state with it.

Clearly, XRPC with repeatable reads requires more resources to implement, as some data-
base isolation mechanism (of choice) will have to be applied to retain dbpx(t px

q ) across calls.
The transaction mechanism of MonetDB/XQuery, for instance, uses snapshot isolation[32]
based on shadow paging, which keeps copies of modified pages around. Systems that provide
the isolation levels serialisable or repeatable reads (obviously) can also provide this semantics.

A quite common reason why a peer is called multiple times in the same query and why
the need for repeatable reads arises, is when an XRPC call appears inside a for-loop. In
Section 3.5.2 we describe how Bulk RPC helps avoid these costly isolation measures in case
of simple XRPC queries (i.e., those that contain only one non-nested function application).

Other Isolation Levels If we would suppose that all peers involved in q support the isolation
level snapshot isolation, and all would use the same timestamp tq as the one in which the
original query executes, i.e., t p0

q = · · ·= t px
q = · · ·= t pm

q = tq, we could obtain the isolation level
distributed snapshot isolation. Just using a globally consistent query timestamp is actually not
enough for that, extra effort is needed to enforce distributed commits to happen at the same
time point (one way to do that is to block or abort incoming reads while a node is in the
prepared state – this is called the pessimistic approach in [158]). For this to be meaningful
in practice, however, we would have to have a representation of t values (until now, this



36 3.4. XRPC FORMAL SEMANTICS

is left opaque) that allows a full ordering, thus enabling us to define a “happened before ”
query/transaction order tq1�tq2 .

However, as XRPC is also intended for use in P2P settings, we make no assumptions on
a centralised distributed transaction coordinator that could give out unique and monotonically
increasing t numbers. In absence of that, one could think of t numbers generated by Lamport
Clocks [116], but while this method guarantees that a transaction that depends on a previous
one (“happened before”) has a smaller Lamport clock value, the reverse inference cannot be
made (i.e., meaningfully enforcing a transaction order depending on such t-s) unless all peers
participate in all queries (which again is not a reasonable assumption in P2P). Of course, we
can think of t as being “exact” (UTC) time, but as we do not want to assume either that all
participating peers possess (synchronised!) Strontium grade precision clock hardware, this is
only a theoretical notion. For this reason, we leave the maximum XRPC isolation currently at
the repeatable read level, though finding a distributed isolation level useful in P2P is on our
future work agenda.

SOAP XRPC Extension: Isolation XRPC uses repeatable reads semantics for requests that
have the optional queryID child element in the xrpc:request element. The queryID in the
SOAP message contains host and timestamp attributes that state on which host and at what
UTC time the query started initially, and a timeout attribute that specifies a local number
of seconds during which to conserve the isolated database state. Note that the timeout is
relative, it is a number of seconds – this mitigates problems caused by different peers having
big clock synchronisation differences. When the timeout passes, the isolated database state
can be discarded, freeing up system resources. However, the local XRPC handler should still
remember expired queryIDs, such that it can give errors on XRPC requests that arrive too late.
The purpose of sending the timestamp of the originating host is to ease the administration
of expired queryIDs, as per host only the latest timestamp needs to be retained, and can be
restricted to some sane time interval.

A timeout mechanism is inevitable, even if XRPC would use a 2PC-like coordination
protocol to signal the finishing of a query (for updates, XRPC actually uses a 2PC protocol
via Web Services Atomic Transaction [55]), because such a coordination protocol also needs
a timeout to conclude that remote hosts are no longer responding. Automatically computing a
good timeout value requires a cost model that takes into account the query, data-distribution,
network, and peer characteristics – a task we leave for our future work on automatic query
distribution. Therefore, the timeout to use is specified in the query using declare option
xrpc:timeout 〈sec〉, so users and applications can set them according to their needs.

3.4.2 XRPC Update Semantics
The XRPC language extension is fully orthogonal to all XQuery features, and thus one can
also make XRPC calls to user-defined updating functions, as defined by the XQuery Update
Facility (XQUF). The XQUF syntax ensures that if a user-defined function contains one up-
dating function, it must itself be an updating function. XQuery updates (and thus updating
functions) determine which nodes to change (and how), purely based on the database state
before the update, and produce a pending update list ∆. Only after query execution has fin-
ished, are all updates in the pending update list to be applied and committed. This concept is
quite similar to IO monads, used in functional languages like Haskell, that cleanly separate
functional execution from any side-effecting actions.



CHAPTER 3. THE XRPC LANGUAGE EXTENSION 37

Basic Updating XRPC The semantics of executing a single updating function f p0→px ( f ∈
Fu), is defined by extending the XQuery 1.0 semantic judgments with a new rule:

dbp0 (t0) ` 〈call〉{s2n(v1), . . . ,s2n(vn)}〈/call〉 ⇒ call;
sendp0→px request(m, fu,call); tx ≥ t0

dbpx (tx) ` fu(n2s(call/∗[1]), . . . ,n2s(call/∗[n]))⇒ ∆;
dbpx (tx) ` applyUpdates(∆)⇒ dbpx ;

sendpx→p0 reply()
dbp0 (t0) ` f p0→px

u (v1, . . . ,vn)⇒ (),dbpx

(RFu )

The above rule RFu states that update functions apply the pending update list ∆ imme-
diately, producing a new current remote database state dbpx . For this purpose, we use the
internal function applyUpdates() defined in the XQUF [58] that carries through all changes
in a pending update list. Note that this rule executes an updating call between p0 and px in
database states from t0 resp. tx with no other assumptions than tx ≥ t0. Typically, an imple-
mentation may choose to use dbpx , i.e. the latest database state to handle each XRPC request.

Remote execution of an XQUF updating function causes no new dbp0 state directly (it
returns an empty pending update list), but does yield a new dbpx . This is a simplification,
because fu() itself may perform XRPC calls that modify database states of other peers in-
volved in q – and potentially even dbp0 itself. While the local query q at p0 always operates in
dbp0(t0), if it performs multiple XRPC calls to the same peer px, these calls will thus poten-
tially see different states dbpx(tx1),dbpx(tx2), . . . , which may even include the updates caused
by the previous XRPC calls made for q. Therefore, while easy to implement, this seman-
tics does not guarantee repeatable reads, even allows lost updates at the same peer between
multiple calls performed on behalf of the same query, and will cause non-atomic distributed
commits to happen if XRPC execution is aborted halfway due to an error.

Atomic Updates with Isolation We now define an improved XRPC isolation level that pro-
vides repeatable reads as well as atomic distributed commit. Recall that the effects of XQUF
updates are invisible until query execution finishes; only then is applyUpdates() invoked on
the pending update list. In the previous rule RFu , updates were visible directly after handling
each individual XRPC request. The new rule R ′Fu , given below, corresponds more closely to
the intent of the XQUF in that no side effects of query q are visible at any involved peer px
until the query commits.

The repeatable read isolation implies that peers defer applying pending update lists created
by individual XRPC calls made on behalf of the same query q until the point that q actually
commits. Thus, peers px must not only keep track of the database state dbpx(t px

q ), but also
of a collection of pending update lists ∆

px
q = ∪∀i∈{1,...,U px

q }∆
px
q (i), where U px

q is the number of
updating XRPC calls px has handled so far for q.

dbp0 (t p0
q ),∆p0

q ` 〈call〉{s2n(v1), . . . ,s2n(vn)}〈/call〉 ⇒ call;
sendp0→px request(q,m, fu,call);

dbpx (t px
q ),∆px

q ` fu(n2s(call/∗[1]), . . . ,n2s(call/∗[n]))⇒ ∆
px
q (U px

q );
sendpx→p0 reply()

dbp0 (t p0
q ),∆p0

q ` f p0→px
u (v1, . . . ,vn)⇒ ()

(R ′Fu )

The translation of isolated updating XRPC calls is depicted in the inference rule R ′Fu
above. Like rule R ′Fr , this rule again provides proper isolation by keeping the database state
dbpx(t px

q ) constant throughout the query. The execution of a function fu() at px causes a new
pending update list to be created that becomes part of the collection ∆

px
q .



38 3.5. LOOP-LIFTED IMPLEMENTATION OF XRPC

Obviously, atomically committing a distributed transaction requires a protocol like 2PC
or one of its more advanced derivatives [135, 85]. We decided not to add 2PC to the XRPC
network protocol, but rather rely on the recent industry standard Web Services Atomic Trans-
action [55] that provides exactly this feature for distributed web-service transactions. The
Web Services Atomic Transaction [55] standard provides a fairly vanilla SOAP-based 2PC
interface with e.g. Prepare() and Commit() functions. It is embedded in the Web Services
Coordinator framework [54] that allows registering a collection of peers that participate in a
distributed transaction, and subsequently run a transaction protocol on those peers (in this case
WS-AtomicTransaction). Thus, in order to support updates with this isolation level, XRPC
systems must implement support for these web service interfaces, and offer them over the
same HTTP SOAP server that runs XRPC.

To implement proper 2PC, the Prepare() function brings q in the prepared state. It may
raise an error, if a conflicting transaction has reached this state already. Else, it logs the union
of the pending update lists (∆px

q ) to stable storage, ensuring q can commit later:
sendp0→px request(q,Prepare);

dbpx (t px
q ),∆px

q ` log(∆px
q )⇒ r;

sendpx→p0 reply(r)

dbp0 (t p0
q ),∆p0

q ` Preparep0→px ()⇒ r

Commit() carries through the updates, creating a new database state:
sendp0→px request(q,Commit);

dbpx (t px
q ),∆px

q ` applyUpdates(∆px
q )⇒ dbpx

dbp0 (t p0
q ),∆p0

q `Commit p0→px ()⇒ dbpx

More SOAP XRPC Extensions In XRPC, peer pq that starts the query q is the one that
registers the participating peers at the WS Coordinator service and initiates the Prepare and
Commit phases. For this registration task, it thus needs to know a full list of peers that par-
ticipate in the transaction. Due to nested XRPC calls, it may not be aware of all peers and
therefore we extended the SOAP XRPC protocol to piggyback a list of all unique participating
peers in the response message.

Finally, the XQUF specifies that when the same node is updated twice in the same query,
the order in which the different update actions on that node are applied is non-deterministic!
This means that we can simply union all individual ∆

px
q (i) pending update lists (one for each

XRPC call handled in px for q) to get a full update list ∆
px
q without worrying about preserving

some proper order on the update actions. In Section 4.4, we define a deterministic update
order for XQUF and devise a way to enforce it over XRPC using a small XRPC protocol
extension, despite the out-of-order execution effects of Bulk RPC that will be observed at the
end of Section 3.5.1.

3.5 Loop-lifted Implementation of XRPC
We have implemented XRPC in open-source MonetDB/XQuery, an efficient yet purely re-
lational XDBMS [41]. It consists of the MonetDB relational database back-end, and the
Pathfinder compiler [88], that translates XQuery into relational algebra, as front-end. The
essence of the compilation technique employed by Pathfinder is loop-lifting [88], which trans-
lates XPath/XQuery expressions inside for-loops into single bulk relational query plans that
process all iterations of the loop independently of each other. Loop-lifting makes Mon-
etDB/XQuery inherently different (and often faster) than those XQuery interpreters that tend



CHAPTER 3. THE XRPC LANGUAGE EXTENSION 39

Operator Semantics
σa select all rows with column a = true
πa1:b1 ,...,an:bn project columns b1, . . . ,bn and possibly rename

columns bi to ai (no duplicate removal)
δ duplicate elimination
.∪ disjoint union
1a=b equi-join
ρb:〈a1 ,...,an〉/p row numbering (DENSE_RANK SQL:1999)
a b literal table

Table 3.2: Relational algebra generated by Pathfinder

to strictly follow the for-loop order syntactically suggested by a query. In case of Pathfinder,
with its loop-lifted approach to XQuery translation, it was trivial to generate Bulk RPC re-
quests for any XRPC call found in an XQuery. Hence, an XRPC call nested in a for-loop
taken many times leads to only a single Bulk XRPC request/response, which invokes the
function for all iterations of the loop in bulk. This optimisation dramatically reduces the num-
ber of request/response messages sent and thus the impact of the network latency on query
performance.

The XRPC module contains an ultra-light HTTP daemon implementation [122] that runs
a request handler (the XRPC server), and contains a message sender API (the XRPC client).
We also had to add support for the execute at syntax to the Pathfinder XQuery compiler,
and change its code generator to generate stub code that invokes the new message sender API.

The stub code uses the message sender API to generate a SOAP message from actual
function parameters. This process reuses the normal sequence serialisation mechanism in
MonetDB/XQuery. The message sender API sends the XML message using HTTP POST
and waits for a result message. The result message is subsequently shredded into a relational
table, the way all XML documents are shredded in MonetDB/XQuery. The stub code retrieves
atomic values from the SOAP document nodes; node-typed values just refer to the nodes in
the newly shredded SOAP document.

The request handler, on the other side, behaves similarly. It listens for SOAP requests and
shreds incoming messages into a temporary relational table, from which the parameter values
are extracted. As MonetDB/XQuery is a relational system, XQuery values are all represented
as (temporary) relational tables. The module function specified in the SOAP request is then
executed locally with these parameter tables, producing a result table. The request handler
then builds a response message in which this result table is serialised into XML, using the
normal MonetDB/XQuery serialisation mechanism onto the network socket. As we re-used
the shredding and serialisation functionality already in MonetDB/XQuery, as well as an off-
the-shelve open source HTTP daemon [122], implementation was limited to a small parser
extension, and stub code generation.

3.5.1 Relational XQuery and Loop-Lifting
The Pathfinder compiler [88] translates XPath/XQuery expressions into bulk query plans for-
mulated in the vanilla relational algebra, depicted in Table 3.2. All operators are well-known,
except perhaps the row numbering operator ρ, which is similar to the SQL:1999 operator
DENSE_RANK: ρb:〈a1,...,an〉/p(q) assigns each tuple in q a rank (i.e., number), which is saved
in column b. The constraint for the enumeration is the implicit order of q by the columns
a1, . . . ,an. Numbers ascend consecutively from 1 in each partition defined by the optional
grouping column p.



40 3.5. LOOP-LIFTED IMPLEMENTATION OF XRPC

s0

8>><>>:
for $x in (10,20)

s1

8<:
return for $y in (100,200)

s2


let $z := ($x,$y)
return $z

(Q3-5)

loop
iter
1
2
3
4

x
iter pos item
1 1 10
2 1 10
3 1 20
4 1 20

y
iter pos item
1 1 100
2 1 200
3 1 100
4 1 200

z
iter pos item
1 1 10
1 2 100
2 1 10
2 2 200
3 1 20
3 2 100
4 1 20
4 2 200

Figure 3.2: Example query (Q3-5) and its loop-lifted relational representation

pos item
1 x1
2 x2
...

...
n xn

Representing Sequences as Tables The evaluation of any XQuery expression
yields an ordered sequence of n ≥ 0 items xi, denoted (x1,x2, . . . ,xn). Mon-
etDB/XQuery is a relational system, thus sequences are represented as tables, with
schema positem. Since relations have (unordered) set-semantics, sequence order
must be explicitly maintained using a pos column. In the XQuery data model, a
single item x and the singleton sequence (x) are identical. Item x is represented as a single
row table containing the tuple 〈1,x〉. The empty sequence “()” maps into the empty table.
Loop-Lifting Each XQuery is translated bottom-up into a single relational algebra plan con-
sisting only of the classical relational operations (select, project, join, etc); that is, the XQuery
concept of nested for-loops is fully removed and a single bulk (=efficient and optimisable)
execution plan is created.

The result of an XQuery at each step of bottom-up compilation is a relational plan that
yields the result sequence for each nested iteration, all stored together. To make this possible,
these intermediate tables have three columns: iterpositem, where iter is a logical iteration
number, as shown in the tables below. For each scope, we keep a loop relation that holds all
iter-s.3 Figure 3.2 shows an example query (Q3-5) and its loop-lifted relational representa-
tion. If we focus on the execution state in the innermost iteration body (marked as scope s2) of
(Q3-5), there will be three such tables that represent the live variables $x, $y and $z respec-
tively. As we can see from the iter columns, there are four iterations in scope s2 (numbered
from 1 to 4) and as expected, $x takes the value 10 in the first two iterations and the value
20 in the second two iterations. Similarly, $y takes the value 100 in the odd iterations and
the value 200 in the even ones. Finally, $z is a sequence of two values in all four iterations
(having the value of $x concatenated with $y).

3.5.2 Bulk RPC

import module namespace f="films" at "http://x.example.org/film.xq";
for $actor in ("Julie Andrews", "Sean Connery")
let $dst := "xrpc://y.example.org"
return execute at {$dst} {f:filmsByActor($actor)} (Q3-2)

actor
iter pos item
1 1 “Julie Andrews”
2 1 “Sean Connery”

dst
iter pos item
1 1 “http://y.example.org/”
2 1 “http://y.example.org/”

Our earlier example query (Q3-2) (repeated above) contains a function application inside
a for-loop. Inside this loop, the variables $dst and $actor yield relational tables shown
on the right. Thus, the value of $dst is the same in both iterations of the for-loop, whereas
$actor takes on values “Julie Andrews” in the first and “Sean Connery” in the second
iteration.

3The loop relation allows keeping track of empty sequence values, encoded by the absence of tuples in the
expression representation.



CHAPTER 3. THE XRPC LANGUAGE EXTENSION 41

mapp1
reqp1

msgp1
resp1

iteriterp1 iterp1 pos item iterp1 pos item map
back==⇒

iterpos item
1 1 1 1 “Julie Andrews”⇒ 2 1 “The Rock” 3 1 “The Rock”
3 2 2 1 “Sean Connery” 2 2 “Goldfinger” 3 2 “Goldfinger”

.∪(resp1 ,resp2 )
=========⇒mapp2

reqp2
msgp2

resp2
iteriterp2 iterp2 pos item iterp2 pos item map

back==⇒
iterpos item

2 1 1 1 “Julie Andrews”⇒ 1 1 “Sound Of Music” 2 1 “Sound Of Music”
4 2 2 1 “Sean Connery”

result
iterpos item
2 1 “Sound Of Music”
3 1 “The Rock”
3 2 “Goldfinger”

Figure 3.3: Relational processing of Bulk RPC (multiple destinations example)

SOAP XRPC Extension: Bulk RPC The loop-lifted processing model of MonetDB/XQuery
thus collects in a single table all XRPC function parameters needed by a remote function
call nested in one or more for-loops. This is exploited in SOAP XRPC by allowing Bulk
RPC, in which a single XRPC message to the destination peer requests it to perform multiple
function calls. Each call is represented by an individual xrpc:call child element of the
xrpc:request. Such a Bulk RPC also returns multiple results in the xrpc:response (one
xrpc:sequence sequence for each call). From the shredded XRPC response message, it is
straightforward to obtain the iter|pos|item table that represents an XDM result value for
each iteration. Note that Bulk RPC fits well with the existing loop-lifted processing model of
MonetDB/XQuery: without execute at, the local function translation mechanism already
produced such an iter|pos|item table.

We show the xrpc:request part of the SOAP message in our Bulk RPC example, which
contains two calls:
<xrpc:request xrpc:module="films" xrpc:method="filmsByActor" xrpc:arity="1"

xrpc:location="http://x.example.org/film.xq" xrpc:updCall="false">
<xrpc:call> <!-- first call -->
<xrpc:sequence>

<xrpc:atomic-value xsi:type="xs:string">Julie Andrews</xrpc:atomic-value>
</xrpc:sequence>

</xrpc:call>
<xrpc:call> <!-- second call -->
<xrpc:sequence>

<xrpc:atomic-value xsi:type="xs:string">Sean Connery</xrpc:atomic-value>
</xrpc:sequence>

</xrpc:call>
</xrpc:request>

actor
iter pos item
1 1 “Julie Andrews”
2 1 “Julie Andrews”
3 1 “Sean Connery”
4 1 “Sean Connery”

dst
iter pos item
1 1 “http://y.example.org/”
2 1 “http://z.example.org/”
3 1 “http://y.example.org/”
4 1 “http://z.example.org/”

In the previous example the execute at expression
$dst happened to be constant, such that all loop-lifted func-
tion calls had the same destination peer, and could be han-
dled by the single Bulk RPC request above.

Let us now consider our other previous example (Q3-
3). We now have an inner for-loop with four iterations,
but $dst takes on two different values, identifying peers
“y.example.org” and “z.example.org”, in respectively the
odd and even iterations. The general rule to translate a loop-
lifted XRPC call is shown in Figure 3.4, and Figure 3.3
shows the intermediate steps taken. The system establishes a list of unique peers, and for
each p extracts from each parameter iter|pos|item those iteration (tuples) that invoke the
function on p. The resulting request tables (reqp) are used to generate a Bulk RPC to p.
Observe that using ρ a new iterp column is created, and a mapping table (mapp) that maps
old to new iteration numbers. The mapping table is then again used to map the new iteration



42 3.5. LOOP-LIFTED IMPLEMENTATION OF XRPC

iterpositem result ⇐ .∪∀p∈δ(dst.item)(resp)
with :

iterpositem resp = πiter,pos,item(1iterp=iterp (msgp,mapp))
iteriterp mapp = πiter,iterp (ρiterp (σitem=p(dst)))

iterp positem msgp = f (req1
p, . . . ,reqn

p)@p
iterp positem reqi

p = πiterp ,pos,item(ρpos(1iter=iter (mapp, parami)))
execute at {iterpositem dst}{ f (iterpositem param1, . . . , iterpositem paramn)}⇒ iterpositem result

Figure 3.4: Relational translation of XRPC

numbers back into old ones, and all result tables (resp) are united with a (merge-)union on the
iter column, to guarantee the correct order of the result.

Parallel & Out-Of-Order The XRPC execution in Figure 3.3 performs two Bulk RPC calls.
The first call processes both values of $actor on “y.example.org”. Then a second call per-
forms the same task on “z.example.org”. It is important to observe that this order of processing
is different than what is suggested by the query (i.e., first Julie Andrews on both, then Sean
Connery on both). If a loop-lifted XRPC function application has multiple destination peers,
MonetDB/XQuery improves performance by dispatching all Bulk RPC requests in parallel,
which makes the exact order in which peers execute the query unpredictable. After all parallel
results are united, the mapping of temporary iterp numbers into iters guarantees that the
final result is produced in the correct order.

The out-of-order processing effects of loop-lifting are most easily explained in a single-
destination (hence non-parallel) query:

import module namespace f="films" at "http://x.example.org/film.xq";
for $name in ("Julie", "Sean")
let $connery := concat($name, " ", "Connery")
let $andrews := concat($name, " ", "Andrews")
return (execute at {"xrpc://y.example.org"} {f:filmsByActor($connery)},

execute at {"xrpc://y.example.org"} {f:filmsByActor($andrews)} ) (Q3-6)

Here, only the peer “y.example.org” is involved twice within the same query due to se-
quence construction. In the first Bulk RPC call, it will look for films by two actors with
surname Connery, and in the second RPC for actors with the surname Andrews. Note that the
intuitive order suggested by the query would be to look for actors by the name Julie first, and
those named Sean second.

The above is also a good example of a query that needs isolation, because it handles two
RPC requests inside the same query. While in this particular case, those two requests could
potentially be combined, this is much harder if two different functions would be executed, or
downright impossible if the parameters of one depend on the outcome of the other. Certain
classes of queries, such as those that contain only a single non-nested XRPC call, can be easily
identified at compile time to send at most one XRPC request to each destination peer. For such
queries, we can use the cheaper XRPC mechanism without queryID (see Section 3.4), while
still guaranteeing repeatable reads.

Note that without Bulk RPC, the costly isolation mechanism would be required for any
XRPC that performs more than a single XRPC call. Thanks to Bulk RPC, many queries have
to send just a single message to each peer, thus not only reducing the amount of network I/O,
but also reducing the overhead of isolation.



CHAPTER 3. THE XRPC LANGUAGE EXTENSION 43

no function cache with function cache
$x=1 $x=1000 $x=1 $x=1000

one-at-a-time 133 2696 2.6 2696
bulk 130 134 2.7 4

Table 3.3: XRPC performance (msec): loop-lifted vs. one-at-a-time; no function cache vs. with function
cache.

3.5.3 Performance Evaluation
We conducted some experiments to evaluate the performance of XRPC in MonetDB/XQuery.
The test setup consisted of two 2GHz Athlon64 Linux machines connected on 1Gb/s Ethernet.
Efficiency of Loop-Lifting To study the effect of loop-lifting, we defined an echoVoid func-
tion and called it over XRPC while varying the number of iterations:

module namespace tst = "test";
declare function tst:echoVoid() {()};

import module namespace t="test" at "http://x.example.org/test.xq";
for $i in (1 to $x) return execute at {"xrpc://y.example.org"} {t:echoVoid()}

While in MonetDB/XQuery loop-lifting of XRPC calls (i.e., Bulk RPC) is the default, we
also implemented a one-at-a-time RPC mechanism for comparison. The left half of Table 3.3
(the “No Function Cache” column) shows the experiment where we compare performance
of Bulk RPC with single RPC at-a-time, while varying the number of loop iterations $x. It
shows that performance is identical at $x=1, such that we can conclude that the overhead of
Bulk RPC is small. At $x=1000, there is an enormous difference, caused by (i) serialisa-
tion/deserialisation of the request/response messages, (ii) network communication cost and
(iii) overhead of function call (1000 calls instead of 1 call). This is easily explained as the
one-at-a-time RPC experiment involves performing 1000 times more synchronous RPCs.
Throughput We also carried out bandwidth experiments (details omitted for space) that
scaled request and response payloads. Here we observed throughput of 8MB/s (large re-
quests) and 14 MB/s (large responses), which correspond roughly with resp. the document
shredding and serialisation speed of MonetDB/XQuery [41]. Thus, like other SOAP-based
messaging [84], XRPC data throughput on a fast local 1Gb network is CPU-bound rather than
network-bound (though in a WAN it is likely to be the other way round).
Function Cache XQuery Modules have the advantage that they may be pre-loaded and
cached, and our choice to let XRPC use modules as the query transport mechanism also opens
the possibility to reap performance profit from module pre-processing.

The feature of prepared queries is well-known for RDBMS. It allows a parameterised
query plan to be parsed and optimised off-line, such that an application can quickly en-
ter actual parameters in the prepared plan and execute it. The ODBC and JDBC APIs ex-
port this functionality of relational databases using a programming language binding. Mon-
etDB/XQuery has a mechanism for supporting prepared queries that does not need specific
API support. Exploiting the fact that a prepared query is in essence a function with param-
eters, MonetDB/XQuery caches all query plans for (loop-lifted) function calls, for functions
defined in XQuery Modules. Queries that just load a module and call a function in it with
constant values as parameter, are detected by a pre-parser. The pre-parser then extracts the
function parameters, and feeds them into a cached query plan. In MonetDB/XQuery, queries



44 3.6. CONCLUSION

XMark document 1MB 10MB 100MB 500MB 1000MB
Bandwidth (MB/sec) 2 12 28 14 15

Table 3.4: XRPC bandwidth for serialising XML documents

on small data sets can be accelerated ten-fold by this mechanism [41]. Note, that the function
cache is not a query cache: queries are executed always on the latest data, and the performance
improvement stems solely from the fact that query translation and optimisation is avoided.

This same function cache mechanism is used by the XRPC request handler. This means
that in MonetDB/XQuery an XRPC request usually does not need query parsing and optimisa-
tion, just execution. The right half of Table 3.3 (the “With Function Cache” column) shows the
impact of enabling the function cache: we see the processing time go down by 130ms (XQuery
module translation time), improving both the single- and many-iteration Bulk RPC experi-
ments. Thanks to the function cache, MonetDB/XQuery can achieve a minimum RPC latency
of 3 msec – which is identical to that of commercial-strength software like .NET ([84, 130]).
Document Serving To examine the performance of XRPC in serialising XML documents,
we used an HTTP client (wget) that retrieves a number of XMark documents of increasing
size. Such requests are automatically handled as a call to fn:doc() over XRPC. Table 3.4
shows that XRPC achieves a bandwidth of 14MB/sec on average. Only for small documents
(< 10MB) the bandwidth is lower, due to fixed start-up cost.

3.6 Conclusion
In this chapter, we introduced XRPC, a minimal XQuery extension that enables distributed
query execution with a focus on efficiency and interoperability. We first gave a formal defini-
tion of the syntax and the semantics of XRPC, including the semantics of distributed updates,
that follow from the use of XQUF updating functions over XRPC. This includes the definition
of two isolation levels for read-only and updating XRPC queries. Since interoperability is a
major goal, the XRPC proposal also comprises a message protocol, which we chose to base
on SOAP. Such a SOAP protocol has the additional advantage of seamless integration with
web services and AJAX-based GUIs.

Our experiences in MonetDB/XQuery suggest that adding XRPC to existing XML database
systems is easy; as shredding, serialisation and HTTP functionality are usually already present,
the work is limited to a small parser extension and stub code generation. The SOAP XRPC
protocol supports the concept of Bulk RPC, the execution of multiple function calls in a single
message exchange. This amortises network and parsing latencies, and can make XRPC a quite
efficient communication mechanism. We have shown that the loop-lifting technique, perva-
sively applied in our MonetDB/XQuery system for the translation of XQuery expressions to
relational algebra, can easily generate such Bulk RPC requests. In the next section, we will
show in our Saxon experiments that Bulk RPC enables set-oriented optimisations such that
Bulk RPC execution of a selection function can be handled using a join strategy.



4
Distributed XQuery With XPRC

4.1 Introduction
In this section, we discuss various uses of XRPC for distributed XQuery processing on het-
erogeneous XQuery engines.

First, we show that XRPC is not system-specific: every XQuery data source can service
XRPC calls using a simple wrapper. Since XQuery is a pure functional language, we can
leverage techniques developed for functional query decomposition to rewrite data shipping
queries into XRPC-based function shipping queries. Powerful distributed database techniques
(such as semi-join optimisations) map directly onto Bulk RPC, opening up interesting future
work opportunities. We demonstrate this with experiments in which MonetDB/XQuery and
Saxon work together over XRPC.

Second, we turn our attention to the interaction between XRPC and XQUF. We first define
a deterministic distributed update semantics and show that a small extension to the SOAP
XRPC protocol enables the protocol to conform to the deterministic update semantics. We
then describe how the industry standard Web Service Atomic Transaction[55] can be adapted
to support atomic distributed commits of XQUF queries on heterogeneous XQuery engines.

While XRPC already allows XQuery engines to perform P2P queries, it still misses a num-
ber of vital P2P functionalities (robust connectivity, peer and resource discovery, approximate
query/transaction processing). In the final part of this chapter, we present preliminary work
on MonetDB/XQuery?, in which we integrate existing XDBMS and P2P structures to provide
P2P data management facilities.

XRPC as Target Language One of the design goals of XRPC is – besides it being directly
useful as an explicit instrument to write distributed queries – to have it serve as the target
language for a distributed XQuery optimiser that takes queries without XRPC as input (thus
data shipping only), and produces decomposed queries as output that use XRPC for function
shipping. Our choice to make distributed execution explicit in terms of remote functions and
their dependencies (parameters), aligns well with XQuery being a pure functional language.
Query decomposition techniques [105] can thus be applied to decompose the full query (func-
tion) into sub-queries (again functions), that each can in theory be executed on any of the
participating sites.

Automatic query decomposition techniques are discussed in the next chapter. In this
chapter, we limit ourselves to showing how some well-known distributed query execution
strategies, such as the distributed semi-join strategy, can be elegantly expressed in XRPC.

45



46 4.1. INTRODUCTION

To demonstrate the performance opportunities of XRPC, as well as its interoperability, we
provide some initial performance experiments with one peer running MonetDB/XQuery, and
another running Saxon.

The implementation of XRPC in the open-source XML database system MonetDB/XQuery
(http://monetdb.cwi.nl) already allows query writers to experiment with distributed query
processing strategies, but we show using Saxon that even without XRPC being integrated into
other XQuery systems, we can achieve our goal of cross-system distributed querying using
an XRPC wrapper (Section 4.2). This wrapper is a SOAP service handler which generates
an XQuery query that uses the incoming SOAP request message as an input, iterates over all
function call requests in it, applying the local XQuery function on the supplied parameters,
and uses element construction to produce a SOAP response message that is sent back by the
wrapper.

One should note that the capabilities of such an XRPC wrapper outclass that of the well-
known wrapper architecture applied in federated database systems [114]. Not only can this
architecture do without a centralised integrating engine (XRPC allows for true P2P query
processing), we will also show that the possibility to submit sets of requests (that can each
have sequence-typed correlated parameters) allows query writers to, e.g., express the well-
known distributed query processing strategy of semi-join reduction by simply passing a key
parameter to the remotely called function.
Deterministic Updates The W3C Candidate Recommendation proposal for the XQuery Up-
date Facility leaves it undetermined how to handle multiple updates to the same node. For
example, if we have an XML document 〈a〉 named “a.xml”, then its value after executing the
update expression
for $n in (<b/>,<c/>) return insert node $n as first into doc("a.xml")

can be either 〈a〉〈b/〉〈c/〉〈/a〉 or 〈a〉〈c/〉〈b/〉〈/a〉. Arguably, this semantics does not match
the transactional semantics in databases very well. In MonetDB/XQuery, we thus choose to
implement the XQUF deterministically, by respecting the for-loop order (respectively the
sequence construction order), in which the multiple update statements occur in the query (in
the above case yielding 〈a〉〈b/〉〈c/〉〈/a〉).

The question we address here is how to achieve deterministic semantics in distributed
updates using our loop-lifted RPC technique. Note that XRPC is fully orthogonal to XQuery,
thus it is allowed to call user-defined updating functions over XRPC. Updating functions can
contain for-loops and sequence constructors, which might again make (multiple) other XRPC
updating function calls to other peers. Thus, distributed update queries generally involve a
group of peers and within a single query the same peer may even be involved multiple times,
potentially through different function call sequences. Our loop-lifting approach to XRPC
(“bulk” RPC requests) changes the order in which RPC function calls are evaluated. This
means that the order in which updates must be applied may differ from the order in which
the XRPC function calls were received. To address this issue, we formulate an extension to
our bulk SOAP XRPC protocol that allows keeping track of deterministic update order, while
conserving the performance advantages of loop-lifted RPC.
Distributed Transactions During a single XRPC query, it may happen that multiple read-
only XRPC requests are sent to the same site. In the repeatable read isolation level we de-
fine, each request from the same query is guaranteed to see the same database state. XRPC
queries may themselves also update the databases by invoking XQUF “updating functions”



CHAPTER 4. DISTRIBUTED XQUERY WITH XPRC 47

import module namespace func = “functions” at “http://example.org/functions.xq”;
declare namespace env = “http://www.w3.org/2003/05/soap-envelope”;
declare namespace xrpc = “http://monetdb.cwi.nl/XQuery”;
〈env:Envelope xmlns:env=“http://www.w3.org/2003/05/soap-envelope”

xmlns:xrpc=“http://monetdb.cwi.nl/XQuery”
xmlns:xs=“http://www.w3.org/2001/XMLSchema”
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=“http://monetdb.cwi.nl/XQuery http://monetdb.cwi.nl/XQuery/XRPC.xsd”〉

〈env:Body〉
〈xrpc:response xrpc:module=“functions” xrpc:method=“getPerson”〉{
for $call in doc(“/tmp/request_nnn.xml”)//xrpc:call
let $param1 := n2s($call/xrpc:sequence[1])
let $param2 := n2s($call/xrpc:sequence[2])
return s2n(func:getPerson($param1, $param2))

}〈/xrpc:response〉
〈/env:Body〉

〈/env:Envelope〉

Table 4.1: XQuery generated for the getPerson() XRPC request

over XRPC. Note that XQUF queries only perform side-effecting actions after all query execu-
tion has finished, such that during query execution the database state is constant, and updating
queries behave much like read-only queries. Obviously, atomically committing a distributed
transaction requires a protocol like two-Phase Commit (2PC). We decided not to add 2PC
to the XRPC network protocol, but rather rely on the recent industry standard Web Services
Atomic Transaction (WS-AtomicTransaction) [55, 54] that provides exactly this feature for
distributed web-service transactions.

Integrating XQuery and P2P Our approach to equip XRPC with P2P facilities is to inte-
grate services offered by diverse P2P network structures, such as the Distributed Hash Tables
(DHTs), into existing XDBMS. In MonetDB/XQuery?, we propose different ways of integra-
tion that avoid any further intrusion into the XQuery language and semantics. We also show
how the proposed approaches, similarly to Bulk RPC, will lead to further query optimisa-
tion opportunities where the XDBMS interacts with the underlying P2P network. XRPC and
MonetDB/XQuery? are adopted by StreetTiVo, a P2P collaborative video analysis and meta-
data distribution application. We discuss the architecture of StreetTiVo in Chapter 7 and show
how XRPC and MonetDB/XQuery? enable quick development of complex P2P application
such as StreetTiVo.

4.2 Cross-System Distributed XQuery

Engine
XQuery

request

response XRPC Wrapper

HTTP

generated query

request.xml

response.xml

Figure 4.1: XRPC wrapper architecture

Cross-system distributed XRPC querying can be
achieved even without XRPC being integrated into an
XQuery processing engine. What is needed is a simple
XRPC wrapper on top of the XQuery system, as shown
in Figure 4.1. The XRPC wrapper is a SOAP service
handler that stores the incoming SOAP XRPC request
message in a temporary location, generates an XQuery
query for this request, and executes it on an XQuery processor. The generated query is crafted
to compute the result of a Bulk XRPC by calling the requested function on the parameters
found in the message, and to generate the SOAP response message in XML using element
construction. Such an XRPC wrapper only allows its underlying XQuery engine to handle



48 4.2. CROSS-SYSTEM DISTRIBUTED XQUERY

total compile treebuild exec
echoVoid $x=1 275 178 4.6 92
echoVoid $x=1000 590 178 86 325

getPerson $x=1 4276 185 1956 2134
getPerson $x=1000 8167 185 1973 6010

Table 4.2: Saxon latency via the XRPC Wrapper (msec)

calls with normal XRPC-incapable systems, but obviously does not allow making outgoing
XRPC calls from them.

We illustrate how such an XRPC wrapper works by an example. The following function
returns the person node from an XMark document ($doc) whose @id attribute matches a
given $pid:
declare function getPerson($doc as xs:string, $pid as xs:string) as node()?
{zero-or-one(doc($doc)//person@id=$pid)};

Table 4.1 shows the query generated by an XRPC wrapper to handle the getPerson() request.
The XRPC protocol includes information about the arity of the function (as well as its

return type), so it is easy to generate the right number of param parameters in the call. The
brunt of the work is done by the n2s() and s2n() marshalling functions, introduced in Sec-
tion 3.4.1. These functions can be implemented purely in XQuery.

The n2s() function, used here to process all parameters, converts a SOAP XRPC element
into an item sequence, where each item has the right type. This is done by going over all
children of the xrpc:sequence using a series of if..then XQuery statements that select on
the xsi:type attribute found in the xrpc:atomic-value nodes. In case of xrpc:element
nodes with an xsi:type, XQuery validation is performed. The s2n() function is used here
only to convert the function return value into a correct SOAP XRPC node. It iterates over the
input item sequence, and for each item uses an XQuery typeswitch() to generate the right
SOAP node. If the return type is a sequence of nodes that have a schema type (this information
is supplied in the SOAP request) we insert the correct xsi:type attribute in it.

Saxon Experiments Using the wrapper, we can run a number of experiments on the Saxon
XSLT/XQuery processor [109] (Saxon-B 8.7). The results are shown in Table 4.2. Like
the experiments in Section 3.5.3, we put the execute at inside a for-loop with a varying
number of iterations ($x) to study the performance impact of Bulk RPC. By absence of a
function cache, Saxon latency is dominated by start-up and compilation time, so we focus here
on the internal Saxon timings (compile, treebuild, exec) and disregard network communication
cost, which is a few msec at most. For the echoVoid experiment, we see that Bulk RPC again
allows amortising XRPC latency really well: instead of 1000 times the latency, with a 1000
times more work, total latency increases just over a factor of 2. As the execution time still is
increased by a factor of 30, the low impact is due to other amortised latencies, in parsing the
XML request document, compiling the query, etc.

We also show the results of the getPerson() example above. This exposes an addi-
tional benefit of Bulk RPC over just amortised fixed latencies: whereas in the single-call
case, getPerson() behaves like a selection over the XMark document, the Bulk version of
getPerson(), that iterates over all calls in the request, becomes an equi-join. Again, the total
time for a Bulk RPC with 1000 calls is only about twice as much as a single call, but here we
see that the execution time impact has increased only by a factor of 3 (was 30 in echoVoid).
The explanation is that Saxon is able to detect the join condition and builds a hash-table such



CHAPTER 4. DISTRIBUTED XQUERY WITH XPRC 49

that performance remains linear in the size of the XMark document, just like it was in the
single call selection.

4.3 Distributed XQuery Optimisation
One of the design goals of XRPC is to have it serve as the target language for a distributed
XQuery optimiser that takes queries without XRPC calls as input (hence, only data shipping)
and produces a decomposed query as output that uses XRPC for function shipping. In this
section, we show how some well-known distributed query execution strategies, such as dis-
tributed semi-join, can be elegantly expressed in XRPC. We also outline several future work
issues in the area of automatic query distribution techniques using functional decomposition.

Let us assume a distributed XDBMS system with two peers {pa, pb}. An XMark docu-
ment is distributed between these two peers, where pa stores all persons in “persons.xml”, and
pb stores all items and (open/closed) auctions in “auctions.xml”.
for $p in doc("persons.xml")//person, $ca in doc("xrpc://B/auctions.xml")//closed_auction
where $p/@id = $ca/buyer/@person
return <result>{$p,$ca/annotation}</result> (Q4-1)

The above query is executed at peer pa. For each person and for every item this person has
bought, query Q7 returns the person node and the annotation node of the bought item in
a new result node. For the moment, assume that fn:doc() is invoked with a compile-time
known constant URI from our xrpc:// URI name scheme, indicating that the peer is known
to support XRPC.
Predicate Pushdown A first heuristic optimisation is to push predicates that depend only on
a single fn:doc(“xrpc://p/..”) into data source p. Thus, instead of transferring the whole
document “auctions.xml” from pb to pa, we define a function to return all closed_auction
nodes and execute this function on pb:
module namespace b = "functions_b";
declare function b:Q_B1() as node()*
{doc("auctions.xml")//closed_auction};

import module namespace b="functions_b" at "http://example.org/b.xq";
for $p in doc("persons.xml")//person, $ca in execute at {"B"} {b:Q_B1()},
where $p/@id = $ca/buyer/@person
return <result>{$p,$ca/annotation}</result> Rewritten query Q4-1-1

This heuristic rewrite can simply be triggered by the presence of fn:doc(). The re-
quired analysis to determine how much of the XQuery (Core) expression is dependent on
that fn:doc() alone, and therefore can be pushed, is highly similar to the analysis method
developed for XML projection [125].
Advanced Pushdown We could push expressions that depend on a fn:doc() application
even if that function application has a non-constant URL argument, and even could depend on
a for-loop variable. That is, using the helper functions:
declare function xrpc:host ($url as xs:string) as xs:string
declare function xrpc:path ($url as xs:string) as xs:string

where by default host() returns “localhost” and path() returns its argument – except for
xrpc:// URLs, where they would separate the URL in a host prefix and path suffix – we
could rewrite calls to fn:doc($url) into:
execute at {xrpc:host($url)} {fn:doc(xrpc:path($url))}



50 4.3. DISTRIBUTED XQUERY OPTIMISATION

However, this approach does require a refinement of the work in [125]. One must bear in mind
that any of the rewrites discussed here should only be made by an automatic rewriter if it can
establish that the call-by-value semantics of XRPC will not compromise the semantics of the
query. This at least involves a check whether nodes that come from pushed expressions are
only navigated downwards, and also involves checking against node identity tests and order-
dependent (e.g., order by) processing of node sequences that stem from multiple fn:doc()
calls pushed to different sources.
Execution Relocation The possibilities of query rewriting do not stop at push-down of
fn:doc(’xrpc://..’)-dependent expressions. Even if a query depends on a set P of XRPC
peers that contribute documents, one could decide to select one peer pi from P and put all
execution on pi. We call this mechanism Execution Relocation. For example, it might be ben-
eficial to relocate all execution on pb, if “auctions.xml” is much larger than “persons.xml”:
module namespace b = "functions_b";
declare function b:Q_B2() as node()*
{for $p in doc("xrpc://A/persons.xml")//person,

$ca in doc("auctions.xml")//closed_auction
where $p/@id = $ca/buyer/@person
return <result>{$p, $ca/annotation}</result>};

Then peer pa needs only to call this function to get the results:
import module namespace b="functions_b" at "http://example.org/b.xq";
execute at {"B"} {B:Q_B2()}

Distributed Semi-Join The classical distributed semi-join strategy [25, 178] can be employed
as well. The XRPC equivalent of the semi-join strategy uses an XRPC function call with a
loop-dependent parameter. In this case, the person @id for all persons can be passed in a loop
to a function executed at pb that returns those closed auctions with buyers having that @id:
module namespace b = "functions_b";
declare function b:Q_B3($pid as xs:string) as node()*
{doc("auctions.xml")//closed_auction[./buyer/@person=$pid]};

import module namespace b="functions_b" at "http://example.org/b.xq";
for $p in doc("persons.xml")//person
let $ca := execute at {"B"} {b:Q_B3($p/@id)}
return if(empty($ca)) then () else <result>{$p, $ca/annotation}</result> Rewritten query Q4-1-3

This shows that federating data sources with XRPC (even via the XRPC Wrapper) is more
powerful than the “wrapper-architecture” [114] used in federated database systems. Such
wrappers typically lack the possibility to push table-valued parameters into data sources,
which is required for the semi-join optimisations. It is worth pointing out that the loop-
lifted implementation of XRPC is essential for the efficiency of the distributed query plans
discussed in this section. The XRPC calls in the inner for-loop of the rewritten query Q7-1
and Q7-3 require only one message exchange between pa and pb. Without the loop-lifted
implementation, the network can easily get flooded by the huge amount of messages.
Saxon and MonetDB/XQuery Joined by XRPC To demonstrate the interoperability, ex-
pressiveness and performance potential of XRPC we run query Q7 on two peers using all
four mentioned strategies. On peer pa (the local peer), we run MonetDB/XQuery with the
document “persons.xml” (1.1MB, 250 person nodes); on peer pb the Saxon XSLT/XQuery
processor with the document “auctions.xml” (50MB, 4875 closed_auction nodes). There
are 6 matches between the person nodes and the closed_auction nodes.



CHAPTER 4. DISTRIBUTED XQUERY WITH XPRC 51

Total Time MonetDB Time Saxon Time

data shipping 28122 16457 11665
predicate push-down 25799 2961 22838
execution relocation 53184 69 53115
distributed semi-join 10278 118 10160

Table 4.3: Execution time (msecs) of query Q4-1 distributed on MonetDB/XQuery and Saxon (Saxon
time includes network).

All communication between MonetDB/XQuery and Saxon happens via XRPC. The XRPC
wrapper described in Section 4.2 is used to generate the XQuery query from an XRPC request
message.

The measured execution times are shown in Table 4.3. In the column “MonetDB Time”
are execution times on peer pa and in the column “Saxon Time” are execution times on peer
pb. The Saxon time was measured by subtracting MonetDB time from total time, such that
it also included communication. We should stress that this experiment is not a rigorous eval-
uation of distributed query execution strategies, rather a demonstration of the possibilities of
XRPC. The results here show that the “data shipping” query is relatively expensive, since it
spends quite some Saxon time on shipping the 50MB document and then still needs to do the
join. The “predicate push-down” approach improves the performance, as we would expect.
The “execution relocation” largely relieves the MonetDB peer from execution responsibili-
ties, but still ships a significant amount of data and tasks Saxon with the whole join and result
construction effort (where it takes longer than on MonetDB). The “distributed semi-join” is
the strategy that incurs least data shipping, and is most efficient in this case.

4.4 Deterministic Distributed Updates
The W3C Candidate Recommendation of the XQUF [58] does not determine the ordering
among newly inserted nodes if those nodes are inserted into the same target node using the
same kind of insert expression (into or as first/last or into before/after). The
Candidate Recommendation specifies that this ordering is implementation-dependent.
Definition of Deterministic Updates The motivation in MonetDB/XQuery to exercise our
liberty to implement the XQUF deterministically, is simply that order matters in XML. The
solution chosen is that if the XQUF working draft leaves the ordering of updates actions
undetermined, we respect the order in the pending update list. The XQUF working draft
specifies how this list is built up incrementally. For two XQuery language constructs, namely
for-loops and sequence construction, the working draft states that two pending updates must
be merged with the upd:mergeUpdates() internal function. The XQUF leaves the working
of this function unspecified, and our solution is to implement it with concatenation. Thus,
each new pending update sublist (second parameter of upd:mergeUpdates()) is appended to
the existing list (its first parameter). Note that this definition of update order is “intuitive” in
that it respects the for-loop iteration order, as well as sequence construction order. Our rules
Fu and F ′u further lead to synchronous function call semantics when updating functions are
called over XRPC.
The Challenge Now that the MonetDB/XQuery implementation of XQUF cares about the
update order, our challenge is to extend this deterministic update semantics to distributed
updates. In the end of Section 3.5.2, we showed an example query that executed two Bulk
RPCs on the same peer, and discussed how our loop-lifting technique causes the function to



52 4.4. DETERMINISTIC DISTRIBUTED UPDATES

be evaluated out of the intuitive order (this intuitive order is also followed by the XQUF to
build the pending update list). The below query is the updating equivalent of that previous
example, now using a hypothetical updating function appendLog, that appends entries to a
log:

import module namespace film="filmdb" at "http://x.example.org/film.xq";
for $name in ("Julie", "Sean")
let $connery := concat($name, " ", "Connery")
let $andrews := concat($name, " ", "Andrews")
return (execute at {"xrpc://y.example.org"} {film:appendLog($connery)},

execute at {"xrpc://y.example.org"} {film:appendLog($andrews)})

Our deterministic XQUF requires us to write first two Julie entries in the log, followed by
two Sean entries. The loop-lifting, however, will process the two Connery invocations first,
followed by the two Andrews. In this section, we describe an extension to the SOAP XRPC
message format that allows re-ordering the pending update list at commit time such that the
correct update order is followed.

4.4.1 Order-Correct Update Tags
We start by characterising the update actions a on behalf of query q that may be found in the
pending update lists ∆q@p at the various peers p. Second, we define a conceptual Distributed
Pending Update Table (DPUT), that holds all 〈p,a〉 combinations in the required order. Then,
we define an additional third T column for the DPUT that holds a tag, and explain how these
tag values are constructed. We show that this T column will always appear in sorted order,
given that the DPUT contains the required output order. From this, we can then conclude that
if each peer orders its local ∆q@p on T just before commit, it will apply the update actions in
the correct order. As a last step we show how the tags are constructed during query execution
and passed between peers using a small (and final) extension to the SOAP XRPC message
protocol.

Update Actions There are four groups of updating primitives described in [58]:

• insert expressions = {upd:insertInto, upd:insertIntoAsFirst, upd:insertIntoAsLast,
upd:insertBefore, upd:insertAfter, upd:insertAttributes};

• delete expressions = {upd:delete};
• rename expressions = {upd:rename};
• replace expressions = {upd:replaceNode, upd:replaceValue, upd:replaceElementContent}.

For our purposes here, we abstract from these different groups and consider them as single
update actions, denoted As. We denote A the set of all update actions. Composite update
actions, denoted Ac, are calls to an updating function, which itself can perform one or more
update actions ∈ A. We have A ≡ As∪Ac.

Distributed Pending Update Table Imagine that all update actions caused in a distributed
update query are put in the correct deterministic update order, and attach to this global list ∆

an additional peer column P. The resulting table PA we call the Distributed Pending Update
Table (DPUT). We should stress that this is a conceptual table only, we do not propose to
materialise such a table in any way.

In Section 3.4 we described that when an updating XRPC query is started with isolation
(i.e., following the semantics defined by F ′u), each peer p keeps an isolated environment



CHAPTER 4. DISTRIBUTED XQUERY WITH XPRC 53

qid@p0
P A
p1 f id1
p0 a1
p0 a2
p0 a3
p0 a4
p0 a5
p2 f id2
p0 a6
p0 a7
p0 a8
p0 a9
p0 a10
p1 f id3

point to



replace

point to



replace

point to



replace

f id1@p1
P A
p1 a1
p1 f id4
p1 a2

f id2@p2
P A
p2 a1
p5 f id5
p2 a2

f id3@p1
P A
p1 a3
p1 a4

point to



replace

point to



replace

f id4@p1
P A
p1 a5
p1 a6

f id5@p5
P A
p5 a1

merge ∆
=⇒

DPUTq
P A
p1 a1
p1 a5
p1 a6
p1 a2
p0 a1
p0 a2
p0 a3
p0 a4
p0 a5
p2 a1
p5 a1
p2 a2
p0 a6
p0 a7
p0 a8
p0 a9
p0 a10
p1 a3
p1 a4

Figure 4.2: The conceptual Distributed Pending Update Table

〈dbq@p,∆q@p〉 around. Each XRPC function application fi(Params)@p causes a sublist
f idi@p of pending update actions (just denoted ∆ f in rules Fu and F ′u) that is merged into
the overall list ∆q@p. We stress that f idi@p is just a conceptual list (not an implementation
data structure) that represent the update actions caused at peer p by a single function call. The
local list of pending updates at query site p0 is denoted qid@p0 here.

Corollary 4.4.1. Iteratively substituting each 〈px, f idy〉 in qid@p0 by sublist f idy@px, yields
the DPUT in required order.

Figure 4.2 shows qid@p0 and all f idi@p j caused by a single query, and the DPUT derived
from those (the right-most table). In the lists, values ai indicate single update actions, while
the values f idi points to another pending update sublist, that represents all update actions
caused by the called function f idi at the peer in column P. The iterative substitution of the
sublists in DPUT achieves the required synchronous semantics for remote function calls, as
it inserts all update actions (recursively) caused by a function call in the DPUT at the point
where the remote function was applied.

Body and Tags The XQUF restricts the locations in a query where update actions can be
done. We abstract from the full XQuery syntax using the body concept, to define these places.
body refers to the body of an updating XRPC query or the body of an updating XRPC function.
The body grammar is shown below:

body ::= UpdateAction | “for” ... “return” body | body (“,” body)*

A body can contain an expression in one of the three types, (i) an update action (possibly
an XRPC updating function), (ii) a for expression which in turn contains a body in its return
clause, or (iii) a sequence of one or more bodys.

The tags in column T of the DPUT are concatenations of numbers, separated by a dot. We
initialise tpre f ix = 1 for executions done locally on behalf of the initiating query. The query
body mimics the parse tree of the query, which is then “executed” recursively as follows
(starting with b=root and tb = /0) to generate all tags:

• if b is a sequence constructor, we process all sequence expressions s1, . . . ,sn while assigning
tsi = tb.i.



54 4.4. DETERMINISTIC DISTRIBUTED UPDATES

iter1 , iter2z }| {
for $s in (“str1”, “str2”)

return( execute at {p1} {updFun1($s)},
9;seq1

execute at {p1} {updFun1($s)})
9;seq2

P A T
p1 updFun1(str1) 1.1.1
p1 updFun1(str1) 1.1.2
p1 updFun1(str2) 1.2.1
p1 updFun1(str2) 1.2.2

Figure 4.3: The body of the example query and its DPUT

∆q@p1

P A T f id1@p1
“xrpc://y.example.org” appendLog(“Julie Connery”) 1.1.1
“xrpc://y.example.org” appendLog(“Sean Connery”) 1.2.1

P A T f id2@p1
“xrpc://y.example.org” appendLog(“Julie Andrews”) 1.1.2
“xrpc://y.example.org” appendLog(“Sean Andrews”) 1.2.2

⇓ sortT (∆q@p1)
P A T

“xrpc://y.example.org” appendLog(“Julie Connery”) 1.1.1
“xrpc://y.example.org” appendLog(“Julie Andrews”) 1.1.2
“xrpc://y.example.org” appendLog(“Sean Connery”) 1.2.1
“xrpc://y.example.org” appendLog(“Sean Andrews”) 1.2.2

Figure 4.4: The pending update list ∆q@p1 was created by two XRPC calls executed after each other.
Sorting those at commit time on T achieves deterministic update order.

• if b is a for-loop with iterations 1 ≤ i ≤ n, we process each iteration of the body f with
t f = tb.i.

• if b is an updating action, we put tag = tpre f ix.tb in column T for all update actions it inserts
in the pending update list.

• if b is an updating XRPC function, we also insert tag as an attribute of the xrpc:call
in the XRPC request. The updating function body is executed remotely with initialisation
tpre f ix = tag.

Figure 4.3 shows how the tags are constructed from the body of our example update query.
The initial tpre f ix is 1. The for-loop with two iterations introduces the second number, 1 for
the first iteration, and 2 for the second. Inside the loop body we find a sequence constructor,
introducing a third number in the tag. Inside this sequence constructor, the update actions are
found and tagged.

Note that the tag construction algorithm respects the for-loop and sequence construction
order just like XQUF pending update list construction. Also, the tags generated by remote
function applications are prefixed by the current tag and therefore must be bigger than all
previous and smaller than all following locally generated tags, which mimics synchronous
XRPC semantics. Therefore:
Corollary 4.4.2. Column T in DPUT is ordered by definition.

One should remember that the DPUT is only a concept used to define the required order,
and there is no single place where we can afford to bring together the entire merged pending
update list – each peer only has local information. But, if we could attach the correct tag
values to the (partial) pending update lists ∆q@p at each peer p in a T column, we can achieve
correct update order by (stable) sorting the ∆q@p on T locally at each peer at commit time.
XRPC SOAP Extension: Tag Attributes The tags are only constructed on demand, just
before executing a Bulk RPC request. In local execution, the iter columns maintained by



CHAPTER 4. DISTRIBUTED XQUERY WITH XPRC 55

MonetDB/XQuery for loop-lifting correspond with the iteration numbers in the tags. Thus by
obtaining all iter numbers from the current scope through to the root level (by joining with
so-called map relations [88]), the tags can be constructed whenever an update action needs to
be executed. For sequence construction, these numbers are available in the Pathfinder XQuery
Core parse tree, and can be inserted in the generated query plan. The tags are always prefixed
by tpre f ix, stored as a loop-lifted expression. The reconstructed tags are included as attributes
in the xrpc:call elements in the Bulk SOAP XRPC request message. The remote peer uses
this tag then as prefix for generating further tag numbers, as described before (i.e., as the
loop-lifted tpre f ix expression).

Below we show the first XRPC request message triggered by the RPC call in our example
query, which leads to tags 1.1.1 and 1.2.1 (i.e., tpre f ix.iter{1,2}.seq1):

<xrpc:request xrpc:module="filmdb" xrpc:method="appendLog" xrpc:arity="1"
xrpc:location="http://x.example.org/film.xq" xrpc:updCall="false">

<xrpc:queryID xrpc:host="x.example.org" xrpc:timestamp="32414232" xrpc:timeout="180"/>
<xrpc:call xrpc:tag="1.1.1"> <!-- first call -->
<xrpc:sequence>

<xrpc:atomic-value xsi:type="xs:string">Julie Connery</xrpc:atomic-value>
</xrpc:sequence>

</xrpc:call>
<xrpc:call xrpc:tag="1.2.1"> <!-- second call -->
<xrpc:sequence>

<xrpc:atomic-value xsi:type="xs:string">Sean Connery</xrpc:atomic-value>
</xrpc:sequence>

</xrpc:call>
</xrpc:request>

The second function application leads to a similar XRPC request (logging actors with sur-
name Andrews this time), with call tags 1.1.2 and 1.2.2 (not shown). Figure 4.4 shows the
pending update list ∆q@p1 at peer p1 (“y.example.org”) including the extra column T. It de-
picts the situation at commit time. Both both XRPC requests have been executed successfully,
and produced pending update sublists f id1@p1 and f id2@p1, which were concatenated in
∆q@p1 as both executed with isolation semantics F ′u (note that the XRPC Request above
includes the queryID element). Sorting the pending update list on T achieves the desired
deterministic update order.

4.5 Distributed XRPC Transactions
XRPC allows XQUF [58] expressions to be executed on remote peers, by means of XRPC
calls to updating functions, thus providing distributed transaction functionality. For such dis-
tributed updating queries, XRPC provides two different isolation levels, no isolation and re-
peatable reads, to meet the needs of different kinds of applications. The latter level provides
repeatable reads for all XRPC requests to the same peer made in a single query and uses a
distributed 2-Phase Commit (2PC) protocol to ensure atomic commit. The semantics of these
levels have already been formally defined in Section 3.4.2, including necessary extensions
to the basic SOAP XRPC protocol to support them. Each XRPC query can specify the de-
sired isolation level using the XQuery declare option feature to set xrpc:isolation to
none or repeatable. Here, we briefly explain how repeatable reads with atomic commit are
supported for updating XRPC queries on different XQuery engines.

To ensure repeatable reads, during the execution of an updating XRPC query qup, each
participating peer maintains the same database state (i.e., all persistently stored XML docu-
ments) for the query. This can be done using systems that either use (lock-based) serialisation,



56 4.5. DISTRIBUTED XRPC TRANSACTIONS

msgs

XHTML +
JavaScript

SOAP

web browser

X−Hive

Galax

XRPC

(messages not shown)

Saxon

WS−AtomicTransaction protocol for distributed updates

MonetDB

XRPC Wrapper

XRPC Wrapper

MonetDB
/XQuery
+XRPC+XRPC

/XQuery

XRPC Wrapper

1

8
9

10

7

4

11

12

62

13

5

14
3

peer5

peer1 peer2

peer4

peer3

Figure 4.5: Browser-initiated XRPC query, visiting peers 2,3 twice; updating peers 1-3 with atomic
commit (dashed box area).

snapshot isolation, or multi-version concurrency control. The XRPC update requests gener-
ated by a query are not applied immediately to the database state used by that query while it
runs. Rather, these requests are collected, in correspondence with the XQUF formal definition
of a pending update list, that grows while the query runs. When the update query decides to
commit, all peers in the transaction effectuate all updates in this list.

To provide atomic distributed commit, we have chosen to use the SOAP-based 2PC in-
dustry standard WS-AtomicTransaction[55], which defines an API with functions such as
Prepare() and Commit(). It is embedded in the WS-Coordinator framework [54] that allows
registering a collection of peers that participate in a distributed transaction, and subsequently
run a transaction protocol (in this case WS-AtomicTransaction) on those peers. In XRPC, peer
pq that starts the query q is the one that registers the participating peers at the WS Coordinator
service and initiates the Prepare and Commit phases. For this registration task, it thus needs
to know a full list of peers that participated in the transaction. Due to nested XRPC calls
(i.e., remote functions calling in turn other remote functions), the query originator may not be
aware of all peers involved and therefore we extended the SOAP XRPC protocol to piggyback
a list of unique participating peers in their response messages.

To provide updating XRPC queries with repeatable reads and atomic commit, XRPC
systems must implement these web service 2PC interfaces and offer them over the same HTTP
SOAP server that runs XRPC (this is the case in MonetDB/XQuery).

4.5.1 Heterogeneous Distributed 2PC
To enable heterogeneous distributed transactions, that is, performing XQUF updates on mul-
tiple peers that run different XQuery engines, the WS-AtomicTransaction 2PC interfaces are
implemented in our XRPC Wrapper. This involves extending the XRPC Wrapper with con-
currency control, XRPC message logging, and recovery functionality, that is used on top of
the transactional capabilities of the underlying XQuery engine.

To provide the repeatable reads isolation level, the underlying XQuery engine must pro-
vide repeatable read consistency or better, and support multi-query transactions (with explicit
start-transaction and commit/abort commands). For read-only queries under repeatable reads,



CHAPTER 4. DISTRIBUTED XQUERY WITH XPRC 57

the XRPC Wrapper keeps a separate client connection open to the XQuery engine in which
all XQuery requests with the same query ID are executed. This connection is kept open for
the timeout period as specified in the XRPC requests. The XRPC Wrapper also keeps a log
of recently expired query IDs (and an in-memory hash-table for fast lookups) such that it can
properly generate error message for late requests. Note that query IDs contain a global times-
tamp, on which a reasonable maximum timeout can be enforced, so the size of the hash table
should remain limited.

Updating queries can generate XRPC requests to both normal (read-only) XQuery func-
tions as well as updating functions as defined by the XQUF, and are processed as follows.

1. When an XRPC request is received:

a) check the query ID id carried by the request to see if a connection Cid for this query
has already been created, and if not, create a new one, starting a new transaction (as
mentioned, an error is generated for expired IDs). Also, a new subdirectory Did is
created in the logging directory of the XRPC Wrapper;

b) if the called function is a read-only function, execute it using the underlying XQuery
engine and send its result back to the caller1. If the execution fails, add the query ID to
the expired query log and remove Did ;

c) otherwise, save the XRPC request message to the logging subdirectory Did and send
a response message to the caller to indicate success without actually executing the up-
dating function (this is possible, as updating XQuery functions do not return a result).
The rationale is that in order to provide repeatable reads, we must execute all updates
together, at the end of the transaction; otherwise their effects would be visible for sub-
sequent requests belonging to the same transaction.

2. When a Prepare request with ID id is received, then:

a) if ID is expired, send Aborted to the coordinator;
b) otherwise, if there are no request messages saved in the logging directory Did , send

ReadOnly to the coordinator, and then remove the logging directory Did
2;

c) otherwise, construct a single query containing all updating requests that have been
saved so far (by using XQuery sequence construction). Execute the query in connec-
tion Cid , without committing the transaction yet. If this update query fails, add the query
ID to the expired query log and remove Did . Finally, send the decision Committed or
Aborted to the coordinator (depending on the update success).

3. When a Rollback or a Commit request with ID id is received:

a) if the request is Commit, log a “committing message” to Did , and commit the transaction
in Cid ; The XRPC Wrapper should cease operation if committing in Cid fails, and then
try to restart the underlying XQuery engine and/or itself, entering recovery mode;

b) add the query ID to the expired query log and remove Did .

1Note that, to reduce possible communication time with the coordinators needed by the recover procedure, each
message should be logged before it is sent.

2Upon receipt of a ReadOnly notification, the coordinator knows that the participant votes to commit the transac-
tion and has forgotten the transaction.



58 4.6. MONETDB/XQUERY?

Thus, the XRPC Wrapper plays the game of declaring a distributed transaction committed,
before actually committing in the underlying XQuery engine, relying on its own logging to do
so at the global commit point.

Recovery is done every time the XRPC Wrapper starts, before it accepting any new XRPC
requests. During recovery, the logging directory is scanned for unfinished transactions, i.e.,
for subdirectories containing messages of unfinished transactions. For each subdirectory, if
no final decision can be deduced from the logs (message logs and expired query ID log), it is
requested from the coordinator. Transactions that should be committed are then re-executed
(Step 3).

The worst possible case is finding a “committing” message. As it may happen that the
underlying XQuery engine committed but the XRPC Wrapper crashed before removing the
Did directory, re-trying the commit runs the risk of executing its updates twice. This risk can
be mitigated by inspecting the log of the underlying XQuery engine (if accessible).

4.6 MonetDB/XQuery?

MonetDB/XQuery provides generic XQuery functionality, and its distributed querying and
update facilities can be used in widely varying environments. First, we show how the mech-
anism described so far, can be useful in LAN environments with a limited number of nodes.
When considering WAN applications with potentially thousands or more participating peers
(such as StreetTiVo), we propose to use Distributed Hash Table (DHT) data structures under
the hood of the system.

In the following, we will show how these widely varying application areas can be ad-
dressed by the fn:doc() and fn:put() built-in functions plus our XRPC execute at lan-
guage construct.

4.6.1 Simple Scenarios
Our XRPC extension for the XQuery language enables a query shipping model to query and
manipulate remote XML documents. Given our choice for SOAP over HTTP as the network
protocol for XRPC, it is interesting to note that the execute at construct, when combined
with fn:doc() and fn:put(), provides an implementation of HTTP-based data shipping, as
shown by the following rewriting rules:

StatEnv.baseURI⇐ /0

execute at {“xrpc://host”}{fn:put($node, “localname”)}
fn:put($node, “xrpc://host/localname”)

(Rput1 )

StatEnv.baseURI⇐ /0

execute at {“xrpc://host”}{fn:doc(“localname”)}
fn:doc($node, “xrpc://host/localname”)

(Rdoc1 )

Thus, an XQuery system with XRPC can implement the HTTP protocol in fn:doc(), fn:put()
internally by using XRPC to execute those requests remotely with the local part of the URI
(and an empty "base-URI", from the static environment [67]).

4.6.2 Loose DHT Coupling
A Distributed Hash Table [147, 2] provides (i) robust connectivity (i.e., tries to prevent net-
work partitioning), (ii) high data availability (i.e., prevent data loss if a peer goes down by
automatic replication), and (iii) a scalable (key,value) storage mechanism with O(log(N))



CHAPTER 4. DISTRIBUTED XQUERY WITH XPRC 59

Peer 2Peer 1

M
onetD

B
/X

Q
uery

M
on

et
D

B
/X

Q
ue

ry

dht1 LDA

dht2 LDA dht2 LDA

dht1 LDA
get(7)

get(5)

1

7
10

put(8,       )

5

3

put(4,       )

9

1 2
5

dht1

dht2

(a) Loose DHT/DBMS Coupling

put(8,       )

put(7,       )

M
on

et
D

B
/X

Q
ue

ry

M
onetD

B
/X

Q
uery

dht2

dht1

data of dht1

data of dht2

Peer 1 Peer 2

data of dht2

data of dht1

get(3)

get(5)

dht2 LDA

dht1 LDAdht1 LDA

dht2 LDA

1 3 5 7

1 2 56 8

(b) Tight DHT/DBMS Coupling

Figure 4.6: MonetDB/XQuery with multiple DHT connections

cost complexity (where N is the amount of peers in the network). A number of P2P database
prototypes have already used DHTs [42, 43, 100, 101, 108, 142]. An important design ques-
tion is how a DHT should be exploited by an XQuery processor, and if and how the DHT
functionality should surface in the query language.

We propose here to avoid any additional language extensions, but rather introduce a
new dht:// network protocol, accepted in the destination URI of fn:doc(), fn:put() and
execute at. The generic form of such URIs is dht://dht_id/key. The dht:// indicates the
network protocol. The second part, dht_id, indicates the DHT network to be used. Such an
ID is useful to allow a P2P XDBMS to participate in multiple (logical) DHTs simultaneously,
as shown in Figure 4.6(a). The third part (key) is used to store and retrieve values in the DHT.

The simplest architecture to couple a DHT network with a DBMS is to just use the DHT
API, the put(key,value) and get(key):value functions, to implement the XQuery data
shipping functions fn:put() and fn:doc(), as shown in rules Rput2 and Rdoc2 :

pi = dht_hashdht_id(key)
dht_sendp0→pi request(“put”, (key,$node))

dht_store@pi ` put($node)@pi⇒ dht_store′@pi

dht_sendpi→p0 response()
db@p0 ` fn:put($node, dht://dht_id/key)⇒ db@p0

(Rput2 )

pi = dht_hashdht_id(key)
dht_sendp0→pi request(“get”, (key))

dht_store@pi ` get(dht_id/key)⇒ $node, dht_store@pi

dht_sendpi→p0 response($node)
db@p0 ` fn:doc(dht://dht_id/key)⇒ $node, db@p0

(Rdoc2 )

That is, we simply use the DHT to store XML documents as string values. The rules indicate
that at the remote peer pi, only the peer’s DHT storage is involved, hence, peer pi does not
even have to have a running MonetDB/XQuery* instance. Note that the XQuery function
fn:doc is a read-only function, since the document retrieved by using this function is stored
as a transient document.

In this architecture, we can run the DHT as a separate process called the Local DHT Agent
(LDA). Each LDA is a process that is connected to one DHT dht_id (see Figure 4.6(a)). This
process runs separately from the database server, such that we can use the DHT software
without any modifications.

The execute at can be “simulated” as follows:
StatEnv.baseURI⇐ dht://dht_id/pre f ix
db@p0 ` fr(ParamList)⇒ val, db@p0

db@p0 ` fr(ParamList)@dht://dht_id/pre f ix⇒ val, db@p0

(Rxrpc2 )

Rule Rxrpc2 in fact just evaluates the function locally, by getting all documents with a relative



60 4.7. CONCLUSION

URI name from the DHT. This is achieved by setting the baseURI in the static environment
to dht://dht_id/pre f ix. If the function body thus contains any fn:doc(), fn:put() on
some relative URI localname, the rules Rput2 and Rdoc2 specify that the document should be
stored/retrieved into/from dht://dht_id/pre f ix/localname. One should note that the pre f ix
may be empty.

While this approach allows zero-effort coupling of DHT technology with DBMS technol-
ogy, we consider it nothing more than a workaround. Rule Rxrpc2 substitutes function shipping
by data shipping, defeating the purpose of XRPC. In case of updates, we would need to mod-
ify the rule to store the modified documents using put back in the DHT, but such a two-step
update is hard to be made atomic.

4.6.3 Tight DHT Coupling
In a tight coupling scenario, rather than keep XML as string blobs inside the DHT (in RAM),
each DHT peer actually uses its local XDBMS to store the documents (see Figure 4.6(b)). To
realise this, we need to extend the DHT API with a single new method:

xrpc(key, q, m, fr(ParamList)) : item()*

This new method allows the request in the below rule to be routed through the DHT (dht_send),
to achieve the following semantics for XRPC calls to a “dht://” URI:

pi = dht_hashdht_id(key)
dht_sendp0→pi request(q,m, fr,ParamList)

db@q pi ` fr(ParamList)@pi⇒ val, dbq@pi

dht_sendpi→p0 response(val)
dbq@p0 ` fr(ParamList)@dht://dht_id/key⇒ val, dbq@p0

(Rxrpc3 )

This rule states that the DHT dht_id routes an XRPC request using the normal DHT routing
mechanism towards the peer pi responsible for key. When the Local DHT Agent (LDA) in pi
receives such a request, it performs an XRPC to the MonetDB/XQuery instance on the same
peer pi. This XRPC executed at remote location pi from the LDA into MonetDB/XQuery (it
may use either semantic RFr or R ′Fr ). The response is then transported back via the DHT
towards the query originator p0.

In this scenario, we can support fn:doc() and fn:put() by combining rule Rxrpc3 with
Rdoc1 and Rput1 . That is, use an XRPC request routed via the DHT to do a remote execution
of fn:doc(), fn:put() on the relative URI localname.

In the tight coupling, we have to extend the DHT implementation. A positive side-effect
of this is that the DBMS gets access to to information internal to the P2P network. This infor-
mation (e.g. peer resources, connectivity) can be exploited in query optimisation. Also, bulk
XRPC requests routed over the DHT may be optimised (similar to Bulk RPC), by combining
requests that follow the same route as long as possible in single network messages.

4.7 Conclusion
In this chapter, we have discussed various aspects of using XRPC in distributed XQuery pro-
cessing. First we show that XRPC can be easily adopted by different XQuery engines, such
that complex P2P communication patterns can be programmed using XRPC. To enhance adop-
tion of XRPC, we described a XRPC wrapper that allows any XQuery data source to handle



CHAPTER 4. DISTRIBUTED XQUERY WITH XPRC 61

XRPC calls3. During our Saxon experiments, we also saw that Bulk RPC enables set-oriented
optimisations, such that Bulk RPC execution of a selection function can be handled using a
join strategy.

Then, to better match the transaction semantics in databased, we define a deterministic
update semantics for XQUF queries, and showed how the SOAP XRPC can be extended to
guarantee deterministic order in distributed update scenarios. To provide atomic distributed
commit, we have chosen to use the SOAP-based 2PC industry standard Web Services Atomic
Transaction [55].

Finally, we discussed work on MonetDB/XQuery? that aims to create powerful P2P XML
database technology that preserves the full XQuery language (+XQUF), extending it only
with a single new construct, i.e., XRPC. We described how Distributed Hash Tables (DHTs)
can be integrated without further XQuery extensions, by adding support for a new dht://
protocol in URIs. We discussed the semantics of two ways of coupling (loose and tight) a
DHT with an XDBMS, of which the latter is more powerful. In Chapter 7, we will show
how this functionality can be used in the StreetTiVo collaborative video indexing application.
Our next step in this area is to implement these couplings in MonetDB/XQuery using the
Bamboo DHT [147], and perform experiments in environments like PlanetLab. Especially the
tight coupling will open up a playing field for a number of query optimisation techniques that
exploit the P2P network characteristics.

3XRPC and the XRPC wrapper are available in the open-source XDBMS MonetDB/XQuery (http://monetdb.
cwi.nl).





5
XQuery Decomposition

In this chapter, we present techniques to automatically decompose any XQuery query – in-
cluding updating queries specified by XQUF – into subqueries, that can be executed near their
data sources, i.e., function-shipping. The main challenge addressed here is to ensure that the
decomposed queries properly respect XML node identity and preserve structural properties,
when (parts of) XML nodes are sent over the network, effectively copying them. We first
precisely characterise the conditions, under which pass-by-value parameter passing causes
semantic differences between remote execution of an XQuery expression and its local exe-
cution. We then formulate a conservative strategy that effectively avoids decomposition in
such cases. To broaden the possibilities of query distribution, we extend the pass-by-value
semantics to a pass-by-fragment semantics, which keeps better track of node identities and
structural properties. The pass-by-fragment semantics is subsequently refined to a pass-by-
projection semantics by means of a novel runtime XML projection technique, which safely
eliminates semantic differences between the local and remote execution of an XQuery expres-
sion, and strongly reduces message sizes. Finally, we discuss how these techniques can be
used for updating queries, both under the standard W3C XQUF specification, as well as un-
der an extended semantics that allows updating remote documents. The proposed techniques
are implemented using XRPC. Experiments on MonetDB/XQuery establish the performance
potential of our XQuery decomposition techniques.

5.1 Motivation
Decomposing queries to address multiple data sources is a well-studied optimisation prob-
lem in relational [175], object-oriented [115, 105], and semi-structured databases [166, 167].
While it is natural (and correct) to assume that many of the existing techniques can be carried
over, the XML data model and the XQuery language introduce a number of particular chal-
lenges not met elsewhere that revolve around XML node identities and structural (rather than
value-based) relationships between nodes. Previous work on distributed XML [53, 63, 170]
only focused on a restricted subset of XQuery queries, and did not address the problem of
transparent query decomposition, such that these challenges did not arise.

In this chapter, we introduce ways to decompose any XQuery query that consults mul-
tiple XML documents residing on multiple peers into subqueries that can be executed on
those peers, i.e., function shipping. In principle, we do not want to restrict the form of these
queries in any significant way: the full W3C recommended XQuery language [38] including
its XQUF extension [58] is the starting point of our decomposition. Our only requirement for

63



64 5.1. MOTIVATION

XRPC Client XRPC Server

Serialize
request message P

Shred
response message R′

Shred
request message P ′

Local function evaluation

Serialize
response message R

D

Q : execute at {Expr}
{fcn($n) }

Result of Q

soap
request/response http server

Figure 5.1: XQuery Remote Procedure Call under pass-by-value

peers to participate is running an XML database system (XDBMS) that complies with these
W3C recommendations. The goal of this chapter is to exploit the computational power of
heterogeneous XML engines on the Web to jointly execute XQuery and XQUF queries. In
our decomposition, we use a functional abstraction, which is a good match for XQuery, as it
is a functional language. This provides ultimate flexibility in the way queries can be decom-
posed. One can chop up an XQuery query in any possible way, view the chops as function
compositions, and potentially execute each of these functions on a different peer.

Shipping XML Messages Without loss of generality, we view the subexpressions to be ex-
ecuted by remote peers as XQuery functions that may have parameters and produce a result.
During remote function execution, the calling peer (i.e., query originator) will send a request
message containing parameters to a remote peer, which executes the subexpression, and sends
back a response message containing the result. When XML nodes must be shipped over the
network, pieces/snippets of the XML documents must somehow be copied into the messages,
changing the “holistic” structural properties and identities of nodes, which may affect the se-
mantics of XQuery execution on such shipped nodes. In Section 5.2, we identify all semantic
differences between evaluating XQuery expressions on the original XML nodes and on the
shipped (i.e., copied) nodes. Alternatively, one can choose to ship the entire XML document
in order to preserve all structural relationships (which defeats the purpose of function ship-
ping). Naively, when shipping a node, one would ship its descendants (i.e., XML subtree),
but other solutions are also possible, and will in fact be proposed in this chapter (especially,
the idea to use XML projection techniques). In particular, the run-time projection approach
contributed in this chapter tunes the shape of the shipped XML messages to the characteristics
of the query, such that a minimal amount of data is shipped and those structural relationships
that are actually needed are preserved.

XRPC While our problem statement covers distributed XQuery in general, the techniques
proposed in this chapter stem from the particular context of XRPC. As XQuery is a com-
positional functional language, each query can be chopped up in arbitrary pieces. One can
then view the pieces as functions connected together by function parameters and results. With
XRPC, we have in principle ultimate flexibility in the way queries can be decomposed, as it
allows each function to be executed on an arbitrary peer. An important feature on the network
protocol level is Bulk RPC that allows multiple calls to the same function (with different pa-
rameters) to be handled in a single network interaction. Bulk RPC is exploited when a query
contains a function call nested in an XQuery for-loop, which in a naive implementation would
lead to as many synchronous RPC network interactions as loop iterations.

Figure 5.1 shows a query Q that performs a single XRPC function call to fcn() with
a single parameter (a node $n from some document D). To make an XRPC call, the local



CHAPTER 5. XQUERY DECOMPOSITION 65

1 declare function makenodes() as node()
2 {〈a〉〈b〉〈c/〉〈/b〉〈/a〉/b}; . node 〈b〉〈c/〉〈/b〉 has parent::a

3 declare function overlap($l as node(), $r as node()) as boolean
4 {not(empty($l//∗ intersect $r//∗))}; . are $l and $r related?

5 declare function earlier($l as node(), $r as node()) as node()
6 {if ($l�$r) then $l else $r};

7 let $bc := makenodes(), $abc:=$bc/parent::a . $bc has a parent $abc
8 return (for $node in ($bc, $abc)
9 let $first := earlier($bc, $abc) . always $abc
10 where overlap($first, $node) . always overlap
11 return $node)//c . returns only one 〈c/〉

Table 5.1: Example query Q1

peer formulates a SOAP request message which contains a deep copy P of the node $n. The
Simple Object Access Protocol (SOAP) is an XML-based message format commonly used by
web services [128, 89, 90]. XRPC follows the previously mentioned approach of copying the
XML subtree of a node parameter, which implies a pass-by-value parameter passing strategy.
The message is sent as a synchronous HTTP POST request. The remote peer runs an HTTP
server, which parses the request message and constructs a separate XML fragment for each
node parameter (in this example a single fragment P′). The remote peer then evaluates the
function and serialises the result into a response message (here, a deep copy of the result node,
denoted R). Finally, the local peer parses the response message and constructs a separate XML
fragment for each node-typed result (here R′), which is the result of Q.
Problem Statement Our goal is to rewrite an XQuery Q that uses XML documents with
xrpc:// URIs stored at remote peers, into an equivalent query Q′ that uses XRPC calls to
execute parts of the query (expressed as XQuery functions) on those remote peers. For a
query Q, Q(D) denotes the result of evaluating Q over a (possibly distributed) database D .
Two queries Q and Q′ are equivalent, if Q(D) = Q′(D) for any given database D (under the
XQuery deep-equal semantics).

We illustrate XQuery decomposition as follows:

for $e in doc("employees.xml")//emp
where $e/@dept = doc("xrpc://example.org/depts.xml")//dept/@name
return $e

the URL xrpc://example.org/depts.xml implies that the remote peer example.org sup-
ports XRPC, so the predicates could be pushed as:

declare function fcn($n as xs:string) as xs:boolean
{$n = doc("depts.xml")//dept/@name};

for $e in doc("employees.xml")//emp
where execute at {"example.org"} {fcn($e/@dept)}
return $e

In this example, the parameter and return value of the function fcn() are of atomic types. In
more complex cases, nodes may be involved, such that potential semantic differences due to
pass-by-value should be considered (discussed in Section 5.2), which is our main challenge.

5.2 Semantic Differences with Pass-By-Value
There are well-defined semantic differences [180] between evaluating an XQuery expression
locally and executing it remotely under pass-by-value parameter passing. We discuss these



66 5.2. SEMANTIC DIFFERENCES WITH PASS-BY-VALUE

differences with a query Q1 in Table 5.1. This query evaluates three functions: makenodes(),
overlap() and earlier().

Problem 1: Non-downward XPath Steps Reverse and horizontal XPath axis navigation (e.g.,
parent, ancestor, preceding(-sibling) and following(-sibling)) from remote func-
tion parameters always produces empty results, as pass-by-value node serialisation only in-
cludes the descendants of a node inside the message. Consider the following:

7 let $bc := execute at {"example.org"} {makenodes()}, $abc := $bc/parent::a

here, $abc evaluates to the empty sequence, instead of the correct a-node 〈a〉〈b〉〈c/〉〈/b〉〈/a〉.
It is possible to evaluate downward XPath steps on a sequence of remote nodes, but only

if we are sure that these nodes are ordered and non-overlapping (otherwise, the results of such
XPath steps will fail to respect node identity and order, as described below).

Problem 2: Node Identity Comparisons If a remote function returns a sequence with twice
the same node, or the same node is passed twice as function parameters, pass-by-value rep-
resents them as two different copies. This leads to problems with duplicate elimination (as
shown in Problem 4 below) and any node identity comparison will always yield false. For
instance:
10 where execute at {"example.org"} {overlap($first, $node)}

yields false, while the local query evaluation gives true.

Problem 3: Document Order The parameters of a function call on a remote peer are serialised
into the message in parameter order, in separate XML fragments. Even if the parameter nodes
are disjoint (making Problem 2 irrelevant), the relative order between these XML fragments
may differ from their original order. Thus, inter-parameter node comparisons (“�”, “�”)
may behave differently from the local semantics. Consider the usage of earlier() in Q1 as:

9 let $first := execute at {"example.org"} {earlier($bc,$abc)}

In both iterations, the variable $first binds to a copy of $bc, instead of $abc, although $abc
is the parent of $bc.

Another problem with document order, not revealed by this example, could occur when
comparisons of nodes from different XML documents are executed on remote peers. The
XQuery/XPath Data Model (XDM) [71] defines that the relative order of nodes in different
documents is implementation-dependent, but must be stable during the processing of the same
query. Consider the query

declare function earlier2() as boolean
{doc("xrpc://a.example.org/a.xml")/a � doc("xrpc://b.example.org/b.xml")/b};

execute at {"a.example.org"} {earlier2()} = execute at {"b.example.org"} {earlier2()}

which, depending on how documents are ordered by the remote peers, could return true or
false1, while XDM requires it to always return true. Note, however, that a query containing
a single call to earlier2() may return either true or false, in accord with XDM. In such a
query, earlier2() could be executed at a remote peer.

1Even if the two calls to earlier2() were executed on the same remote peer, without any guarantees for consis-
tency, the results could be different, since each call is a separate query on the remote peer.



CHAPTER 5. XQUERY DECOMPOSITION 67

Problem 4: Interaction Between Different Calls Additional semantic differences can occur
when XQuery subexpressions (sequences) may contain nodes that were obtained as results
from different remote function calls, and these function calls, directly or indirectly, accessed
the same XML document on some peer. Node sequences can become intermixed by any
XQuery construct that accepts multiple inputs, namely: sequence construction, and the built-
in functions union, except, and intersect. A special source of call-mixing is the return
clause of a for-loop in which remote function evaluation is performed, because the return
clause implicitly creates a sequence that concatenates the expression result of all loop itera-
tions (each of which performed a semantically separate remote function call). The result of
such “mixed-call expressions” is that nodes returned by different calls may in fact stem from
the same document. However, node identity and ordering between nodes from different calls
is not preserved, leading to semantic differences. For example, even if a downward XPath
step is applied on an input sequence containing nodes obtained from different remote calls,
the result can have the wrong order (placing the results from the first call always before those
of the second call) and will fail to properly eliminate duplicates:
(for $node in ($bc, $abc)
let $first := execute at {"example.org"} {earlier($node,$abc)}
return $node)//c

The above two XRPC calls produce nodes belonging to separate XML fragments. Under pass-
by-value, evaluating //c produces two separate copies of c nodes, while in local execution the
nodes returned from earlier() are from the same XML fragment, such that XPath steps
return a duplicate-free result.

Problem 5: XQuery Built-in Functions Various problems may occur when evaluating certain
built-in functions remotely.

1. static-base-uri(), default-collation() and current-datetime(): depend on the
static XQuery context.

2. base-uri() and document-uri(): depend on the dynamic context of node expressions.
3. root(): accesses the document root.
4. id() and idref(): return all nodes in a document with certain ID/IDREF values.
5. lang(): accesses the xml:lang attribute of the context node and its ancestors.

Class 1 of the above built-in functions is handled by extending the XRPC message format
with extra attributes such that the remote side can declare identical values for these con-
text attributes2. Class 2 is dealt with by adding these properties as attributes in the XRPC
nodes (such as xrpc:element) that enclose serialised parameter/result nodes in the SOAP
messages. Use of the fn:base-uri() and fn:document-uri() in XRPC is substituted by
xrpc:base-uri() and xrpc:document-uri() wrappers that take these attributes into ac-
count when invoked on XRPC parameter nodes. As solutions for Class 1-2 are available, the
main problem with built-in functions is posed by Classes 3-5, which access non-descendants
of parameter nodes, and thus cannot be supported by pass-by-value.

In the remainder, we present decomposition techniques and extensions to enhance the
pass-by-value semantics that solve the aforementioned problems.

2If static-base-uri() is not set, we ship the value xrpc://P/doc/, so that fn:doc() calls with a relative
document URI call back to the originating peer P .



68 5.3. XQUERY CORE REWRITE FRAMEWORK

::=
::=
::=
|

::=
::=
::=
::=
::=
::=
::=
::=
::=
::=
::=
::=
::=
::=
::=
::=
::=
::=
::=
::=
::=
::=
::=
::=
::=
::=
::=
::=
::=
::=
::=
::=
::=
::=

“()” | ExprSingle | ExprSeq
“(” ExprSingle (“,” ExprSingle)∗ “)”
Literal | VarRef | ForExpr | LetExpr | IfExpr | Typeswitch | CompExpr | OrderExpr
NodeSetExpr | Constructor | StepExpr | FunCall | TransformExpr | UpdExpr
“$”Var
“$”QName
“for” Var “in” Expr “return” Expr
“let” Var “:=” Expr “return” Expr
“if” “(” Expr “)” ThenElse
“then” Expr “else” Expr
“typeswitch” “(”Expr“)” CaseClause+ “default” Var “return” Expr
“case” Var “as” SequenceType “return” Expr
Expr (ValueComp | NodeCmp) Expr
“=” | “ !=” | “<” | “<=” | “>” | “>=”
“is” | “≪” | “≫”
Expr “order by” OrderSpecs
Expr (“ascending” | “descending”)(, OrderSpecs) ∗
Expr NodeSetOp Expr
“union” | “intersect” | “except”
(“document” | “text”) “{” Expr “}” (“element”|“attribute”) (QName |“{”Expr“}”)“{”Expr“}”
“/” | AxisStep “::” NodeTest
RevAxis | FwdAxis | HorAxis
“ancestor” | “ancestor-or-self” | “parent”
“self” | “child” | “attribute” | “descendant” | “descendant-or-self”
“preceding” | “preceding-sibling” | “following” | “following-sibling”
“node()” | “text()” | QName | “∗”
QName “(” (Expr (“,” Expr) ∗)? “)”
“copy” Var “:=” SourceExpr (“,” Var “:=” SourceExpr)* “modify” ExprSingle “return” ExprSingle
InsertExpr | DeleteExpr | RenameExpr | ReplaceExpr
“insert nodes” SourceExpr InsTgtChoice TargetExpr
((“as” (“first” | “last”))? “into”) | “after” | “before”
“delete nodes” TargetExpr
“rename node” TargetExpr “as” SourceExpr
ReplaceNode | ReplaceValue
“replace node” TargetExpr “with” SourceExpr
“replace value of node” TargetExpr “with” SourceExpr
ExprSingle
ExprSingle

Expr
ExprSeq
ExprSingle

VarRef
Var
ForExpr
LetExpr
IfExpr
ThenElse
Typeswitch
CaseClause
CompExpr
ValueComp
NodeCmp
OrderExpr
OrderSpecs
NodeSetExpr
NodeSetOp
Constructor
StepExpr
AxisStep
RevAxis
FwdAxis
HorAxis
NodeTest
FunCall
TransformExpr
UpdExpr
InsertExpr
InsTgtChoice
DeleteExpr
RenameExpr
ReplaceExpr
ReplaceNode
ReplaceValue
SourceExpr
TargetExpr

Table 5.2: XCore grammar rules

5.3 XQuery Core Rewrite Framework
XQuery Core [67] (abbreviated XCore) is a subset of XQuery in which all implicit operations
are made explicit. We adopt a subset of XCore expressions in Table 5.2 which is sufficient to
capture XPath 1.0 and XQuery FLWOR expressions [67]. Additionally, we support all updat-
ing expressions (rule UpdExpr) and the transform expression (TransformExpr) as defined by
XQUF. We use a representation of XPath paths in our XCore grammar that keeps consecutive
steps together, rather than nesting each step in a separate for-loop (when allowed – the use of
position() precludes this). Such an optimisation is common in XQuery engines, and is part
of XQuery normalisation, further described in Section 5.4. Additionally, we define two new
rules for the XRPC extension [180]:

XRPCExpr ::= “execute” “at” “{”ExprSingle“}” “function” XRPCParam “{”Expr“}”
XRPCParam ::= “()” | “(” “$”Var “:=” VarRef (“,” XRPCParam)?“)”

Rule XRPCExpr identifies an xrpc:// URI in expression ExprSingle, and declares a new
anonymous function that is to be executed remotely. It should be noted that these grammar
rules lack the expressive power to define recursive functions. This does not matter for XQuery
decomposition, as our decomposition strategies will not generate recursive functions. It should
also be noted that the syntax defined by the rules XRPCExpr and XRPCParam differs from the
actual XRPC syntax (“execute at {ExprSingle}{FunApp(ParamList)}”). The syntax
used here is only for presentation purposes to avoid the need to define all rules concerning
declaration of user-defined functions. Thus, our simple XCore rule without explicit user-



CHAPTER 5. XQUERY DECOMPOSITION 69

Basic XQuery query
(let $s := doc(“xrpc://A/students.xml”)/people/person,

$c := doc(“xrpc://B/course42.xml”),
$t := $s[tutor = $s/name]

for $e in $c/enroll/exam
where $e/@id = $t/id
return $e)/grade Q2

XCore variant
(let $s := doc(“xrpc://A/students.xml”)/child::people/child::person return
let $c := doc(“xrpc://B/course42.xml”) return
let $t := for $x in $s return if ($x/child::tutor = $s/child::name) then $x else ()
return for $e in $c/child::enroll/child::exam

return if ($e/attribute::id = $t/child::id) then $e else ())/child::grade Qc
2

Normalised XCore variant
(let $t := (let $s := doc(“xrpc://A/students.xml”)/child::people/child::person

return for $x in $s return if ($x/child::tutor = $s/child::name) then $x else ())
return for $e in (let $c := doc(“xrpc://B/course42.xml”) return $c/child::enroll/child::exam)

return if ($e/attribute::id = $t/child::id) then $e else ())/child::grade Qn
2

Table 5.3: Example query Q2

defined function declarations can express all queries in a single ExprSingle, which in turn
can be mapped to a query graph. This simplifies the formulation of analysis steps.

5.3.1 XCore Dependency Graph
We introduce a dependency graph (d-graph) for an XCore query. Consider the XQuery query
Q2 in Table 5.3, which asks for the grade in course42 of students having a tutor who is also
a student, and its XCore equivalence Qc

2 normalised as Qn
2.

A dependency graph is a directed, ordered and connected graph G with vertices V(G) and
edges E(G). Each vertex v is denoted as vi:rule[val], where vi is a unique vertex identifier,
rule is the grammar rule represented by vi, and val is an optional value indicating the right-
hand-side of rule. There is a single vroot vertex without incoming edges. E(G) consists of
parse edges Ep(G) and varref edges Ev(G). Each parse edge is an ordered vertex pair (u,v),
where u corresponds to a parsing rule ru that directly causes the use of another parsing rule
rv. A varref edge is an ordered vertex pair (w,x) denoting a variable usage. When a VarRef
rule is used, an additional edge is created between the VarRef vertex and the Var vertex that
defines the variable.

Example 5.3.1. Figure 5.2 shows the d-graph of Qn
2 in Table 5.3. Solid and dashed lines

represent parse and varref edges, respectively. The variable binding in the first let expression
corresponds to vertices v2, . . . ,v21, and vertices v22, · · · ,v39 depict its return clause. The edge
(v6,v7) is a parse edge. The edge (v30,v25) is a varref edge, as the variable used by v30 is
a reference of variable $c introduced by v25. Thus, a d-graph is in essence a parse-tree with
additional (dashed) edges to indicate variable usages.

We define three types of dependency relationships upon the reachability between two ver-
tices x,y in V(G): (1) x “parse-depends on” y, denoted as x

p
;y, if y is reachable from x via

only parse edges; (2) x “varref-depends on” y, denoted as x v;y, if y is reachable from x via
at least one varref edge; and (3) x “depends on” y, denoted as x;y, if either x

p
;y or x v;y

holds. The compositional nature of XQuery means that x;y concisely captures all semantic
dependencies between subexpressions.



70 5.3. XQUERY CORE REWRITE FRAMEWORK

v1:/grade

v2:LetExpr

v3:Var[$t]

v4:LetExpr

v5:Var[$s]

v6:/person

v7:/people

v8:FunCall[doc]

v9 : Literal[· · ·
/students.xml]

v10:ForExpr

v11:Var[$x]

v12:VarRef[$s]

v13:IfExpr

v14:=

v15:/tutor

v16:VarRef[$x]

v17:/name

v18:VarRef[$s]

v19:ThenElse

v20:VarRef[$x] v21:()

v22:ForExpr

v23:Var[$e]

v24:LetExpr

v25:Var[$c]

v26:FunCall[doc]

v27 : Literal[· · ·
/course42.xml]

v28:/exam

v29:/enroll

v30:VarRef[$c]

v31:IfExpr

v32:=

v33:/@id

v34:VarRef[$e]

v35:/id

v36:VarRef[$t]

v37:ThenElse

v38:VarRef[$e]

v39:()

Figure 5.2: d-graph of the normalised XCore variant Qn
2 in Table 5.3



CHAPTER 5. XQUERY DECOMPOSITION 71

Consider Figure 5.2, v15
p

;v16, since (v15,v16) is a parse edge; v15
v;v11, as v11 is reachable

from v15 via (v15,v16),(v16,v11) and (v16,v11) is a varref edge.
For a d-graph G and a vertex rs ∈V(G), we use the term subgraph to mean the vertex-

induced subgraph of rs, denoted Grs , including rs and all u∈V(G) where rs
p

;u; rs is called
the root of the subgraph. For instance, the subgraph rooted at vertex v22 contains vertices
v22, · · ·v39, but does not contain vertices v3, . . . ,v21. Throughout this chapter, we use the terms
(sub)graph and (sub)query interchangeably, as a (sub)query is represented by the induced
subgraph rooted at some vertex.

5.3.2 XRPCExpr Insertion

· · ·

v2

v3

v22

v36 · · ·

v2

v3

v22

v36

v40:XRPCExpr

v41:XRPCParam
[$dot1 := $t]

Figure 5.3: XRPCExpr insertion

We can decide to evaluate a certain subgraph Grs rooted at
rs remotely over XRPC, by inserting a vx:XRPCExpr node
above it. This may only be done if we can ensure that
the result of the rewritten query is identical to the original
query. Such an insertion means that a new function will
be defined that contains Grs as its body. In the main query
graph, Grs is replaced by a remote XRPC call to this function, which receives as parameters
all variable references in Grs

3 that resolve to variable bindings outside Grs :

1) Insert a vertex vx:XRPCExpr, a parse edge (vx,rs), and replace each incoming edge (vin,rs)
with a new edge (vin,vx)4.

2) For each outgoing varref edge from vertex vi ∈V(Grs) to v j ∈V(G)\V(Grs), where edge
(vi,v j)∈Ev(G) is a varref edge as (vi:VarRef[$qname], v j:Var[$qname]), we insert a new
vertex vk, a new parse edge (vx,vk) and replace the varref edge (vi,v j) by (vi,vk) and
(vk,v j). Here, vk has the form vk:XRPCParam[$p:=$qname], which introduces a new vari-
able $p and binds it to $qname in v j.

3) If there are no outgoing edges as stated in step 2, we insert a vertex vl with the form
vl :XRPCParam[()] (i.e., empty parameter), and a parse edge (vx,vl).

Example 5.3.2. Consider the d-graph in Figure 5.2. Suppose that the subgraph rooted at v22
is identified for an XRPCExpr insertion (Figure 5.3). First, insert vertex v40 and replace edge
(v2,v22) by (v2,v40) and (v40,v22). For the outgoing varref edge (v36,v3), vertex v41 is inserted
below v40 and the varref edge is replaced by two new varref edges: (v36,v41), (v41,v3).

5.4 Conservative Decomposition
In this and the next two sections, we first describe algorithms to decompose read-only XCore
queries. We will delay the discussion of decomposing queries containing any UpdExpr and
TransformExpr expressions until Section 5.7.

5.4.1 By-Value Insertion Conditions
Given a d-graph G and a subgraph Grs of G rooted at rs, under the pass-by-value semantics,
vertex rs is in the set I(G) of valid decomposition points (d-points), iff rs satisfies all of the
following conditions:

3This is similar to the “lambda lifting” technique in the programming language domain [104].
4Determined by the algorithms (Section 5.4-5.6) that compute the insertion points (i.e., determine if a vertex may

be an rs), rs is the only vertex in the subgraph Grs that has incoming edges from vertex outside Grs .



72 5.4. CONSERVATIVE DECOMPOSITION

i. @n∈V(G) : n.rule∈{RevAxis, HorAxis}∧ (useResult(n,rs)∨useParam(rs,n));

ii. @n∈V(G) : n.rule∈ {NodeCmp, NodeSetExpr}∧ ((rs.rule∈{NodeCmp, NodeSetExpr}∧
n 6∈V(Grs))∨useResult(n,rs)∨useParam(rs,n));

iii. @n∈V(G),∃m∈V(G) : n.rule= AxisStep∧m.rule∈{ForExpr, OrderExpr, ExprSeq, Node-
SetExpr, AxisStep\{self, child, attribute}}∧((useResult(n,m)∧m;rs)∨
(useResult(n,rs)∧m∈V(Grs))∨ (m 6∈V(Grs)∧ rs

p
;n v;m));

iv. @n∈V(G) : n.rule = FunCall∧ n.val∈{fn:root(), fn:id(), fn:idref(), fn:lang()}∧
(useResult(n,rs)∨useParam(rs,n)).

where we impose these restrictions symmetrically both on expressions that use the result of
the remote expression rs, as well as on the way remote expressions (below rs) use their shipped
parameters:

useResult(n,rs) ⇔ n;rs

useParam(rs,n) ⇔ n∈V(Grs ),∃v∈V(G)\V(Grs ) : n;v

Conditions i and ii guard against using any node comparisons as well as horizontal and re-
verse XPath steps on shipped nodes, avoiding Problems 1-3 described in Section 5.2. Con-
dition ii also disallows decomposing any node comparisons, when a query contains multiple
such expressions, to avoid the problem with document order of nodes from different doc-
uments. Condition iii avoids using downwards XPath steps (per condition i) on shipped
nodes stemming from expressions that might be so-called “mixed-call sequences” (ForExpr,
ExprSeq, NodeSetExpr), avoiding Problem 4. It also guards against sequences not in node
order (ForExpr, OrderExpr) or with nodes that may be overlapping (the restrictions on
NodeSetExpr and XPath steps). This ensures that downwards XPath steps can be used on
shipped node sequences that are ordered and non-overlapping. Condition iv states that shipped
nodes may not be used as parameters of the listed built-in functions (Problem 5).

Example 5.4.1. In the d-graph of example query Qn
2 (Figure 5.2), we mark in shades of grey

the d-points identified by the conservative decomposition strategy. The XPath step /grade
that is performed on the result of a for-loop, matches condition iii and causes all vertices
that depend on v10 and v22 (the ForExprs) as well as all their descendants to be excluded
from I(G), leaving v1 and the subgraphs rooted at v5 as d-points.

5.4.2 Interesting Decomposition Points
While a d-point may be semantically valid, remote evaluation of the subquery below it might
not be useful from a performance perspective. Consider the d-point v8, which contains only
an fn:doc() function call in its subgraph. Executing this function remotely provides no
performance gain, as it only demands the shipping of a whole document. Similarly, remote
execution of expressions that do not involve any XML documents should be avoided. There-
fore, we filter d-points by first annotating each vertex vx∈V(G) with the URI dependency set
D(vx). Here, D(vx) represents the set of URIs that are used as parameters of fn:doc() in
vertices that the vertex vx can reach via parse edges:

D(vx) = {uri ::vy|{vy,vz}∈E(G) : vx
p

;vy ∧ vy.rule=FunApp∧ vy.val =“doc”∧
((vz.rule=Literal∧uri = vz.val)∨ (vz.rule 6=Literal∧uri = “∗ ”))}

We tag each uri with the vertex vy where the document is opened, to be able to distinguish the
use of the same document through multiple fn:doc() calls. If the parameter of fn:doc() is



CHAPTER 5. XQUERY DECOMPOSITION 73

Qv
2: decomposed Qn

2 under pass-by-value
declare function fcn1() as node()*
{doc(“xrpc://A/students.xml”)/child::people/child::person};

declare function fcn0() as node()*
{(let $t := let $s := execute at{‘A’} {fcn1()}

return for $x in $s
return if ($x/child::tutor = $s/child::name) then $x else ()

return for $e in (let $c := doc(“xrpc://B/course42.xml”) return $c/child::enroll/child::exam)
return if ($e/attribute::id = $t/child::id) then $e else () )/child::grade};

execute at { ...} {fcn0()}

Q f
2 : decomposed Qn

2 under pass-by-fragment
declare function fcn1() as node()*
{let $s := doc(“xrpc://A/students.xml”)/child::people/child::person
return for $x in $s return if ($x/child::tutor = $s/child::name) then $x else ()};

declare function fcn2($para1 as node()) as node()*
{for $e in (let $c := doc(“xrpc://B/course42.xml”) return $c/child::enroll/child::exam)
return if ($e/attribute::id = $para1/child::id) then $e else ()};

declare function fcn0() as node()*
{let $t := execute at {‘A’} {fcn1()} return (execute at {‘B’} {fcn2($t)}) / child::grade};

execute at { ...} {fcn0()}

Applying Distributed Code Motion in Q f
2

declare function fcn2new($para2 as xs::string∗) as node()*
{for $e in (let ...return ...) return if ($e/attribute::id = $para2) then $e else ()};

declare function fcn0() as node()*
{let $t := execute at {‘A’} {fcn1()}
return let $l := $t return (execute at {‘B’} {fcn2new($l/child::id)})/child::grade};

Table 5.4: Query decomposition and code motion

an expression instead of a literal, we use a wildcard symbol “∗” as uri. In this chapter, the
built-in function fn:collection() is treated as an fn:doc(∗), and an element construction
is assigned an artificial unique URI fn:doc(vi::vi).

One can use the URI dependency set to partition the V(G) into equivalence classes, i.e.,
those vertices with the same URI dependency set belong to the same class. Using all vertices
in an equivalence class, we can consider its induced subgraph in G, and try to handle it in a
single XRPC subquery. Thus, we define interesting decomposition points (i-points) I′(G) as
those valid insertion points that (a) are a root vertex in their induced subgraph5, (b) contain at
least one fn:doc() and (c) execute at least one XPath step on the fn:doc() function:

I′(G) = {vx|vx∈ I(G) : @vy : vy
p

;vx ∧D(vx) = D(vy) ∧
∃vz : vx

p
;vz ∧ vz.rule=AxisStep ∧∃xrpc://uri∈D(vx)}

Note that this definition is also used by the next two algorithms to filter the d-points.

Example 5.4.2. In Figure 5.2, the two subtrees rooted at v5 and v25 correspond to two differ-
ent equivalence classes D(v5)={xrpc://A/students.xml :: v9} and D(v25)={xrpc://B/
course42.xml :: v27}. However, v25 is not a valid insertion point. The vertices in I′(G)
(coloured dark grey) are v6 (the highest non Var vertex in the subtree rooted at v5) and the
root v1. Thus, I′(G) = {v1,v6}.

5If the root node happens to be a Var vertex, we consider its value expression instead as root.



74 5.4. CONSERVATIVE DECOMPOSITION

5.4.3 Normalisation

Rewriting algorithms that operate on the XCore level are vulnerable to syntactic variation. In
the case of our decomposition strategy, an important vulnerability comes from the behaviour
of the strategy to ship subgraphs consisting of parse-edges only. That is, varref-edges are
not pushed, but rather become parameters to the function. The syntactic freedom one has
in XQuery of defining subexpressions, e.g., inline or via a variable reference to a previous
let-binding, therefore affects our strategy. For this purpose, as part of XCore normalisation,
we re-order let-bindings, moving them as deep into the query as possible. More specifically,
let-bindings are moved to just above the lowest common ancestor vertex (defined in terms
of parse-edges) of all vertices that reference its variable. The query Qc

2 (Table 5.3) can be
normalised to Qn

2 (Table 5.3), which can thus be rewritten as Qv
2 in Table 5.4.

The main achievement of normalisation in the above case is to relate the call to doc(“../
course42.xml”) through parse-edges (directly calling $c in Qn

2), instead of varref edges (ref-
erencing $c in Qc

2), with its use in the /child::enroll/child::exam XPath steps. However,
these being part of a ForExpr with the /grade step on top, causes insertion condition ii to
prohibit pushing it. In the next section on pass-by-fragment, however, we will see that nor-
malisation was not in vain, and the query can be decomposed into Q f

2 (Table 5.4).

5.4.4 Distributed Code Motion

The let-normalisation phase has the effect of pushing expressions that depend on the same
documents downwards, potentially below an interesting insertion point (which causes them to
be executed remotely). However, it can happen that some of the expressions initially found
below an interesting insertion point can in fact better be moved above it (to be executed lo-
cally). In particular, it is safe to assume that expressions that solely depend on a parameter of a
function, can better be evaluated on the caller side. Moving a subexpression out of a function
can be done by passing that subexpression as an additional parameter to the function. With
pass-by-value passing, such a rewrite may not always be safe, however if only d-points are
moved, the technique is semantically safe. Analogous to the well-known compiler technique
of moving invariant statements out of the loop (and its use in parallel processing [110]) we
call this technique distributed code motion.

Example 5.4.3. Consider the function fcn2() in Table 5.4, we may observe that the ex-
pression $para1/child::id only depends on the function parameter $para1. Shipping full
person nodes $para1 from peer A to B, only to extract the string value of its id child at B,
may waste bandwidth, especially if person carries much more data than just an id. Instead,
it would be better to extract the string value of id at peer A and only ship the strings. This
optimisation can be realised by adding a new parameter $para2 to the function, and substi-
tuting $para1/child::id in the body with it. In the function fcn0() that calls fcn2new(),
we save the original function parameter $t in a new let-binding $l, and pass $l instead
of $t. The additional function parameter is passed as $l/child::id. Finally, the affected
function parameter $para1 is no longer used, so we remove it, arriving at the result as the
code motion part in Table 5.4.



CHAPTER 5. XQUERY DECOMPOSITION 75

5.5 By-Fragment Decomposition
The node copying done by pass-by-value is the main source of semantic differences. This, in
turn, leads to serious restrictions in the way the decomposition strategy can push expressions
remotely. For this reason, we extend the pass-by-value message passing semantics into a new
pass-by-fragment message passing semantics that better preserves structural relationships of
XML nodes.

The basic idea is to avoid serialising the same nodes twice, by grouping all node-valued
data in the message in a preamble element fragments. In principle, each node parameter is
serialised below a separate fragment child element. However, if a sent node is a descendant
of another one, it is not serialised twice, as we can reuse the XML fragment of the other
node. We also ensure that the XML fragments are sorted in original document order, which
means that ancestor/descendant relationships in the same message, as well as node identity
and document order, are preserved.

Later in the message, where XQuery sequences are serialised (inside sequence tags),
we just provide references to the nodes that were previously serialised in the fragments. In
particular, an element tag, which is used to contain as a child the fully serialised copy of a
node, now just carries two numeric attributes, fragid (pre-order of the fragment containing
this element within the fragments section) and nodeid (pre-order of this element within
the fragment referred to by fragid). In order to keep XRPC an interoperable protocol that
is easy to implement for XQuery engines and the XRPC Wrapper [180], node referencing is
also expressible in XQuery. Supposing $msg is the root of the message, with $fragid and
$nodeid numbers, we can identify the referenced nodes as follows:6

$msg//fragment[$fragid]/descendant::node()[$nodeid]

Example 5.5.1. Going back to Q1 in Table 5.1, the lower part of Table 5.5 shows the XRPC re-
quest message sent for the call execute at {“example.org”} {earlier ($bc, $abc)}
from the discussion of Problem 3. Recall that the node $bc with value 〈b〉〈c/〉〈/b〉 is contained
in the $abc fragment 〈a〉〈b〉〈c/〉〈/b〉〈/a〉. The lower part of the figure shows an excerpt from
the message as produced for pass-by-fragment. Here, both node parameters $bc and $abc
are represented in element nodes with fragid and nodeid attributes. The XQuery engine
handling the call will use these attributes to evaluate:

$bc := $msg:fragment[1]/descendant::node()[2],
$abc := $msg:fragment[1]/descendant::node()[1]

such that earlier($bc,$abc) correctly returns $abc, because $abc � $bc, just like on the
peer that invoked this function. The upper part, with the changed part of the old pass-by-value
message (element call), shows that node parameters were previously repeatedly serialised,
causing node order and identity relationships between parameters to be lost.

We made a conscious choice not to rely on ID/IDREF for referencing nodes, since this
would require adding ID attributes to the XML data in the fragments. As XRPC is designed
to respect and conserve XML SCHEMA type information, this would cause the XRPC message
to no longer respect user-defined schemas.

6Note that descendant::node() does not return attribute nodes. We use the nodeid of its parent and include the
name of the attribute in an attribute element, so it can be found back with an additional attribute step.



76 5.5. BY-FRAGMENT DECOMPOSITION

Excerpt from a request message with pass-by-value
〈call〉
〈sequence〉〈element〉〈b〉〈c〉〈/b〉〈/element〉〈/sequence〉
〈sequence〉〈element〉〈a〉〈b〉〈c/〉〈/b〉〈/a〉〈/element〉〈/sequence〉

〈/call〉
Excerpt from of pass-by-fragment message for earlier($bc,$abc)

〈env:Envelope ...〉
〈env:Body〉
〈request〉
〈fragments〉〈fragment〉〈a〉〈b〉〈c/〉〈/b〉〈/a〉〈/fragment〉〈/fragments〉
〈call〉
〈sequence〉〈element fragid=“1” nodeid=“2”〉〈/sequence〉
〈sequence〉〈element fragid=“1” nodeid=“1”〉〈/sequence〉

〈/call〉
〈/request〉

〈/env:Body〉
〈/env:Envelope〉

Table 5.5: By-value vs. by-fragment messages. In the by-fragment message, the first element node
refers to the second descendant node (i.e., nodeid=“2”) of the first fragment (i.e., fragid=“1”) in the
fragments section earlier in the message.

By-Fragment Insertion Conditions Given a d-graph G and a subgraph Grs of G rooted at
rs, under the pass-by-fragment semantics, vertex rs is in the set I(G) of valid decomposition
points, iff rs satisfies all of the following conditions:

I. @n∈V(G) : n.rule∈{RevAxis,HorAxis}∧ (useResult(n,rs)∨useParam(rs,n));
II. @n∈V(G) : n.rule∈{NodeCmp,NodeSetExpr}∧

((rs.rule∈{NodeCmp,NodeSetExpr}∧n 6∈V(Grs)∧hasMatchingDoc(n,rs))∨
((useResult(n,rs)∨useParam(rs,n))∧hasMatchingDoc(n,n)));

III. @n∈V(G),∃m∈V(G) : n.rule= AxisStep∧m.rule∈{ForExpr, ExprSeq, NodeSetExpr}∧
((useResult(n,m)∧m;rs)∨ (useResult(n,rs)∧m∈V(Grs))∨
(m∈V(G)\V(Grs)∧ rs

p
;n v;m))∧hasMatchingDoc(m,m);

IV. @n∈V(G) : n.rule= FunCall∧n.val∈{fn:root(), fn:id(), fn:idref(), fn:lang()}∧
(useResult(n,rs)∨useParam(rs,n)).

Thus, with the pass-by-fragment semantics, we modify the pass-by-value decomposition
conditions listed in Section 5.4 by restricting the prohibitions to decompose a node rs for-
mulated in Conditions ii and iii to only those rs, for which the predicate hasMatchingDoc()
holds. Here, hasMatchingDoc() is defined as:

hasMatchingDoc(v1,v2)⇔∀uril ::vi∈D(v1),∃urir::v j∈D(v2) :
vi 6= v j ∧ (uril =urir ∨uril =∗∨urir =∗)

By stating that the given expressions depend on two different applications of fn:doc() with
the same URI (taking into account computed URIs as wildcards), this predicate precisely
isolates the problem of creating result sequences with remote nodes from multiple calls to the
same document.

The ForExpr is a special form of combining the results of multiple calls. A remote call
nested in a for-loop which depends on the same remote document, is treated as a single call,
since Bulk RPC ensures that all iterations of the remote call nested in the for-loop are han-
dled in a single message exchange (where pass-by-fragment now ensures proper conservation
of node relationships). Finally, we remove from condition iii the restrictions that arbitrary
ordering (OrderExpr) cannot be used and that all pushed AxisSteps should be of the non-
overlapping kind (parent, preceding-sibling, following-sibling, self, child, and



CHAPTER 5. XQUERY DECOMPOSITION 77

::=
::=
::=

|
|

::=

ProjectionPath
SimplePath
AxisStep

NodeTest

doc“(”Literal“::”Literal“)” (“/” SimplePath)*
AxisStep “::” NodeTest | SimplePath “/” AxisStep “::” NodeTest
“self” | “child” | “attribute” | “descendant” | “descendant-or-self”
“ancestor” | “ancestor-or-self” | “parent” | “precceding” | “precceding-sibling”
“following” | “following-sibling” | “root()” | “id()” | “idref()”
“node()” | “text()” | QName | “*”

Table 5.6: Grammar rule extension of ProjectionPath (bold)

attribute), as the pass-by-fragment message passing is able to properly conserve sequence
order and the ancestor/descendant relationships between transported nodes. As the remain-
ing problems with mixed-call sequences are related to dealing with multiple network message
exchanges in the same query, this problem can not be solved inside the message passing se-
mantics alone and is beyond our current scope. The restrictions to avoid horizontal and reverse
XPath steps on remote nodes (Condition I) and on using built-in functions (Condition iv) will
be addressed in the next section.

Example 5.5.2. Consider Figure 5.2, as the constraint hasMatchingDoc() in condition III
does not hold, all vertices in the graph are identified as valid decomposition points under the
pass-by-fragment semantics. However, most vertices will be filtered out by the definition of
interesting decomposition points, which leads to I′(G) = {v1,v2,v4,v6,v22,v24}.

5.6 By-Projection Decomposition
The basic idea of using XML projection [125] is, for a given XQuery query Q and an XML
document D , to extract a minimal subdocument D ′ needed to execute Q such that Q(D) =
Q(D ′). The projection technique conducts a compile-time path analysis on Q, to derive a set
of simple path expressions that over-estimate the nodes that Q touches. These simple paths
are referred to as projection paths. Here, a projection path is an XML path that starts from the
document root, containing forward navigation but not predicates (e.g., doc($uri)/a/b/@id).
Projection paths consist of returned paths and used paths. Returned paths describe the nodes
that are returned by the expression. Used paths indicate the nodes necessary to answer the
query but are never returned as results (e.g., predicates).

Based on the projected paths P of query Q from path analysis, a loading algorithm is ap-
plied to P and an XML document (from a file or a stream) D . A projected XML document (or
stream) D ′ is then generated, which contains all used and returned nodes plus the descendants
of the returned nodes, and is queried with Q.

There are three reasons why projecting XML is extremely interesting for distributed XML
processing: (i) until now, when sending nodes, we had to serialise all descendants – which
potentially contain huge subtrees that may remain untouched on the other side. This amounts
to wasted network bandwidth as well as serialisation and shredding effort. (ii) if documents
are projected into lean skeletons that only contain the relevant portions, it becomes feasible to
serialise XML fragments from some lowest common ancestor on, possibly even the document
root. Even with pass-by-fragment, the execution of reverse/horizontal XPath axes on remote
nodes is impossible. By extending projecting XML with support for reverse and horizontal
axes, however, we get a tool to precisely identify the lowest common ancestor of an XML
document that needs to be included to allow correct remote execution of those axes. (iii)
the projection technique can even be applied to support the built-in functions fn:root(),



78 5.6. BY-PROJECTION DECOMPOSITION

Excerpt from of request message for makenodes()
〈request〉
〈projection-paths〉

〈used-path/〉
〈returned-path〉parent::a〈/returned-path〉

〈/projection-paths〉
〈fragments/〉

Excerpt from of response message for makenodes()
〈env:Envelope ...〉
〈env:Body〉
〈response〉
〈fragments〉〈fragment〉〈a〉〈b〉〈c/〉〈/b〉〈/a〉〈/fragment〉〈/fragments〉
〈call〉〈sequence〉〈element fragid=“1” nodeid=“2”〉〈/sequence〉〈/call〉

〈/request〉
〈/env:Body〉

〈/env:Envelope〉
Table 5.7: Pass-by-projection messages

fn:id(), fn:idref() and fn:lang(), i.e., by taking the lowest common ancestor of those,
if a path contains one of these functions.

For these reasons, we further refine the pass-by-fragment message passing semantics into
a so-called pass-by-projection semantics. XML projection can be used in both directions:
to project the parameters in a request message, and to project the function’s result sequence
before shipping back the response.
Insertion Conditions Pass-by-projection removes the by-fragment insertion conditions (in
Section 5.5) I and IV, such that only II and III, i.e., the application of node comparison, node
set operators and axis steps on top of multiple calls to fn:doc() with the same URI remains
illegal. Hence, given a d-graph G and a subgraph Grs of G rooted at rs, under the pass-by-
projection semantics, vertex rs is in the set I(G) of valid decomposition points, iff rs satisfies
all of the following conditions:
(a) @n∈V(G) : n.rule ∈ {NodeCmp,NodeSetExpr}∧

((rs.rule ∈ {NodeCmp,NodeSetExpr}∧n 6∈V(Grs)∧hasMatchingDoc(n,rs))∨
((useResult(n,rs)∨useParam(rs,n))∧hasMatchingDoc(n,n)));

(b) @n∈V(G),∃m∈V(G) : n.rule=AxisStep∧m.rule ∈ {ForExpr, ExprSeq, NodeSetExpr}∧
((useResult(n,m)∧m;rs)∨ (useResult(n,rs)∧m ∈V(Grs))∨
(m ∈V(G)\V(Grs)∧ rs

p
;n v;m))∧hasMatchingDoc(m,m).

Message Extension: Projection Paths We introduce an optional element as a sub-element
of a request element: projection-paths, which in turn has zero or more child elements
returned-path and used-path. In the new pass-by-projection semantics, the absence or
presence of this element determines whether the response message should be in the original
pass-by-value or the new pass-by-projection format.

Example 5.6.1. To illustrate projected XRPC messages, the upper part of Table 5.7 shows
part of the request message for the call from Q1 (discussed in Problem 4):
let $bc := execute at {"example.org"} {makenodes()}

since the projection path analysis detects that $bc will subsequently be used as context node
by a parent step: $abc := $bc/parent::a, the request message specifies parent::a as a
returned path. Therefore, the response message contains the full fragment 〈a〉〈b〉〈c/〉〈/b〉〈/a〉
to which $abc then gets correctly bound.



CHAPTER 5. XQUERY DECOMPOSITION 79

v3’s
subgraph

v22’s
subgraph

UPaths: {doc(“xrpc ://B/course42.xml”),
doc(“xrpc ://B/course42.xml”)/enroll,

doc(“xrpc ://B/course42.xml”)/enroll/exam,

doc(“xrpc ://B/course42.xml”)/enroll/exam/@id,

doc(“xrpc ://A/students.xml”),
doc(“xrpc ://A/students.xml”)/people,
doc(“xrpc ://A/students.xml”)/people/person,

doc(“xrpc ://A/students.xml”)/people/person/id}
Paths: {doc(“xrpc : //B/course42.xml”)/enroll/exam/grade}

UPaths: {doc(“xrpc ://B/course42.xml”),
doc(“xrpc ://B/course42.xml”)/enroll,

doc(“xrpc ://B/course42.xml”)/enroll/exam,

doc(“xrpc ://B/course42.xml”)/enroll/exam/@id,

doc(“xrpc ://A/students.xml”),
doc(“xrpc ://A/students.xml”)/people,
doc(“xrpc ://A/students.xml”)/people/person,

doc(“xrpc ://A/students.xml”)/people/person/id}
Paths: {doc(“xrpc ://B/course42.xml”)/enroll/exam}

UPaths: {doc(“xrpc ://B/course42.xml”),
doc(“xrpc ://B/course42.xml”)/enroll,

doc(“xrpc ://B/course42.xml”)/enroll/exam,

doc(“xrpc ://B/course42.xml”)/enroll/exam/@id,

doc(“xrpc ://A/students.xml”),
doc(“xrpc ://A/students.xml”)/people,
doc(“xrpc ://A/students.xml”)/people/person,

doc(“xrpc ://A/students.xml”)/people/person/id}
Paths: {doc(“xrpc ://B/course42.xml”)/enroll/exam}

UPaths: {doc(“xrpc ://A/students.xml”),
doc(“xrpc ://A/students.xml”)/people,
doc(“xrpc ://A/students.xml”)/people/person,

doc(“xrpc ://A/students.xml”)/people/person/tutor,

doc(“xrpc ://A/students.xml”)/people/person/name}
Paths: {doc(“xrpc ://A/students.xml”)/people/person}

v1:/grade

v2:LetExpr

v3:V ar[$t] v22:ForExpr

Figure 5.4: Path annotation example

5.6.1 Extending Projected XML
We extend the path grammar rules [125] and path annotations, to handle full-fledged XQuery
involving reverse/horizontal XPath steps and built-in functions. The extended grammar rule
for ProjectionPath is given in Table 5.6.

We denote path annotations in projected XML as follows:

Env(vi) ` Expr⇒ Paths using UPaths

The notation Env(vi) is used to identify the path annotation environment at a certain vertex vi
in the XQuery d-graph.

Path annotations are constructed bottom up by path analysis rules that derive the set of
used (UPaths) and returned (Paths) paths for each XCore expression in terms of used and
returned paths of its subexpressions. Therefore, we extend the notation of the vertices and use
vi.UPaths and vi.Paths to refer to the path sets, with which the vertex vi is annotated.

Example 5.6.2. Assume that the subgraph Gv22 rooted at v22 in Figure 5.2 is identified to be
evaluated remotely. The subgraph Gv22 has one parameter, $t, via the VarRef edge (v36,v3).
We show the path annotations of v3 and v22 in Figure 5.4. Comparing the returned path of v3
with all projection paths of v22 and v1, we know that v3 is only used in the subgraph rooted at
v22 (i.e., it is not returned by v22), and that only the id child elements of the person elements



80 5.6. BY-PROJECTION DECOMPOSITION

are used. Thus, only those elements will be projected and serialised in the request message
for v22.

The basic path analysis rules have been discussed in [125], such as literal values, se-
quences, for and let expressions and XPath steps, etc. Our extension to include reverse and
horizontal XPath steps brings no changes for the path analysis rules, but must be supported by
the loading algorithm, which is described in Section 5.6.2. We complement the rules for built-
in functions, which apart from the unsolved cases mentioned under Problem 5 in Section 5.2
(fn:root(), fn:id(), fn:idref() and fn:lang()) also includes fn:doc(). The descrip-
tion of the basic projection technique assumes a single document. As in distributed query
processing there are always multiple documents, our paths always start with fn:doc(URI).
Path Analysis Rules We provide one rule for fn:doc() with a constant parameter and an-
other for computed URIs:

()
Env(vi)`doc(Literal1)⇒doc(Literal1::vi) using /0

(DOC1)

Env(v j) ` Expr j ⇒ Paths j using UPaths j

Env(vi) ` doc(Expr j)⇒ doc(∗ ::vi) using
Paths j ∪UPaths j ∪Paths j/descendant::text()

(DOC2)

As mentioned in Section 5.4, in the definition of D(vx)7, we use a wildcard URI∗ if the
document name is an expression. Note that all paths start with doc(uri::vi), thus, they
identify both document URI as well as the vertex vi where it is loaded. This notation fa-
cilitates the identification of situations where the same URI is loaded twice (the function
hasMatchingDoc()). A similar rule can be formulated for XML element construction, pro-
ducing a return path doc(vi::vi) with an artificial unique URI. Also note that because XQuery
always automatically applies atomisation to node typed function parameters, we add a des-
cendant::text() step to each returned path of a parameter in all rules in this section. The
rule for fn:root() is:

Env(v j) ` Expr j ⇒ Paths j using UPaths j

Env(vi) ` f n :root(Expr j)⇒∪p∈Paths j p/root() using UPaths j
(ROOT)

The built-in function fn:root() with a single parameter is treated in the path annotations
much like XPath axis steps, where the parameter has become the path prefix. In this path
notation, functions remain easily recognisable by the parentheses. The rules for the built-in
functions fn:id()/fn:idref(), are highly similar (only fn:id() provided):

Env(v j) ` Expr j ⇒ Paths j using UPaths j

Env(vk) ` Exprk ⇒ Pathsk using UPathsk

Env(vi) ` f n : id(Expr j,Exprk)⇒∪p∈Pathsk p/id() using
Paths j ∪UPaths j ∪Pathsk ∪UPathsk ∪Paths j/descendant::text()

(ID)

The first parameter of fn:id() is ignored by the annotations as it contains string values,
and the annotation framework only allows for the estimation of node sets. This has the con-
sequence that our loading algorithm will conserve all elements with an ID/IDREF attribute.
Finally, the rule for fn:lang() is:

7We use the doc(..) prefixes of the returned paths annotations on v as a more precise form of the D(v) property.
Documents that were only used but not returned will also be part of the original D(v), but these will not cause semantic
problems.



CHAPTER 5. XQUERY DECOMPOSITION 81

Env(v j) ` Expr j ⇒ Paths j using UPaths j

Env(vk) ` Exprk ⇒ Pathsk using UPathsk

Env(vi) ` f n : lang(Expr j,Exprk)⇒ () using Paths j ∪UPaths j ∪Pathsk∪
UPathsk ∪Paths j/descendant::text()∪Pathsk/ancestor::∗ ∪
Pathsk/ancestor-or-self::∗/attribute::xml:lang

(LANG)

The built-in function fn:lang() tests whether the language of its first parameter Exprk, as
specified by xml:lang attributes, is the same as (or is a sublanguage of) the language specified
by its second parameter Expr j. The language of Exprk is determined by the value of the
XPath expression: (ancestor-or-self::∗/attribute::xml:lang)[last()]. All paths
are propagated as used paths, as this function returns a boolean value.

5.6.2 Runtime XML Projection
The extensions we made to XML projection, namely support for reverse/horizontal XPath
axes and fn:root(), fn:id(), fn:idref() and fn:lang(), could not be trivially integrated
in the loading algorithm of [125]. However, in case of XRPC we are not really looking for a
loading algorithm that efficiently reads (shreds) an XML file into a projected representation.
Rather, the documents are already present (and indexed) in the XQuery engine, and runtime
message projection is a serialisation task. Therefore, we propose a new runtime approach
for projection, targeted at serialisation, rather than at shredding. Whereas the original loading
algorithm starts at the document root, and evaluates absolute used and returned paths, our
runtime projection algorithm starts in a run-time state, that is, with a real, materialised con-
text sequence (e.g., the parameter values that are about to be serialised in a SOAP message),
and executes only relative paths on them. Because the node sequence bound at run-time to
a function parameter is only a subset of the node set characterised by its compile-time path
annotation (e.g., its contents may well have been reduced by applying a selection predicate),
this runtime projection technique can be much more precise than the original projection al-
gorithm. As a final consideration, the projected XRPC messages trade projection effort for
network bandwidth, which especially in WAN scenarios plays in the advantage of projection.

For these reasons, our runtime approach for projection simply relies on the normal XPath
evaluation capabilities of the XQuery engine for fully evaluating all used and returned path
annotations one-by-one (and uniting them with union()). Doing so, it produces a used node
set U and a returned node set R. These two sets are the input for the runtime projection
algorithm listed in Algorithm 1.
The Runtime Projection Algorithm The runtime projection algorithm identifies all projec-
tion nodes in the XML tree representation of the original document, by traversing the tree
top-down depth-first. During traversal, if the current node cur of the XML document is an
ancestor of the current projection node pro j (line 5), cur is added to output D ′ and moved to
the next node in document order. If a pro j is found (line 8), pro j is added to D ′; if this pro j is
a returned node, all its descendants are also appended. Then cur is moved to its next following
node in the document. Otherwise, if the current projection node pro j is not a descendant of
cur, the subtree of cur can be skipped (line 21). Though this algorithm is formulated on an
abstract level that is independent of the particular XML storage scheme used in an XQuery
engine, it is safe to assume that skipping a subtree is fast (either O(1) or O(log(|D|))). At the
end of the algorithm (lines 24-27), post-processing is performed to remove unnecessary nodes,
as we are only interested in the lowest common ancestor of all input nodes in the projected
document D ′.



82 5.6. BY-PROJECTION DECOMPOSITION

Algorithm 1: RUNTIMEXMLPROJECTION(U,R,D)
input : U- used nodes

R- returned nodes
D- the original XML document

output : D ′- the projection of U and R on D
projection nodes P← sort(U∪R) . P is union of U and R sorted by document order1
pro j← first node in P;2
cur← first node of D , i.e., root node;3
while ¬P.end() do4

if pro j is a descendant of cur then5
add cur to D ′;6
cur← next node in D;7

else if pro j = cur then8
if pro j is a returned node then9

add cur and all descendants of cur to D ′;10
cur← next following node of cur in D;11
while pro j.next is a descendant of pro j do12

pro j← pro j.next . prune projection nodes;13
end14

else15
add cur to D ′;16
cur← next node in D;17

end18
pro j← pro j.next . next projection node;19

else20
cur← next following node of cur in D;21

end22
end23
cur← root node of D ′;24
while cur has only one child node ∧cur /∈{U ∪R} do25

cur← first child of cur;26
end27

Example 5.6.3. Consider an XML document D in Figure 5.5(a). Assume that the used node
set U is {i}, and the returned node set R is {d,k}. Figure 5.5(b) shows the projected document
D ′ of applying Algorithm 1 on U, R and D .

The algorithm starts with P←{d, i,k}, pro j←d and cur←a. We traverse the tree using
cur from a to d. Nodes a, b and c are added to D ′, since they are ancestors of the current
context node d. Nodes d,e and f are also added to D ′, as d is a returned node. Then, cur is
advanced to g (d’s next following node). Because the next context node i is not in the subtree of
g, the subtree is skipped by advancing cur to i. Recall that i is a used node, thus only i is added
to D ′. The last context node is k. Our current document node cur traverses from i to j, and
then to k, where we can add nodes k, l and m to D ′. The traversal can be terminated, because
there are no more context nodes to process. However, the intermediate result D ′ contains all
common ancestors of {d, i,k}. The post-processing removes node a from D ′, which produces
the final projected document D ′ as shown in Figure 5.5(b).

Relative Projection Paths At compile time, the XQuery compiler builds a query graph (d-
graph) with root vroot , normalises it, and then does decomposition and code motion. For each
inserted XRPCExpr vxrpc, and for each XRPCParam parameter vertex vparam, it then extracts the
relative paths:



CHAPTER 5. XQUERY DECOMPOSITION 83

a

b

c

d

e f

g

h

i

j k

l m

n

o

(a) Original XML tree D

b

c

d

e f

i

k

l m

(b) Projected tree D ′

Figure 5.5: Runtime XML projection example

Urel(vxrpc) = allSuffixes(R(vxrpc),U(vroot))
Rrel(vxrpc) = allSuffixes(R(vxrpc),R(vroot))
Urel(vparam) = allSuffixesVia(R(vparam),U(vxrpc),U(vroot))
Rrel(vparam) = allSuffixesVia(R(vparam),R(vxrpc),R(vroot)), where:

allSuffixes(Pathsi,Paths j) = {sy|px/sy∈Paths j : ∃px∈Pathsi}
allSuffixesVia(Pathsi,Paths j,Pathsk) =

{sy/sz | px/sy/sz∈Pathsk : ∃px/sy∈Paths j ∧∃px∈Pathsi}∪
{sy | px/sy∈Pathsk ∧ px/sy∈Paths j ∧∃px∈Pathsi}

At runtime, ∪∀vparamUrel(vparam) and ∪∀vparamRrel(vparam) are used to project the parameters in
the outgoing XRPC request message. Urel(vxrpc) and Rrel(vxrpc) are passed in the projection-
paths element such that a remote peer can appropriately apply these paths to project the re-
sponse message. When computing the relative used and returned paths for vparam, we need to
take into account that (parts of) vparam could be returned by vxrpc, and thus will be used by
vertices depending on vxrpc. Hence, in allSuffixesVia(), we not only find the relative paths
that vxrpc will apply on vparam, but also the relative paths that vroot will apply on vparam. If both
the relative used and returned paths for a vertex are empty sets, this vertex is not projected. To
serialise such vertices, by-fragment semantics is used.

Projecting a document using Algorithm 1 requires pre-calculated used and returned node
sets. These sets are simply computed using the XPath evaluation infrastructure of the under-
lying XQuery engine by feeding the intermediate result $ctxparam corresponding to vparam as
context sequence into all suffix paths si ∈Urel(vparam) (resp. Rrel(vparam)):

union($ctxparam/s1, union($ctxparam/s2,...union($ctxparam/sn−1, $ctxparam/sn)...))

Paths $ctx/pathi/root()/path j with function root() are executed as root($ctx)/path j.
Similarly, $ctx/pathi/id()/path j is executed as root($ctx)//attribute()::(a1|..|an)/../
path j, where a1, ..,an are all ID attributes8 (resp. IDREF in case of idref()).

The request handler on the remote side uses the same method to evaluate the suffix paths
Urel(vxrpc) and Rrel(vxrpc) using the result sequence of the function as $ctxxrpc during serial-
isation of the response message.

Interoperability We have devised a way to support pass-by-projection in the XRPC Wrap-
per by substituting the projection algorithm with a variant that serialises the lowest common
ancestor of the used and returned node sets. Since document projection is not expressible in

8Note that these ai should be determined at runtime by the XRPC projection algorithm. The impossibility to
express selection of all ID/IDREF attributes in XQuery, and thus in the XRPC Wrapper, forces us to still avoid
shipping expressions where the result of vxrpc is used as input to id()/idref().



84 5.7. DECOMPOSITION OF XQUF QUERIES

XQuery (not even with the TRANSFORM feature of XQUF), this is as far as a pure XQuery
engine can get. We contemplate the possibility to let the XRPC Wrapper echo the SOAP re-
sponse message it generates to a stream, and implement a streaming version of our projection
algorithm (that first gets a stream of used and returned nodes, and then the to be projected
fragments) inside the XRPC Wrapper java program.

In case of XML data with a user-defined XML SCHEMA, the default projection algorithm
is likely to throw away mandatory elements and attributes. For this reason, the runtime pro-
jection algorithm should be made schema-aware. A simple solution is to ensure that only
elements with a minoccurs declaration of zero (i.e., optional elements) are removed. One
can also envision more advanced variants that further reduce the size of a typed XML docu-
ment.

5.7 Decomposition of XQUF Queries
Since the introduction of the W3C XQUF [58] specification, which has been well-received
and adopted by various XQuery engines (e.g., [64, 69, 129, 140, 141, 109, 176]), XQuery
is no longer a read-only query language. We now show how we can leverage such update-
capable XQuery engines to automatically rewrite purely local updates into queries that may
push some computations to remote peers. We recall that the general processing model of
XQUF is that first the read-only part of a query is executed that defines which nodes are
going to be updated, and how. This first phase results in a pending update list (PUL). In the
second phase all update actions in this list are executed. Therefore, the first phase of XQUF
execution is identical to a read-only query, and can in principle be distributed in the same way
as described in the previous sections. However, systems implementing the XQUF typically
only allow updating persistently stored documents, e.g., updating documents on an HTTP URI
is not allowed. In this section, we first explain the restrictions the XQUF imposes on XRPC
query distribution. Then, we extend the semantics of XQUF to allow updates on documents
opened with fn:doc() using xrpc://P/D URIs (in short: remote documents) and also to
support the fn:put() XQUF built-in function to write entire new documents to such URIs.
This extended semantics again creates a possible trade-off between data shipping vs. function
shipping, namely retrieving and updating a local copy of a remote document followed by an
fn:put() vs. executing an XQUF updating function over XRPC. We introduce the necessary
constraints to our query distribution techniques that guarantee semantic equivalence for such
queries.

5.7.1 Distributing Normal XQUF Queries
XQUF has extended the XQuery language with four kinds of updating expressions: UpdExpr
={InsertExpr, DeleteExpr, RenameExpr, ReplaceExpr} (Table 5.2). An XCore query
containing at least one UpdExpr is an updating XCore query (in short: updating query). Each
UpdExpr has a TargetExpr that identifies the target nodes to be updated, and (except for
DeleteExpr) each has an ExprSingle that computes the new values. For simplicity, we refer
to those ExprSingle as SourceExpr, although XQUF uses different names. The functionality
of the first three kinds of expressions is self explanatory. With ReplaceExpr, one can replace
the target node with a new sequence of nodes (ReplaceNode), or replace the value of the
target node (ReplaceValue). The expressions RenameExpr and ReplaceValue only modify
some properties of the target node without changing its node identity.



CHAPTER 5. XQUERY DECOMPOSITION 85

XQUF also defines a transform expression (TransformExpr) that creates (and possibly
modifies) copies of existing XML nodes. Each node created by a TransformExpr has a
new node identity. The result of a TransformExpr is an XDM (XQuery Data Model) in-
stance that may include both new nodes created by the TransformExpr and existing nodes.
TransformExpr has special semantics: it is not an updating expression, as it does not modify
any existing nodes. Hence, an XCore query that merely contains UpdExpr as subexpressions
of a TransformExpr is not an updating query.

In our XCore rewriting framework, all three algorithms use a by-value based semantics,
which means that target nodes may not stem from an XRPC function result, or from a function
parameter (if the updating expression occurs inside an XRPC function body). Hence, we en-
force that all UpdExprs, denoted Vu, must be executed on the same peer that opened the docu-
ment using fn:doc(). This, in turn, enforces that all expressions Vai (except TransformExpr)
which depend on a vui ∈Vu, must be executed on the local peer. This is because Vai could only
parse-depend on a vui , as updating expressions are not allowed in a variable binding. De-
composing an expression in Vai would cause the vui to be executed on a remote peer. To
correctly identify the target nodes of an UpdExpr, all expressions Vti that produce target nodes
for a vui , must also be executed on the local peer. When decomposing an updating query, the
vertices Vu, Vti , and Vai in the query’s d-graph are never valid decomposition points, regard-
less of the parameter passing semantics used by the decomposition algorithm. The following
XQUF insertion conditions should be added to the insertion conditions of each decomposition
algorithm.
XQUF Insertion Conditions Given a d-graph G and a subgraph Grs of G rooted at vertex rs,
under any semantics, rs is in the set I(G) of valid decomposition points, iff rs also satisfies all
of the following conditions:
(a) rs.rule /∈ {UpdExpr, TargetExpr}

(b) @vu∈V (G) : vu.rule∈{UpdExpr} ∧ rs.rule 6=TransformExpr∧ rs ;vu∧
(@vm∈V (G) : vm.rule = TransformExpr∧ rs ;vm ;vu)

(c) @vt ∈V (G) : vt .rule = TargetExpr∧ vt ;rs∧
(∃pt ∈ vt .Paths∧∃ps ∈ rs.Paths∧starts-with(pt , ps)

Condition a avoids decomposing any UpdExpr and Target-Expr. Condition b states that
if rs is not a TransformExpr, rs may not depend on an UpdExpr, unless the UpdExpr is a
subexpression of a TransformExpr, on which rs depends. Condition c states that rs may not
be decomposed, if rs produces target nodes of an UpdExpr. We say rs produces target nodes,
iff a returned path ps of rs is a prefix of a returned path pt of vt , i.e., nodes returned by rs
include target nodes. Note that although the path annotations were introduced under the by-
projection semantics, the analysis of projection paths is orthogonal to all semantics described
in this work. So now we add it to the by-value and by-fragment semantics as well. We use
the rules defined in [81] to propagate projection paths of the UpdExprs. Note that condition
b allows a TransformExpr to be decomposed by all three decomposition algorithms, as it
always makes (deep) copies of its source nodes. If a TransformExpr is executed on peer P ,
P becomes the “local peer” for all new nodes created by this TransformExpr. With condition
a, we prevent UpdExprs in the modify clause of a TransformExpr from being separated from
the TransformExpr (i.e., executed on another peer than P ). Thus, the UpdExprs in the modify
clause will also be executed on P , which is the local peer of their target nodes. This confirms
the XQUF semantics that UpdExprs may only be applied to local nodes. In the remainder of



86 5.7. DECOMPOSITION OF XQUF QUERIES

this section, we continue our discussion on processing UpdExprs that are not subexpressions
of a TransformExpr.

5.7.2 Updating XCore Queries on Remote Documents
We now extend the semantics of XQUF to allow updates on remote documents (i.e., docu-
ments identified by an xrpc:// URI scheme). We first provide the semantics for such updates
in normal non-distributed execution (i.e., data shipping): the read-only part of the query is
evaluated first, retrieving (a copy of) all accessed remote documents to the local peer, which
results in a PUL. Then, the standard XQUF function upd:applyUpdates() is executed to
carry through all update actions in the PUL. This could modify (some of) the local copies of
the remote documents. Finally, as an additional step, for each affected remote document, an
fn:put() is executed by passing the document’s original URI and its new contents, effec-
tively replacing the existing document on the remote peer with the modified one. Note that
the semantics do not apply to XCore queries only containing transform expressions, as they
are read-only queries. Thus, no additional fn:put() is executed to overwrite the existing
documents.
Formal Semantics Let Qu denote an XCore query containing at least one UpdExpr on a
remote document and Gu its d-graph. Du(Qu) denotes the set of affected documents that may
be updated by Qu:

Du(Qu) = {(uri)|∃vt ,vy,vz∈V (Gu) : vt ;vy ∧{vy,vz}∈E(Gu)∧
vy.rule=FunApp∧ vy.val =“doc”∧ vz.rule=Literal∧uri=vz.val∧
vt .rule=TargetExpr∧∃p∈vt .Paths∧fn:starts-with(p,uri)}

Dr
u(Qu) is a subset of Du(Qu), which contains the affected remote documents: ∀dr

i ∈ Dr
u(Qu) :

starts-with(dr
i .uri,“xrpc://”). The auxiliary functions host() and path() extract the

peer identifier P and the document name D from an XRPC URI “xrpc://P/D”, respec-
tively. Each query operates in a database state (dbp), which includes the documents and their
contents persistently stored in the XML database on p. The dynEnv.docValue from [67] cor-
responds to dbp used here. As a database may be changed by updates, we can view it as a
function over time t as dbp(t). Time values t are assumed to stem from some cardinal domain,
and we are also assuming a fine granularity, such that each query execution action will take at
least one time unit. In our formal rules, the default assumption on database states is that they
stay equal over time, unless otherwise stated. When the time context t is clear, the shorthand
notation dbp is used to refer to the current database state.

The formal semantics of distributed updates is9:
∀dr

x ∈Dr
u(Qu) : fn:doc(dr

x .uri)⇒ Dr′
u (Qu)

dbp0 ,Dr′
u (Qu) ` Qu⇒ ∆;

dbp0 ,Dr′
u (Qu) ` upd:applyUpdates(∆)⇒ db′p0 ,Dr′′

u (Qu);

∀dr′′
x ∈Dr′′

u (Qu) : fn:put(dr′′
x .node,dr′′

x .uri)⇒ (),dbhost(d
r′′
x .uri);

dbp0 ` Qu⇒ (),dbp0

(Ru)

The rule Ru states that the execution of an updating query Qu at the local peer p0 in the
database state dbp0 starts with retrieving the remote documents Dr

u(Qu), which could poten-
tially be affected by Qu, to p0

10. This yields a set of local copies Dr′
u (Qu) of Dr

u(Qu). Note that
9We use the ‘;’ sign to suggest an order in the evaluation of the premises.

10As explained in Section 5.4, computed URIs and invocations of fn:collection() are represented by ∗. During
the runtime, when the actual values of the wildcard symbols are available, more URIs might be added to the set
Dr

u(Qu) on the fly.



CHAPTER 5. XQUERY DECOMPOSITION 87

this step does not change dbp0 , as the documents in Dr′
u (Qu) are transient documents. Then, Qu

is executed in dbp0 with the additional documents Dr′
u (Qu) which first yields a PUL ∆. Subse-

quently, upd:applyUpdates() is executed to apply all update primitives in ∆ to the affected
documents. Updates in ∆ that should be applied on remote documents Dr

u(Qu) are applied
on their local copies Dr′

u (Qu) instead. This step produces a new current database state db′p0 ,
which could differ from dbp0 (if ∆ contains updates on really local documents), and a set of
changed local copies Dr′′

u (Qu). Finally, an additional step is executed, which calls fn:put()
to store each dr′′

i ∈Dr′′
u (Qu) on its hosting peer and overwrite the existing dr

i ∈Dr
u(Qu). This

step also creates a new current remote database state dbhost(dr′′
x .uri) on each hosting peer. As

the rule Ru only applies ∆ at the end of query execution, updates are not visible for the same
query, which confirms the XQUF semantics. Hence, if ∆ only contains updates on a single
document, this rule already provides atomic updates.
Isolation Levels Note that the - potentially multiple - fn:put(“xrpc://..”) together with
potential updates on some local documents constitute a distributed updating query. Depending
on the semantics desired by the user, this distributed updating query could be run in a certain
consistency level, which has been discussed in detail in our previous work [180]. One option is
no consistency at all in which some documents may get updated, but other document updates
may fail or get lost. By tagging queries with a unique ID, the repeatable read consistency
level can be easily achieved. To ensure distributed atomic updates, [180, 181] shows how
the WS-AtomicTransaction standard [55] can be integrated into XRPC to provide 2PC. In
addition to repeatable reads and atomic commits, the lost updates anomaly can be avoided
if participating peers abort the 2PC commit when another updating query or fn:put() has
modified an updated document already. Note that these semantics can also be supported by
the XRPC Wrapper if the XQuery engine is XRPC oblivious. Given the design goal for XRPC
of supporting P2P applications on the Internet, we refrained from attempting to define higher
consistency levels (e.g. distributed serialisability), as the overhead of these are impractical
in such environments. We consider more advanced distributed consistency levels for P2P on
the Internet a topic of future work, and consider it out of scope here, where we focus on
semantically correct distributed query rewriting.
Atomic Updates with Isolation We now define an improved semantics that provides repeat-
able reads and atomic distributed commit, described by the rule Ru

repeat :
D′u(Qu) = ∅;
∀dx∈Du(Qu) : px = host(dx.uri);

sendp0→px request(qu,“fn:doc”,dx.uri); t px
qu ≥ t p0

qu ;
dbpx (t px

qu ) ` dx.node = fn:doc(dx.uri)⇒ d′x.node;
sendpx→p0 reply(qu,dx.uri,d′x.node);
dbp0 (t p0

qu ) ` D′u(Qu) = D′u(Qu)+(dx.uri,d′x.node);
dbp0 (t p0

qu ),D′u(Qu) ` Qu⇒ ∆;
dbp0 (t p0

qu ),D′u(Qu) ` upd:applyUpdates(∆)⇒ D′′u(Qu);
∀d′′x ∈D′′u(Qu) : px = host(d′′x .uri);

sendp0→px request(qu, PREPARE,“fn:put”,d′′x .node,d′′x .uri);
dbpx (t px

qu ) ` log(“fn:put”,d′′x .node,d′′x .uri)⇒ r;
sendpx→p0 reply(qn,r);

dbp0 (t p0
qu ) ` Qu⇒ ()

(Ru
repeat )

There are several differences between this rule Ru
repeat and the previous rule Ru. First,

each query is tagged with a unique query ID qu, so that each peer will use the same database



88 5.7. DECOMPOSITION OF XQUF QUERIES

state dbpi(t pi
qu) to handle requests originating from the same query. Usually, dbpi(t pi

qu) is the
current state of peer pi at the time t pi

qu , when query Qu visits pi for the first time. This ensures
repeatable reads, if pi is visited multiple times by Qu. Second, fn:put() is not executed
immediately on a remote peer px, instead, it is sent as a PREPARE request. The execution of
fn:put() is first “prepared”, yielding a decision r, which could be COMMIT or ABORT. The
execution of fn:put() will be finalised after p0 has received the decision r from all px, with
a separate COMMIT (or ABORT) message [180]. Finally, a minor difference: D′u(Qu) contains
a copy of all potentially affected documents, including really local documents. This is for
presentation purpose only. It indicates that updates on really local documents are also first
applied to their copies, when executing upd:applyUpdates(). The local peer also computes
the decision r. All updates (on both really local document and remote documents) will later
be committed (or aborted) atomically. Hence, the rule Ru

repeat does not modify the database
state dbp0(t p0

qu ).
XQUF Rewrites Rather than using fn:doc(“xrpc://P/D”) followed by an additional
fn:put (“xrpc://P/D”) after upd:applyUpdates(), i.e., data shipping, we can try to
use updating functions that could be pushed with XRPC to do remote updates, i.e., function
shipping. Note that XQUF as supported by XQuery engines, only supports updates on local
XML nodes, so this is our target. In principle, we cannot push any UpdExprs, except homo-
geneous updating expressions. An UpdExpr vh

u is homogeneous, iff all returned paths of its
TargetExpr vh

tu start with the same “xrpc://P”, i.e., the update affects only nodes that stem
from a single peer. Hence, the update can be pushed to that peer using an XQUF updating
function such that it acts only on local documents there. Note that if vh

u is decomposed, in
principle, it should be executed on P , because executing vh

u on another peer than P implies the
same semantics as executing vh

u on the local peer, which makes remote execution not meaning-
ful. The insertion conditions for updates formulated in Section 5.7.1 also applies for pushed
updating expression: target nodes of an UpdExpr vu may not be passed to a remote peer as
function parameters or results. Decomposition of vh

u thus requires that all expressions V h
tu that

produce target nodes of vh
u must be executed in the same remote function as vh

u. So, we need
to find the smallest (super-)expression vs that contains both vh

u and V h
tu .

Let Qu be an updating query containing the homogeneous UpdExpr vh
u and Gu its d-graph.

Let vh
w be the TargetExpr of vh

u (i.e.: (vh
u,v

h
w)∈E(Gu)∧ vh

w.rule=TargetExpr). We define
V h

tu as:
∀vi∈V h

tu : vh
w ;vi ∧ (∀pt ∈vi.Paths,∀pw∈vh

w.paths : fn:starts-with(pw, pt))
and define vs as:

(vs ;vh
u ∨ vs =vh

u)∧∀vi∈V h
tu : vs ;vi ∧@vx∈V (Gu) : vs ;vx ∧ vx ;vh

u ∧∀vi∈V h
tu : vx ;vi

Then, vs could be a valid decomposition point. If no such point can be found, we fall back
to the data shipping strategy (i.e., local execution and a fn:put(“xrpc://P/D”) at the
end of query execution). For updating queries containing both push-able and not push-able
UpdExprs, however, there is an additional issue to deal with: we can only push an UpdExpr
vu0 if we can guarantee that no other UpdExprs elsewhere in the query update nodes from the
same documents (a clash), or, if another UpdExpr does, it can also be pushed. This is because
all UpdExprs that are not pushed will generate an fn:put() in the end, which would poten-
tially overwrite the pushed updating actions or other fn:put()s, from the same transaction.
However, if all updates to the same document are pushed, the 2PC protocol used in XRPC
ensures correct execution [180].



CHAPTER 5. XQUERY DECOMPOSITION 89

One more constraint must be added to the definition of vs above:

@vx∈V (Gu) : vx.rule = UpdExpr∧¬isHomogen(vx)∧
∃px∈vx.Paths,∃pu∈vh

tu .Paths : docPeer(px) = docPeer(pu)

where, given a path doc(“xrpc://P/D”)[/SimplePath], the function docPeer() returns
P ; and the function isHomogen() is defined as:

isHomogen(vx)⇔∃vw∈V (Gu)∧ (vx,vw)∈E(Gu)∧ vw.rule=TargetExpr∧
∀pi, p j∈vw.Paths : docPeer(pi) = docPeer(p j)

5.8 Evaluation in MonetDB/XQuery
We have implemented the proposed algorithms in MonetDB/XQuery [41], a purely relational
XDBMS that uses the Pathfinder[88] XQuery compiler. We use the XRPC extension for
remote function evaluation. Note that, as no other comparative results exist, the main goal of
our experiments is to show the impact of the proposed techniques in a step-by-step fashion.

5.8.1 Read-Only Queries
For all our experiments, the test platform consisted of three 2GHz Athlon64 Linux machines
connected in a local network (LAN). Each was equipped with 2GB RAM. The benchmark
data used is XMark [159], a popular XML benchmark for evaluating XQuery efficiency and
scalability. The data set was generated using scale factors 0.1, 0.2, 0.4, 0.8 and 1.6. A data set
is stored on each remote peer. We conducted three groups of experiments: bandwidth usage,
query execution time and runtime projection precision.

We slightly modified the query Qn
2 (in Table 5.3) so that it conforms to the XMark schema

as the following:

(let $t:= let $s:=doc("xrpc://peer1/xmk_nn_MB.xml")/child::site/child::people/child::person
return for $x in $s return if ($x/descendant::age < 40) then $x else ()

return for $e in (let $c := doc("xrpc://peer2/xmk_nn_MB.auctions.xml")
return $c/descendant::open_auction)

return if($c/child::seller/attribute::person = $t/attribute::id)
then $c/child::annotation else () )/child::author

All techniques discussed in this paper are applied to the above query: (i) under the pass-by-
value semantics, only the expression

doc("xrpc://peer1/xmk_nn_MB.xml")/child::site/child::people/child::person

can be decomposed and executed on peer1; (ii) under the pass-by-fragment semantics, we
can decompose both the second let clause (“let $s := ...”) and the second for-loop
(“for $e in ...”), and execute them on peer1 and peer2 respectively. The variable $t
becomes the parameter of the generated function containing the second for-loop (see also
Table 5.4); (iii) under the pass-by-projection semantics, the query is decomposed in the same
way as using pass-by-fragment, however, when serialising the request messages, a projection
of $t/attribute::id (parameter projection) and $c/child::annotation/child:author
(result projection) is calculated. The test set thus contains four queries in total, and each of
them is executed on 2 documents of sizes 10, 20, 40, 80 and 160MB.

In this case, code motion is ideal, as it is able to send just strings, not nodes. However,
if we would replace the final step child::author by parent::∗, then just applying code
motion and no projection provides mediocre performance similar to by-value. It is the ability



90 5.8. EVALUATION IN MONETDB/XQUERY

 0.1

 1

 10

 100

 1000

10 40 160 640

S
iz

e 
of

 p
ro

je
ct

ed
 d

oc
um

en
t (

K
B

)

Document size (MB)

Compile-time
Runtime

Figure 5.6: Selected nodes

 1

 10

 100

 1000

10 40 160 640

E
xe

cu
tio

n 
tim

e 
(m

s)

Document size (MB)

Compile-time
Runtime

Figure 5.7: Execution time (ms)

of projection to decompose almost any query at little cost, that makes it the overall method of
choice.
Bandwidth Usage Figure 5.9 shows the bandwidth used by each benchmark query on differ-
ent sets of documents, i.e., the total size of XML documents plus total size of XML messages
transferred among peers, in its y-axis. The x-axis is the total size of the XML documents
used by each query. The pure data-shipping XQuery query (the leftmost bar) has the largest
bandwidth usage, as both documents used by the query have to be shipped. By-value decom-
position can push the XPath step:
doc("xrpc://peer1/xmk_nn_MB.xml")/child::site/child::people/child::person

to be evaluated on peer1, which reduces the amount of data sent from peer1 to the local
peer. However, the second document “xmk_nn_MB.auctions.xml” still has to be sent fully.
The by-fragment passing semantics allows the local peer to push predicates to both peers,
achieving a distributed semi-join plan. Also, it strongly reduces message size by avoiding
duplicating the same XML node multiple times. Pass-by-projection further brings down mes-
sage sizes due to reduced response message size. For example, when sending the result of the
remote execution of the second for-loop, the response message will only contain annotation
nodes with their author child nodes. When applied to pass-by-fragment, code motion has a
larger effect in reducing message size than when it is applied to pass-by-projection. This is be-
cause in pass-by-fragment, complete person nodes (i.e., including all their descendants) are
serialised, while in pass-by-fragment with code motion, only the values of the id attributes
are serialised. In pass-by-projection, however, the message size has already minimised the
data to be sent, i.e., only person nodes and their id attributes, hence, the effect of applying
code motion here is negligible. In general, we observe good scalability of pass-by-fragment
and pass-by-projection in bandwidth usage.
Execution Time Figure 5.10 shows the execution time breakdown of all four queries on doc-
uments of 320MB in total. The execution time is divided into five parts: shred is the time
to receive a document from the remote peer and shred it in to the XML database; local exec
is the execution time of the query at the local peer, including query parsing, module loading,
etc; (de)serialise is the time spent on generating/shredding the XML messages and extract-
ing parameter/result values from the messages; remote exec is the time to execute the called
functions on remote peers; and network is the time spent on sending/receiving the XML mes-
sages. From Figure 5.10, the following observations can be made: (i) in the data-shipping
only query and the by-value decomposed query, data shredding is the main bottleneck, ei-



CHAPTER 5. XQUERY DECOMPOSITION 91

ther because the whole document will be shipped (data-shipping), or an XML node might be
shredded multiple times (by-value). Especially in the data-shipping query, more than 99% of
the total execution time is spent on getting the documents from remote peers and shredding
them; (ii) when pass-by-fragment and pass-by-projection semantics are used, the total execu-
tion time is significantly reduced (about 84∼94%, compared with data-shipping and pass-by-
value). This is easily explained as these techniques reduce the amount of data exchanged to
be less than 10% of the original document sizes. Even with the overhead introduced by re-
mote execution (i.e., ‘(de)serialise’+‘remote exec’), pass-by-fragment or pass-by-projection
are preferred over the data-shipping method. (iii) pass-by-projection performs even better
than pass-by-fragment (about 35% improvement), which is again explained by the reduced
bandwidth usage, as shown in Figure 5.9.

Figure 5.8 shows the execution time of all queries on documents of increasing sizes. It in-
dicates that the two enhanced parameter passing techniques achieve good scalability. On aver-
age, pass-by-fragment and pass-by-projection achieve a performance improvement of roughly
94%, compared with data-shipping; this is proportional to the decrease in bandwidth usage,
which is approximately 96%. Even on small documents (20MB), the proposed techniques are
preferred over the data-shipping methods.

Runtime Projection Precision Our new runtime projection technique combines interme-
diate query results with runtime execution and relative XPath paths. Due to selections (by
e.g., predicates and value comparisons), the run-time projection node sets obtained may be
much smaller than suggested by compile-time projection paths, used in [125]. We used our
by-projection benchmark query to compare runtime projection with compile-time projection
on various sizes of the XMark document “xmk_nn_MB.xml”. In this experiment, the compile-
time technique projects all person elements and their age, while our runtime projection tech-
nique will only project those person elements that have an age descendant larger than 45.
Figure 5.6 shows runtime projection to be 5 times more precise in terms of the size of the
projected document. In this experiment, the investment in run-time XPath evaluation pays off
due to the more precise results, as shown in Figure 5.7.

5.8.2 XQUF Queries
For the updating XCore queries, we have conducted two groups of experiments to compare
performance of updating remote documents with or without XRPC. The first group corre-
sponds to the generic strategy discussed in Section 5.7 where a remote document is first re-
trieved to the local machine (with fn:doc()), then the updates are applied on the local copy
of the remote document, and finally the updated document is written to the remote peer using
fn:put(). We call queries in this group “GUP queries” (i.e., Get-Update-Put). In the second
group, called “XRPC queries”, updates are applied directly on the original document at the
remote peer with XRPC using so-called updating functions as specified by the XQUF:

module namespace fcn = "foo";

declare updating function fcn:doInsert($d as xs:string, $node as node())
{do insert $node into doc($d)/site};

declare updating function fcn:doDelete($d as xs:string, $pid as xs:string)
{do delete doc($d)//person[./@id=$pid]};

declare updating function fcn:doRename($d as xs:string, $pid as xs:string, $nm as xs:string)
{do rename doc($d)//person[@id=$pid] into $nm};



92 5.8. EVALUATION IN MONETDB/XQUERY

declare updating function fcn:doReplace($d as xs:string, $pid as xs:string, $n as node())
{do replace doc($d)//person[@id=$pid] with $n};

We tested all four kinds of updates, keeping the granularity of the updates constant, affecting
100 person nodes. For example, the insert query in XRPC looks as follows:

import module namespace fcn="foo" at "http://example.org/foo.xq";
fcn:doInsert("xrpc://p2/xmark200mb.xml", doc("Persons100.xml")/persons)

All updating queries were applied on XMark documents of 200, 400, 600, 800 and 1000 MB,
respectively. The data set is stored on one peer, which acts as the remote peer. The total
execution time of all queries are shown in Figure 5.11.

For all four kinds of update queries, XRPC is significantly faster than GUP. The rela-
tively small performance differences between different kinds of updates reflects the Mon-
etDB/XQuery implementation of the XQUF. We can conclude that with increasing document
sizes, the absolute benefits of XRPC grow linearly, which is caused by the additional full seri-
alisation, network copy, and shredding for the “Get” phase, followed by full serialisation and
network copy steps in the “Put” phase, performed by the GUP approach. As the number of
updates is small, the total bandwidth usage of all GUP queries are approximately twice the
documents size, as shown in Figure 5.12, whereas the XRPC query only sends the function
parameters and results (tens of KB). In Figure 5.13, the bars at the left-hand-side show the
time breakdown of GUP queries, while the bars at the right-hand-side show the time break-
down of XRPC queries; all were run on a 1GB document. From Figure 5.13, it can be seen
that the GUP queries spend a large amount of time on adding the document to the local and
remote database (shown as “gup add doc remote” and “gup add doc local”). They also spend a
significant amount of time on exchanging the document between the local peer and the remote
peer (shown as “gup network”). However, the times spent on actually applying the updates
(shown as “gup exec update”) are only a very small portion of the total execution times. On
the other hand, for the XRPC queries, the only dominant factor in the total execution time
is the time spent on applying the updates (shown as “xrpc remote exec”), while the times
spent on processing the request and response messages (i.e., serialise, send and deserialise)
are negligible.

We finally recall that in all experiments (including the read-only ones) we used a local
area network (LAN); but in a WAN environment, where much lower network performance is
common, the benefits of our query decomposition techniques will be larger, as we showed by
their strongly reduced network bandwidth use.



CHAPTER 5. XQUERY DECOMPOSITION 93

 1 1
0

 1
00

 1
00

0

 1
00

00

 1
00

00
0

20
40

80
16

0
32

0

Total execution time per query (ms)

T
ot

al
 s

iz
e 

of
 d

oc
um

en
ts

 u
se

d 
by

 e
ac

h 
qu

er
y 

(M
B

)

da
ta

-s
hi

pp
in

g
pa

ss
-b

y-
va

lu
e

pa
ss

-b
y-

fr
ag

m
en

t
pa

ss
-b

y-
pr

oj
ec

tio
n

Fi
gu

re
5.

8:
E

xe
cu

tio
n

tim
e

of
re

ad
-o

nl
y

qu
er

ie
s

 0
.1 1 1
0

 1
00

 1
00

0

20
40

80
16

0
32

0

Total transferred data per query (MB)
(XML documents + SOAP messages)

T
ot

al
 s

iz
e 

of
 d

oc
um

en
ts

 u
se

d 
by

 e
ac

h 
qu

er
y 

(M
B

)

da
ta

-s
hi

pp
in

g
pa

ss
-b

y-
va

lu
e

pa
ss

-b
y-

fr
ag

m
en

t
pa

ss
-b

y-
pr

oj
ec

tio
n

Fi
gu

re
5.

9:
B

an
dw

id
th

us
ag

e
of

re
ad

-o
nl

y
qu

er
ie

s

 0

 2
00

00

 4
00

00

 6
00

00

 8
00

00

 1
00

00
0

da
ta

-
sh

ip
pi

ng
pa

ss
-b

y-
va

lu
e

pa
ss

-b
y-

fr
ag

m
en

t
pa

ss
-b

y-
pr

oj
ec

tio
n

Total execution time per query (ms)

sh
re

d
lo

ca
l e

xe
c

(d
e)

se
ria

liz
e

re
m

ot
e 

ex
ec

ne
tw

or
k

Fi
gu

re
5.

10
:

Ti
m

e
br

ea
kd

ow
n

of
re

ad
-o

nl
y

qu
er

ie
s

on
32

0M
B

da
ta

 1
0

 1
00

 1
00

0

 1
00

00

 1
00

00
0

 1
e+

06

20
0

40
00

60
0

80
0

10
00

Total execution time (ms)

D
oc

um
en

t s
iz

e 
us

ed
 b

y 
ea

ch
 q

ue
ry

 (
M

B
)

gu
p 

in
se

rt
xr

pc
 in

se
rt

gu
p 

de
le

te
xr

pc
 d

el
et

e
gu

p 
re

na
m

e
xr

pc
 r

en
am

e
gu

p 
re

pl
ac

e
xr

pc
 r

ep
la

ce

Fi
gu

re
5.

11
:

E
xe

cu
tio

n
tim

e
of

up
da

tin
g

qu
er

ie
s

 0
.0

1

 0
.1 1 1
0

 1
00

 1
00

0

 1
00

00

 1
00

00
0

20
0

40
0

60
0

80
0

10
00

Total transferred data per query (MB)

T
ot

al
 s

iz
e 

of
 d

oc
um

en
ts

 u
se

d 
by

 e
ac

h 
qu

er
y 

(M
B

)

gu
p 

qu
er

ie
s

xr
pc

 in
se

rt
xr

pc
 d

el
et

e
xr

pc
 r

en
am

e
xr

pc
 r

ep
la

ce

Fi
gu

re
5.

12
:

B
an

dw
id

th
us

ag
e

of
up

da
tin

g
qu

er
ie

s

 0

 1
00

00

 2
00

00

 3
00

00

 4
00

00

 5
00

00

 6
00

00

 7
00

00

G
U

P
 q

ue
rie

s

Total execution time per query (ms)

inse
rt

delete

rename
replace

gu
p 

ad
d 

do
c 

re
m

ot
e

gu
p 

ad
d 

do
c 

lo
ca

l
gu

p 
ne

tw
or

k
gu

p 
ex

ec
 u

pd
at

e

X
R

P
C

 q
ue

rie
s

 0 1
00

 2
00

 3
00

 4
00

Total execution time per query (ms)

in
se

rt

de
le

tere
na

m
ere

pl
ac

e

xr
pc

 r
em

ot
e 

ex
ec

xr
pc

 lo
ca

l e
xe

c
xr

pc
 n

et
w

or
k

Fi
gu

re
5.

13
:

Ti
m

e
br

ea
kd

ow
n

of
up

da
tin

g
qu

er
ie

s
on

10
00

M
B

da
ta



94 5.9. CONCLUSION

5.9 Conclusion
In this chapter, we have described a framework for distributed execution of full-fledged XQuery
including XQUF, focusing on the issue of providing equivalent query decompositions, in
the face of semantic differences when (parts of) nodes are shipped across the network in
XML messages. We first carefully characterised the problems that may occur regarding
node identity and structural XPath relationships in such a distributed setting. Then, we pro-
posed a series of techniques such as pass-by-fragment and the use of a novel runtime XML
projection method for serialising XML messages, that remove all but one semantic prob-
lems and strongly improve performance, as shown by experiments on the open-source Mon-
etDB/XQuery XDBMS (http://monetdb.cwi.nl). We also discussed the semantics of up-
dating both local and remote documents using XQUF expressions, and additional constraints
that should be added to the proposed techniques to guarantee semantic equivalence for such
queries.

Our main future work is an issue left out-of-scope here: deciding on distributed query
placement after decomposition. In this area, we also contemplate using runtime methods to
improve optimisation quality.



6
Correctness Proof of XQuery

Decomposition

In this chapter, we formally prove the correctness of the decomposition algorithms presented
in Chapter 5. For each algorithm, we prove that executing subexpressions of a query remotely
over XRPC will produce results deep-equal to those of the original query, if this is allowed
by a certain algorithm. We use a definition of deep-equal query results that also takes into
account the freedoms an implementation has in processing some aspects of the language.

Roadmap Sections 6.1 and 6.2 contain auxiliary definitions, properties, lemmas and rules.
Sections 6.3 - 6.7 are the main components of this chapter and contain theorems of the cor-
rectness of the techniques proposed in Chapter 5.

Since the goal of this chapter is to prove that a decomposed query produces deep-equal
result to the original query, we start in Section 6.1 with definitions of different kinds of deep-
equal for both sequences and queries. The contents of this section are important for the un-
derstanding of the proofs of the theorems in Sections 6.3 - 6.7.

Section 6.2 contains a complete list of judgement rules for all kinds of XQuery expres-
sions. These rules specify how certain static properties of an expression are inferred. These
rules are referred to by the proofs in Sections 6.3 - 6.7, because, to determine whether it is
correct to decompose a certain expression, we need to know if the expression has the desired
properties. This section can be used as a reference.

In Sections 6.3 - 6.5, we prove the correctness of each decomposition algorithm on read-
only XCore queries, In Section 6.6, we prove the correctness of the decomposition algorithms
on XCore queries containing XQUF expressions. Finally, we prove the correctness of the
distributed code motion technique in Section 6.7.

6.1 Preliminaries
Notations. We use ~a to denote sequences (a1, ...,an) of length n (denoted as |~a|). We use ~a[i]
to explicitly refer to the i-th item in a sequence~a. We permit~a in set contexts to represent the
set {a1, ...,an}.

The symbol $x 7→E indicates that the variable $x is mapped to the value of the expression
E, and (Env + $x 7→ E) means that the environment Env is extended with the variable $x
bound to (the value of) the expression E. We will use E interchangeably to represent an
XCore expression and the result sequence of evaluating the expression.

95



96 6.1. PRELIMINARIES

We use ~τ to denote the set of XML node types: {attribute, comment, document,
element, processing-instruction, text}.

We abbreviate the XPath step “descendant-or-self” as “dos”. Grammar rules (Ta-
ble 5.2) concerning XPath step expressions are abbreviated as the following: ST = StepExpr,
AS = AxisStep, NT = NodeTest.

6.1.1 Equality Relationships of Sequences
Equality relationships between sequences can be defined at different levels. The most strict
equality relationship is the absolute equivalence between two sequences, which we define as
the following:

Definition 6.1.1. Equivalent sequences: Two sequences ~s1 and ~s2 are equivalent to each
other, denoted~s1 ≡~s2, iff they satisfy the following condition1:

dEq(~s1,~s2)∧∀i∈1..|~s1| : dm:node-kind(~s1[i])∈~τ Z⇒~s1[i] is ~s2[i]

However, in most circumstances, such as in XRPC, this strict equality relationship is not
required, and deep-equal is sufficient. Using our notations, the XQuery deep-equal semantics
for sequences can be expressed as follows:

Definition 6.1.2. Deep-equal sequences: Two sequences ~s1 and ~s2 are deep-equal to each
other, denoted dEq(~s1,~s2), iff they satisfy the following conditions:

~s1 =~s2 = (),or

|~s1|= |~s2|∧∀i∈1..|~s1| :
8<:

~s1[i]= NaN∧~s2[i] = NaN,

~s1[i]=~s2[i], if dm:node-kind(~s1[i]) /∈~τ∧dm:node-kind(~s2[i]) /∈~τ
fn:deep-equal(~s1[i],~s2[i]), if dm:node-kind(~s1[i])∈~τ

We use dEq(E1,E2) to indicate that the result sequences of evaluating the expressions E1
and E2 are deep-equal to each other. For short, we say E1 and E2 are deep-equal.

In this section, the definitions of equality relationships of sequences are all based on the
appearances of the sequences, i.e., two sequences could only possibly be equal (either equiva-
lent or deep-equal), if their literal values appear to be equal. In the next section, we introduce
a new kind of equality relationship for sequences, in which the equality relationship of two
sequences is based on whether the results of applying a certain set of paths on these sequences
are deep-equal.

6.1.2 Equality Relationships of Sequences with Projection
Let ~P rel denote a set of relative projection paths2 which consists of a set of relative used paths,
denoted ~P rel .~U, and a set of relative returned paths, denoted ~P rel .~R . Each path in ~P rel may
contain XPath steps on all axes and the special built-in functions root(), id() and idref()
(i.e., as defined by SimplePath in Table 5.6).

Given a set of relative projection paths ~P rel , the results of applying ~P rel on two non-deep-
equal sequences~s1 and~s2 could be deep-equal. Therefore, we introduce a lower level equality

1In XDM [71], the dm:node-kind accessor is only defined on the seven kinds of node. Here, we assume that
dm:node-kind returns an error if~s1[i] is an atomic value.

2The projection paths are “relative” as they do not start from a document root, but rather from the node typed
items in the sequences (Section 5.6.2).



CHAPTER 6. CORRECTNESS PROOF OF XQUERY DECOMPOSITION 97

relationship for sequences, with respect to a certain set of relative projection paths ~P rel . We
first give a formal definition of how the projection of ~P rel on a sequence ~s is computed at
runtime.

Definition 6.1.3. Runtime XML projection operator P: Let ~s be an XQuery node se-
quence, which may contain duplicates or overlapping nodes (i.e., nodes that have an ancestor-
descendant relationship), and ~P rel a non-empty set of relative projection paths. The runtime
XML projection operator P creates a set of projected XML fragments ~F by projecting ~P rel on
~s. ~F is computed as follows:

1. Apply ~P rel .~U and ~P rel .~R on~s to produce the set of used nodes ~Nu and the set of returned
nodes ~Nr, respectively; and add~s to ~Nu;

2. Let ~D be the set of documents, from which nodes in ~Nu and ~Nr originate, sorted by docu-
ment order;

3. Let ~Nui and ~Nri be respectively a subset of ~Nu and ~Nr which contain all nodes in ~Nu and
~Nr that originate from the same document ~D[i]. Then ~F [i] is the projection of ~Nui ∪ ~Nri

on ~D[i], computed by the RUNTIMEXMLPROJECTION algorithm (Section 5.6.2, Algo-
rithm 1), i.e.:
|~F |= |~D|∧∀i∈1..|~D| : ~F [i] = RUNTIMEXMLPROJECTION(~Nui ,

~Nri ,
~D[i])

Definition 6.1.4. By-projection equal sequences: Let ~s1 and ~s2 be two XQuery sequences,
and ~P rel a set of relative projection paths. If ~P rel is not an empty set, projections of ~P rel on
~s1 and~s2, respectively, are computed as follows3: ~F1 = P(~s1,~P rel) and ~F2 = P(~s2,~P rel). We
use dEq~P rel

(~s1,~s2) to denote that~s1 and~s2 are by-projection equal to each other, with respect
to ~P rel . Whether dEq~P rel

(~s1,~s2) holds is determined by the following rules:

1. If the set of relative projection paths is empty (i.e., no projection can be computed) s1 or s2
are by-projection equal, iff they are deep-equal to each other:

~P rel = /0 : dEq~P rel
(~s1,~s2)⇔ dEq(~s1,~s2)

2. Otherwise, s1 or s2 are by-projection equal, if their projections ~F1 and ~F2 are deep-equal
to each other:

~P rel 6= /0 : dEq~P rel
(~s1,~s2)⇔ dEq(~F1, ~F2)

Example 6.1.5. The leftmost column of Figure 6.1 shows two sequences ~s1 and ~s2 that each
contains one different 〈a〉...〈/a〉 node. The right-most column of Figure 6.1 shows the result-
ing projected fragments ~F1 and ~F2, when the set of relative projection paths ~P rel is applied
on ~s1 and ~s2, respectively. Here, ~P rel .~U = {., ./b, ./b/c} and ~P rel .~R = {./b/i}. Since ~F1

and ~F2 are deep-equal, we say that~s1 and~s2 are by-projection equal, with respect to ~P rel . In
Section 6.5, we explain in detail how ~P rel is computed.

3If ~s1 or ~s2 contains a literal value, applying ~P rel on ~s1 or ~s2 results in a runtime error. However, in our compile
time analysis, we can omit this check and assume that~s1 and~s2 contain correct nodes.



98 6.1. PRELIMINARIES

a

b

c

d

e f

g

h

i

j k

l m

n

o

a

b

c i

j k

l m

n

a

b

c

d

e f

i

j k

l m

n

a

b

c i

j k

l m

n

Sequence ~s1 with one node

Sequence ~s2 with a different node

Projected fragment ~F1

Projected fragment ~F2

P(~s1, ~Prel)

P(~s2, ~Prel)

Relative projection paths ~Prel with:
~Prel. ~U = {., ./b, ./b/c}
~Prel. ~R = {./b/i}

Figure 6.1: Two non-deep-equal sequences ~s1 and ~s2 that are by-projection deep-equal, with respect to
~P rel , where ~P rel .~U = {., ./b, ./b/c} and ~P rel .~R = {./b/i}.
Remark In Definition 6.1.4, we require that ~s1 and ~s2 are by-projection equal, if and only
if their projected fragments ~F1 and ~F2 are deep-equal, which implies that in the projected
fragments, a used node may not contain (unused) descendant nodes. This requirement is
more strict than what is exactly necessary, because, for instance, in Figure 6.1, if the 〈c/〉
node in the projected fragment ~F2 would have contained some descendants, it will not affect
result of query evaluation (that is applied on ~F2 instead of on s2). In case of XRPC, it only
causes unnecessary bandwidth usage in request/response messages, however, this defeats a
major purpose of the by-projection semantics: minimise message sizes by pruning unused
nodes. Thus, we regard it to be necessary to use this strict requirement in our definition of
by-projection equal sequences, and the runtime XML projection operator P guarantees that
unused descendants of used nodes are pruned.

6.1.3 Equality Relationship of Read-Only Queries
Intuitively, one would say that two read-only queries are deep-equal to each other if their result
sequences are deep-equal. Unfortunately, this simple comparison is not general enough to deal
with the variations in the XQuery language. In the XQuery specifications4, certain aspects of
language processing are described as “implementation defined” or “implementation depen-
dent”. Implementation defined indicates an aspect that may differ between implementations,
but must be specified by the implementer for each particular implementation. Implementation
dependent indicates an aspect that may differ between implementations, is not specified by
any W3C specification, and is not required to be specified by the implementer for any partic-
ular implementation. Since in our proofs, there is no need to differentiate whether a certain
aspect of language processing is implementation defined or implementation dependent, we
will refer to all such aspects as “XQuery features with implementation freedom”. Because
of these freedoms in the language, two queries containing the same expressions (or different
executions of the same query) do not necessarily return literally the same results (i.e., XQuery
deep-equal), while they both return correct results.

4This includes the following documents: XQuery 1.0 and XPath 2.0 Data Model [71], XQuery 1.0: An XML
Query Language [38], XQuery 1.0 and XPath 2.0 Formal Semantics [67], XQuery 1.0 and XPath 2.0 Functions and
Operators [124], XSLT 2.0 and XQuery 1.0 Serialization [39], and XQuery Update Facility 1.0 [58].



CHAPTER 6. CORRECTNESS PROOF OF XQUERY DECOMPOSITION 99

In this section, we first look into some examples of how the implementation freedom on
the ordering of different XML documents affects query results. In case of differences due to
nodes’ document order, the XRPC rewriting framework guarantees consistent results by taking
some extra precautions. For the differences, the basic approach of our rewriting framework is
to re-define equality relationships of XQuery expressions to allow such differences.
Inter-Document Ordering Document order is defined in XQuery 1.0 and XPath 2.0 Data
Model (XDM) [71]. The relative order of nodes in different XML documents (for short:
inter-document ordering) is defined as: “stable but implementation dependent, subject to the
following constraint: If any node in a given tree, T1, occurs before any node in a different
tree, T2, then all nodes in T1 are before all nodes in T2.”, where stable means that “the relative
order of two nodes will not change during the processing of a given query”. That is, any
ordering (including random order) of two different XML documents is correct, as long as the
same ordering is used in one execution of a query. Under this definition, the query:

(doc("a")/a � doc("b")/b) = (doc("a")/a � doc("b")/b)

must always return true, since the ordering of doc(“a”) and doc(“b”) must be stable within
this query. However, a query like

(doc("a")/a � doc("b")/b) = (doc("d")/d � doc("c")/c)

may return true or false, depending on how inter-document ordering is defined by the ex-
ecuting XQuery engine. In fact, it may even differ in subsequent executions using the same
engine. Thus, when judging whether two queries are deep-equal, it is actually sufficient to
check if they produce result sequences that are “deep-equal with inter-document freedom”:

Let Q and Q′ be two XQuery queries containing one or more comparison(s) of inter-
document ordering. Let~rQ and~rQ′ be the result sequences of Q and Q′, respectively. We say Q
and Q′ are deep-equal with inter-document freedom to each other, if either dEq(~rQ,~rQ′) holds,
or the differences between~rQ and~rQ′ are only caused by that the executions of Q and Q′ use
different but stable inter-document ordering.

If the query Q′ above is a decomposition of Q, we regard Q′ as a valid decomposition.
Guaranteeing a stable ordering is trivial if Q opens each document only once, as any ordering
is correct. Otherwise, a stable ordering is guaranteed by the decomposition algorithms by
making sure that a subexpression comparing inter-document ordering is never decomposed,
if there is another subexpression in the query that compares document order of the same
document(s).
Deep-Equal Read-Only Queries with Implementation Freedom Besides inter-document
ordering, the XQuery specifications have defined a number of other implementation defined
or implementation dependent XQuery features. A complete list of these features, including
those defined by XQUF, is given in Appendix B. Taking into account all XQuery features
with implementation freedom, we say that a decomposed query Q′ is “deep-equal with imple-
mentation freedom” to the original query Q, if the result sequence of Q′ is deep-equal to one
of the result sequences that could be returned by Q.

Recall that XQuery queries are always executed in a dynamic context dynEnv, which
we simplify to a database state db, i.e., the documents and their contents stored in an XML
database. The semantic judgement db ` E ⇒ ~sE specifies that in the database state db, a
read-only expression E evaluates to a sequence~sE , which is an instance of the XDM.



100 6.1. PRELIMINARIES

Definition 6.1.6. Deep-equal read-only queries (with implementation freedom): Let Q
be an XQuery query and ~S Q = {~sQ

1 , . . . ,~sQ
n} the set of all valid result sequences of Q. That

is, assume that Q contains k XQuery features with implementation freedom, and for each of
these features, the number of choices an implementation has is {m1,m2, . . . ,mk}, respectively.
Then, the total number of valid result sequences of Q is bound by the permutation of the sum
of {m1,m2, . . . ,mk}:

n = |~S Q|= (
kX

i=1

mi)!

Let Q′ be a decomposed query of Q and ~sQ′
j a result sequence of Q′, then, we say that Q

and Q′ are “deep-equal with implementation freedom” to each other, iff there is one~sQ
i ∈~S Q,

such that dEq(~sQ
i ,~sQ′

j ). For simplicity, we just say that Q and Q′ are deep-equal to each other,
and denote it as dEq(Q,Q′). Hence:

∀db : db ` Q⇒~sQ
1 | db ` Q⇒~sQ

2 | . . . | db ` Q⇒~sQ
n

db ` Q′⇒~sQ′
1 | db ` Q′⇒~sQ′

2 | . . . | db ` Q′⇒~sQ′
n

∃~sQ
i ∈{~sQ

1 , . . . ,~sQ
n}.∀~sQ′

j ∈{~sQ′
1 , . . . ,~sQ′

n } : dEq(~sQ
i ,~sQ′

j )
dEq(Q,Q′)

6.1.4 Equality Relationship of Updating Queries
The results of updating queries, i.e., XCore queries containing XQUF expressions, are re-
flected on the documents affected by an updating query, after all updates in the query are
made effective. Naturally, one would regard two updating queries distributed over XRPC to
be deep-equal if they update the same documents (on the same peers), and the resulting doc-
uments (after updates have been made effective) are deep-equal. However, also due to the
XQuery features with implementation freedom, this simple comparison is too strict to be use-
ful. For instance, the XQUF specifies that “If multiple groups of nodes are inserted by multiple
insert expressions in the same snapshot, adjacency and ordering of nodes within each group
is preserved but ordering among the groups is implementation dependent.”. This implies that
even in local executions of XQUF queries, after the execution of the query (assuming an XML
document “a.xml” containing one node 〈a/〉):

(insert nodes (〈b/〉,〈c/〉) into doc(“a.xml”)/a, insert nodes (〈d/〉,〈e/〉) into doc(“a.xml”)/a )

the original document could be changed into 〈a〉〈b/〉〈c/〉〈d/〉〈e/〉〈/a〉 or 〈a〉〈d/〉〈e/〉〈b/〉
〈c/〉〈/a〉.

A more general way to compare if two updating queries are deep-equal is to compare their
pending update list (PUL), which is an unordered collection of all updates that should be ap-
plied after the evaluation of a certain updating query. The PUL contains sufficient information
to compare two queries, yet, it provides space to take into account the XQuery features with
implementation freedom that have been defined for updating queries.

For updating queries we use a slightly different semantic judgement. A successful execu-
tion of an updating query always yields an empty sequence and a Pending Update List (PUL)
∆5. Thus, the semantic judgement db ` E ⇒ ((),∆) specifies that in the database state db,
evaluating an updating expression E yields a tuple, which consists of the empty sequence ‘()’
and a PUL ∆. Each update primitive δ in a ∆ is a triple (N,T,~C), where:

5A PUL is an unordered list of possibly duplicate update primitives [58], thus, our notation~a for sequences or sets
is not applicable here.



CHAPTER 6. CORRECTNESS PROOF OF XQUERY DECOMPOSITION 101

• N is the name of this update primitive. It may be any one of the update primitive functions
defined by XQUF [58].

• T is the node identifier of the target node of this update primitive.

• ~C contains the new contents, for instance, ~C contains a sequence of to be inserted nodes,
if N=“upd:insertInto”; ~C contains a string literal, if N=“upd:rename”; and ~C is /0, if
N=“upd:delete”.

Definition 6.1.7. Deep-equal update primitives: Let δ and δ′ be two update primitives. We
say that δ and δ′ are deep-equal, denoted dEq(δ,δ′), iff δ and δ′ both represent the same
update action on the same node with the same deep-equal contents:

δ.N = δ′.N∧δ.T is δ′.T ∧dEq(δ.~C,δ′.~C) Z⇒ dEq(δ,δ′)
Because the PULs are unordered lists, we cannot check if two PULs are deep-equal by

comparing the corresponding update primitives at the same position in the lists. Moreover,
two PULs do not necessarily contain the same number of update primitives to have the same
effect on the affected documents, since multiple upd:delete operations may be applied to the
same node during execution of a query. In XQUF, deleting the same node multiple times in a
query has the same effect as deleting the node just once, thus, they could be treated as equal.
Contrary to deletion, multiple insertions of the same node sequence is not equal to inserting
the sequence only once. Finally, a PUL may not contain more than one upd:rename operation
that has the same target node. The same condition holds for the operations upd:replaceNode,
upd:replaceValue and upd:replaceElementContent.

Definition 6.1.8. Deep-equal pending update lists (with implementation freedom): Let ∆

and ∆′ be two PULs. Let ∆del , ∆re and ∆ins represent subgroups of ∆ that contain certain kinds
of update actions, defined as the following:

• ∆del = {δ|δ∈∆∧δ.N = “upd:delete”}

• ∆re = {δ|δ∈∆∧δ.N∈{“upd:rename”,“upd:replaceNode”,“upd:replaceValue”,
“upd:replaceElementContent”}}

• ∆ins = {δ|δ∈∆∧δ.N∈{“upd:insertBefore”,“upd:insertAfter”,
“upd:insertInto”, “upd:insertIntoAsFirst”,

“upd:insertIntoAsLast”, “upd:insertAttributes”}}
Similarly, ∆′del , ∆′re and ∆′ins represent the same subgroups of ∆′. We say that ∆ and ∆′ are
deep-equal to each other with implementation freedom (for short: ∆ and ∆′ are deep-equal),
denoted dEq(δ,δ′), iff ∆ and ∆′ satisfy the following conditions:

1. (∀δi∈∆del .∃δ′j∈∆′del : dEq(δi,δ
′
j))∧ (∀δ′i∈∆′del .∃δ j∈∆del : dEq(δ′i,δ j))

2. (∀δi∈∆re.∃δ′j∈∆′re.@δ′k∈∆′re : dEq(δi,δ
′
j)∧ j 6= k∧δ′j.N = δ′k.N∧δ′j.T is δ′k.T )∧(∀δ′i∈

∆′re.∃δ j∈∆re.@δk∈∆re : dEq(δ′i,δ j)∧ j 6= k∧δ j.N = δk.N∧δ j.T is δk.T )

3. |∆ins|= |∆′ins|∧∀δi∈distinct-primitives(∆ins).~δi = {∀δ j∈∆ins∧dEq(δi,δ j)}.
~δ′i = {∀δ′x∈∆′ins∧dEq(δ′x,δi)} : |~δi|= |~δ′i|∧∀n∈1..|~δi| : dEq(~δi[n],~δ′i[n])



102 6.1. PRELIMINARIES

In the above definition, condition 1 checks if for each update primitive δi ∈ ∆del , ∆′del
contains at least one update primitive δ′j that is deep-equal to δi; and vice versa. Condition
2 checks if for each update primitive δi ∈∆re, ∆′re contains exactly one update primitive δ′j
that is deep-equal to δi; and vice versa. Condition 3 checks if ∆ins and ∆′ins both contain the
same number of deep-equal insertion primitives. It does this by first computing, for each
distinct primitive δi in ∆ins, a subgroup ~δi, which consists of all primitives in ∆ins that are
deep-equal to δi. Then, for each such subgroup~δi, the corresponding group~δ′i with primitives
from ∆ins is computed. Finally, ~δi and~δ′i are compared to see if they are deep-equal. Here,
distinct-primitives() is defined as:

distinct-primitives(∆) = {∆dist | ∀δi∈∆.∃δdist
j ∈∆dist : dEq(δi,δ

dist
j )∧

∀δdist
i ∈∆dist .∃δ j∈∆.@δdist

j ∈∆dist :
dEq(δdist

i ,δ j)∧ i 6= j∧dEq(δdist
i ,δdist

j )}

Definition 6.1.9. Deep-equal updating queries (with implementation freedom): Two up-
dating XQuery queries Q and Q′ are deep-equal with implementation freedom to each other
(for short: deep-equal), denoted dEq(Q,Q′), iff, in any database state, the evaluations of Q
and Q′ yield the tuples ((),∆) and ((),∆′), respectively, where ∆ and ∆′ are deep-equal:

∀db : db ` Q⇒ ((),∆)∧db ` Q′⇒ ((),∆′)∧dEq(~δ,~δ′) Z⇒ dEq(Q,Q′)

6.1.5 Sequence Properties
We define several properties concerning XML node typed items in XQuery sequences. A
sequence~s is distinct, denoted η(~s), if~s does not contain duplicate XML nodes. Disjunct is a
more strict property: ~s is disjunct, denoted µ(~s), if none of the XML node typed items in~s has
an ancestor/descendant relationship with another node typed item in ~s. Finally, ~s is ordered,
denoted σ(~s), if all XML node typed items in~s appear in document order. Formally:

Property 6.1.10. Sequence properties:
Distinct η: η(~s)⇔∀si∈~s .@s j∈~s . i 6= j .type(si)∈~τ.type(s j)∈~τ : s j = si

Disjunct µ: µ(~s)⇔∀si∈~s .@s j∈~s . i 6= j .type(si)∈~τ.type(s j)∈~τ : s j∈{si/d-o-s::node()}
Ordered σ: σ(~s)⇔∀i, j∈1..|~s|. i< j.type(~s[i])∈~τ.type(~s[ j])∈~τ : ~s[i]�~s[ j] Z⇒ true

The next three lemmas can be deduced directly from the above property definitions:

Lemma 6.1.11. Empty sequence property: The empty sequence is always distinct, disjunct
and ordered.

Lemma 6.1.12. Single item property: Sequences containing a single item are always dis-
tinct, disjunct and ordered.

Lemma 6.1.13. Disjunct implies distinct: If a sequence is disjunct, then it is also distinct.

As we will see later, the combination of distinct and ordered properties is needed for
determining if the resulting sequence of applying the function fs:distinct-doc-order()
on a sequence is equivalent with the original sequence. The combination of disjunct and
ordered properties is crucial in the conservative algorithm to determine if forward XPath steps
on XML nodes from remote peers would return correct results.



CHAPTER 6. CORRECTNESS PROOF OF XQUERY DECOMPOSITION 103

6.1.6 XPath Steps and distinct-doc-order
The XQuery 1.0 and XPath 2.0 Formal Semantics [67] defines a function fs:distinct-doc-
order() (ddo() for short), which sorts its input nodes sequence by document order and
removes duplicates. It is trivial to see that if the input sequence of nodes ~e is distinct and
ordered, the result of ddo(~e) is equivalent with~e:

Lemma 6.1.14. DDO equivalence: η(~e)∧σ(~e) Z⇒~e≡ ddo(~e)

XQuery requires that XPath expressions return their resulting nodes sequences in docu-
ment order with duplicates eliminated. This is ensured in the XQuery Formal Semantics [67]
by passing the intermediate result of an XPath expression to the function fs:distinct-doc-
order() to produce the final result.

Definition 6.1.15. Raw XPath result: We use the notation: ~e/AS::NT = ddo(~e/as::NT),
where AS and as are the same AxisStep, to differentiate the input (indicated by the lower-
cased abbreviation as) and the output of ddo(). We call~e/as::NT the raw result of applying
an XPath step as::NT on the node sequence~e.

Let n = |~e|, the semantics of~e/as::NT is defined as:
~e/as::NT = (~e[1]/as::NT, ...,~e[n]/as::NT),

which is a literal concatenation of the resulting sequence of applying as::NT on each node
~e[i] ∈~e, in the same order they appear in~e (for short: sequence order).

If~e is a sequence consisting of only one node, i.e.,~e = (e), it is directly seen that~e/as::NT
is equivalent to~e/AS::NT.

Lemma 6.1.16. Raw XPath result on single node: The raw result of applying an XPath step
on a single XML node e is distinct and ordered: η(e/as::NT) and σ(e/as::NT).

Now we are ready to deduce the properties of the result of a FwdAxis step6:

Lemma 6.1.17. Distinct-and-ordered FwdAxis: Let ~e be a sequence of XML nodes and
~e/as::NT, where as ∈ FwdAxis, the raw result of applying a FwdAxis step on each node in
~e. If~e is disjunct, then~e/as::NT is distinct; if~e is ordered, then~e/as::NT is also ordered:

∀as∈FwdAxis : µ(~e) Z⇒ η(~e/as::NT), σ(~e) Z⇒ σ(~e/as::NT)

Proof. The proof can be done by induction: the base case |~e|= 0 is trivial; the other case |~e|=
1 is proven by Lemma 6.1.16. We assume that the lemma holds when |~e|= n, and we need to
prove that the lemma also holds when |~e|= n+1. Let~e = (~en,en+1) and~en = (e1, ...,en), we
have the following hypotheses:

(h0) as ∈ FwdAxis
(h1-a) µ(~en) Z⇒ η(~en/as::NT)
(h1-b) σ(~en) Z⇒ σ(~en/as::NT)
(h2) ~e/as::NT = (~en/as::NT, en+1/as::NT)
(h3-a) µ(~e)

6Similar work has been done by Hidders et al. in [96] and Fernández et al. in [73] to avoid unnecessary ordering
and duplicate elimination operations in XPath expressions. The authors present rules to infer the ordered and distinct
properties of the results of XPath steps on all axes, except self.



104 6.2. STATIC PROPERTIES ANALYSIS

(h3-b) η(~e)
(h3-c) σ(~e)

to prove that η(~e/as::NT) and σ(~e/as::NT) hold, it is equivalent to prove:
(t1) η((~en/as::NT, en+1/as::NT))
(t2) σ((~en/as::NT, en+1/as::NT))

Since en+1 is a single node, by Lemma 6.1.16 we have:
(h4-a) η(en+1/as::NT)
(h4-b) σ(en+1/as::NT)

With (h1-ab), (h4-ab) and (h2), we only need to prove that the following statements hold:
(t1’) ∀ei∈(~en/as::NT).∀e j∈(en+1/as::NT) : ¬(ei is e j)
(t2’) ∀ei∈(~en/as::NT).∀e j∈(en+1/as::NT) : ei� e j

We consider all possible values of as:

• as = self:

en+1/self::NT returns en+1 (or “()”). (t1’) holds, because en+1 is distinct from ~en (h3-a).
Similarly, (t2’) holds, because ∀ei∈~en : ei� en+1 (h3-b).

• as ∈ {child, descendant, descendant-or-self, attribute}

First, let us consider the case as=descendant: en+1/descendant::NT selects all descen-
dants of en+1 that satisfy the condition NT. Assume there exists a ex∈en+1/descendant::NT
that is also a descendant of a node ey in~en, which implies that ey and en+1 have the ancestor-
descendant relationship. However, this conflicts with the hypothesis (h3-a) that en+1 is dis-
junct with~en. Hence, the assumption does not hold, which proves the statement:

(t1’) ∀ei∈(~en/descendant::NT).∀e j∈(en+1/descendant::NT) : ¬(ei is e j)

From the XQuery definition of document order [38], we have:
(h5) ∀e j∈(en+1/descendant::NT) : en+1� e j

with (h3-b) we have: ~en� en+1, which implies
(h6) ∀ei∈(~en/descendant::NT) : ei� en+1.

From (h5) and (h6), we can deduce:
(t2’) ∀ei∈(~en/descendant::NT).∀e j∈(en+1/descendant::NT) : ei� e j

The other three cases are proven in a similar way.

6.2 Static Properties Analysis
In Section 5.6, we have described a new runtime XML projection technique, which extends
the basic compile-time XML projection technique [125] with new inference rules to handle a
larger subset of expressions defined in the XQuery Core grammar. The compile-time projec-
tion technique [125] defines an inference rule for each expression in its grammar to calculate
a set of projection paths, based on the subexpressions. The projection paths are an over-
estimation of the set of nodes that will be touched by an expression, which are divided into a
set of returned paths~r (specify nodes that are returned by the expression), and a set of used
paths ~u (specify nodes that are used to compute the result of the expression, but are not part
of the result).

To compute the distinct, disjunct and ordered properties for an expression, we extend
the main judgement rule of the path analysis with the triple 〈η,µ,σ〉. Thus, the judgement:



CHAPTER 6. CORRECTNESS PROOF OF XQUERY DECOMPOSITION 105

Env ` E Z⇒~r, ~u, 〈η,µ,σ〉 holds, iff, under the environment Env, the expression E returns the
set of paths ~r, uses the set of paths ~u, and evaluating E produces a sequence that has the
properties 〈η,µ,σ〉. Each path in~r and~u is a SimplePath as defined in Table 5.6. If the result
sequence of an expression does not have a certain property, the property is replaced by the
symbol ∅ in the judgement.

In the remainder of this section, we redefine inference rules for those expressions whose
results have at least one of the properties 〈η,µ,σ〉. We omit redefining rules for expressions
for which the judgement Env ` E Z⇒~r, ~u, 〈∅,∅,∅〉 always holds. In the inference rules, we
use ⊥ in premises to denote that the value of a property is not significant.

6.2.1 Literal Values

Env ` Literal Z⇒ (), (), 〈η,µ,σ〉 (LITERAL)

Literal values do not access or return any paths. By Lemma 6.1.12, a literal value is always
distinct, disjunct and ordered.

6.2.2 Variables
Env($x) = E1

Env ` E1 Z⇒~r1, ~u1, 〈η1,µ1,σ1〉
Env ` $x Z⇒~r1, ~u1, 〈η1,µ1,σ1〉

(VAR)

If a variable $x is bound to the expression E, accessing the variable uses and returns the
same set of paths as E.

The distinct, disjunct and ordered properties of a variable $x is determined by these prop-
erties of the expression E to which the variable is bound.

6.2.3 Sequences

Env ` () Z⇒ (), (), ()〈η,µ,σ〉 (EMPTYSEQ)

The empty sequence does not use or return any paths, and it is always distinct, disjunct
and ordered (Lemma 6.1.11).

Env ` E1 Z⇒~r1, ~u1,~v1〈⊥,⊥,⊥〉
Env ` E2 Z⇒~r2, ~u2,~v2〈⊥,⊥,⊥〉

Env ` (E1, E2) Z⇒~r1 ∪~r2, ~u1 ∪~u2,~v3〈∅,∅,∅〉
(SEQ)

The sequence expression concatenates two sequences into one sequence, without eliminat-
ing duplicate nodes or changing the order in which the items appear in the resulting sequence.
The returned and used paths of a sequence expression is the union of the returned and used
paths of its subexpressions. As it can not be statically determined, this rule deduces that the
result of a (non-empty) sequence expression is not distinct, disjunct or ordered.

6.2.4 for Expressions
Env ` E1 Z⇒~r1, ~u1,~v1〈⊥,⊥,⊥〉

Env′ = Env+($x 7→ E1)
Env′ ` E2 Z⇒~r2, ~u2,~v2〈⊥,⊥,⊥〉

Env ` for $x in E1 return E2 Z⇒~r2,~r1 ∪~u1 ∪~u2,~v3〈∅,∅,∅〉
(FOR)

A for expression binds new variables in the environment, hence, the environment is first
extended with the new variable and passed to the evaluation of E2. A for expression returns
the returned paths of its return clause. All other paths are used to calculate the result of a
for expression.



106 6.2. STATIC PROPERTIES ANALYSIS

Similar to sequence expression, a for expression returns a simple concatenation of the
resulting sequences of all iterations, without eliminating duplicate nodes or sorting them in
their document order, hence, this rule deduces that the result sequence of a for expression is
not distinct, disjunct or ordered.

6.2.5 let Expressions
Env ` E1 Z⇒~r1, ~u1, 〈⊥,⊥,⊥〉

Env′ = Env+($x 7→ E1)
Env′ ` E2 Z⇒~r2, ~u2, 〈η2,µ2,σ2〉

Env ` let $x := E1 return E2 Z⇒~r2,~r1 ∪~u1 ∪~u2, 〈η2,µ2,σ2〉
(LET)

A let expression binds a new variable in the environment, hence, the environment is first
extended with the new variable and passed to the evaluation of E2. A let expression returns
the returned paths of its return clause. All other paths are used to calculate the result of a
let expression.

A let expression has the same distinct, disjunct and ordered properties as its return ex-
pression E2.

6.2.6 Conditionals
Env ` E0 Z⇒~r0, ~u0, 〈⊥,⊥,⊥〉

Env ` E1 Z⇒~r1, ~u1, 〈η1,µ1,σ1〉
Env ` E2 Z⇒~r2, ~u2, 〈η2,µ2,σ2〉

Env ` if (E0) then E1 else E2 Z⇒~r1 ∪~r2, ~r0 ∪~u0 ∪~u1 ∪~u2, 〈η1&η2, µ1&µ2, σ1&σ2〉
(IF)

An if expression returns either the expression in the then branch or the expression in the
else branch. Thus, the returned paths of an if expression is the union of the returned paths
of these two expressions. All other paths are used to calculate the result of the if expression.

At compile time, we can only conclude that the result of an if expression is distinct,
disjunct and ordered, iff it can be statically determined that both its then and else branches
are distinct, disjunct and ordered.

6.2.7 Typeswitch
Env ` E0 Z⇒~r0, ~u0, 〈⊥,⊥,⊥〉

Env ` E1 Z⇒~r1, ~u1, 〈η1,µ1,σ1〉
. . .

Env ` En Z⇒~rn, ~un, 〈ηn,µn,σn〉
Env ` typeswitch (E0)case $x1 as SequenceType1 return E1 . . .default $xn return En

Z⇒~r1 ∪ ...∪~rn,~r0 ∪~u0 ∪ ...∪~un, 〈η1&...&ηn,µ1&...&µn,σ1&...&σn〉

(TPSWTCH)

The inference rule for typeswitch is very similar to the one for the conditionals, except
that typeswitch needs to handle multiple branches.

If the return expression of all case clauses and the default clause are distinct, disjunct
and ordered, the result of the typeswitch also has these properties.

6.2.8 Value and Node Comparisons
Env ` E1 Z⇒~r1, ~u1, 〈⊥,⊥,⊥〉
Env ` E2 Z⇒~r2, ~u2, 〈⊥,⊥,⊥〉

Env ` E1�E2 Z⇒ (),~r1 ∪~u1 ∪~r2 ∪~u2, 〈η,µ,σ〉
(COMP)

The symbol � represents the value and node comparison operators =, !=, <, <=, >, >=,
is, � and �. Value and node comparisons never return nodes, but a literal boolean value.
Thus, all paths needed for a value comparison are used paths.



CHAPTER 6. CORRECTNESS PROOF OF XQUERY DECOMPOSITION 107

By Lemma 6.1.12, a single literal value is always distinct, disjunct and ordered, thus the
result of a value comparison also has these properties, regardless of whether its subexpressions
E1 and E2 have these properties or not.

6.2.9 Order Expressions
Env ` E0 Z⇒~r0, ~u0, 〈η0,µ0,⊥〉
Env ` E1 Z⇒~r1, ~u1, 〈⊥,⊥,⊥〉

. . .
Env ` En Z⇒~rn, ~un, 〈⊥,⊥,⊥〉

Env ` (E0) order byE1 ascending|descending . . .En ascending|descending
Z⇒~r0, ~u0 ∪~r1 ∪ ...∪~rn ∪~u1 ∪ ...∪~un, 〈η0,µ0,∅〉

(ORDER)

An order by expression returns the expression E0 reordered by the OrderSpec expres-
sions E1, ...,En. Thus, the returned paths of E0 are also the returned paths of the order by
expression, and all other paths are propagated as the used paths of the order by expression.

The distinct and disjunct properties of an order by expression are determined by its input
expression E0. However, the result of an order by expression is regarded as never ordered
by document order, because it can not be determined at compile time how the result sequence
will be ordered.

6.2.10 Node Set Expressions
Env ` E1 Z⇒~r1, ~u1, 〈⊥,⊥,⊥〉
Env ` E2 Z⇒~r2, ~u2, 〈⊥,⊥,⊥〉

Env ` E1 union E2 Z⇒~r1 ∪~r2, ~u1 ∪~u2, 〈η,∅,σ〉
(UNION)

Env ` E1 Z⇒~r1, ~u1, 〈⊥,µ1,⊥〉
Env ` E2 Z⇒~r2, ~u2, 〈⊥,⊥,⊥〉

Env ` E1�E2 Z⇒~r1 ∪~r2, ~u1 ∪~u2, 〈η,µ1,σ〉
( INTERSECT

EXCEPT
)

The symbol � represents the node set operators intersect and except. For all three
kinds of node set expressions, it holds that (i) the returned and used paths are respectively the
union of the returned and used paths of their subexpressions, and (ii) their results are always
distinct and ordered as required by the XQuery language.

However, situations are different regarding the disjunct property. The result of a union
expression is never disjunct, because it combines nodes from two sequences. Even if the two
subexpressions E1 and E2 are disjunct themselves, statically, it can not be determined if all
nodes in E2 are disjunct with all nodes in E1. The operators intersect and except only
return nodes from their first subexpression E1, hence, their disjunctness depends on that of E1.

6.2.11 Constructors
Env ` E0 Z⇒~r0, ~u0, 〈⊥,⊥,⊥〉
Env ` E1 Z⇒~r1, ~u1, 〈⊥,⊥,⊥〉

Env ` element|attribute {E0}{E1}
Z⇒ doc(vi::vi),~r0 ∪~u0 ∪~r1 ∪ (~r1/descendant::∗)∪~u1, 〈η,µ,σ〉

(ELEMATTR)

Env ` E1 Z⇒~r1, ~u1, 〈⊥,⊥,⊥〉
Env ` document|text {E1}Z⇒ doc(vi::vi),~r1 ∪ (~r1/descendant::∗)∪~u1, 〈η,µ,σ〉

(DOCTXT)

Constructors make a deep copy of their operands. The newly constructed element is anno-
tated with a synthetic (unique) URI doc(vi::vi) to denote the d-graph vertex vi, from which



108 6.2. STATIC PROPERTIES ANALYSIS

the element originates (see Section 5.4). Evaluation of the name expression E0 always yields
a single literal string value. Constructors do not return any nodes from the original XML
nodes or documents. However, as the whole subtree of nodes in the content expression E2 are
copied, we add all descendants of those nodes to the set of used paths.

As constructors always return a single fresh node, their result is always distinct, disjunct
and ordered.

6.2.12 XPath Expressions
Env ` E0 Z⇒~r0, ~u0, 〈⊥,⊥,⊥〉

Env ` E0/attribute::NT Z⇒~r0/attribute::NT,~r0 ∪~u0, 〈η,µ,σ〉 (STEPa)

Env ` E0 Z⇒~r0, ~u0, 〈⊥,µ0,⊥〉
AS ∈ {self,child}

Env ` E0/AS::NT Z⇒~r0/AS::NT,~r0 ∪~u0, 〈η,µ0,σ〉
(STEPsc)

Env ` E0 Z⇒~r0, ~u0, 〈⊥,⊥,⊥〉
AS ∈ AxisStep\{self,child,attribute}

Env ` E0/AS::NT Z⇒~r0/AS::NT,~r0 ∪~u0, 〈η,∅,σ〉
(STEP 6µ)

An XPath step applies a StepExpr on each returned path of its subexpression E0. The
result of an XPath step is always distinct and ordered, as required by the XQuery language.
To compute the disjunct property, however, the path steps need to be treated differently.

• STEPa: attribute nodes of distinct nodes never overlap, thus, the result of an attribute
step is always disjunct.

• STEPsc: if E0 is disjunct, the result of applying a self, child, preceding-sibling or
following-sibling step on E0 is also disjunct. The case E0/self::NT is trivial. The
child nodes of a single node are disjunct, and all nodes in E0 are disjunct, so E0/child::NT
is disjunct as well.

• STEP 6µ: for the remaining axis steps that include ancestor, ancestor-or-self, parent,
preceding, preceding-sibling, following, following-sibling, descendant and
descendant-or-self, it can not be statically determined if their results are disjunct, re-
gardless of if the result of E0 is disjunct or not.

6.2.13 Built-in Function Calls
∀i ∈ 1..k : Env ` Ei Z⇒~ri, ~ui, 〈ηi,µi,σi〉

R (F (E1, ...,Ek)) Z⇒~rF , ~uF , 〈ηF ,µF ,σF 〉

Env ` F (E1, ...,Ek) Z⇒~rF , (
k[

i=1

(~ri ∪~ui))∪~uF , 〈ηF ,µF ,σF 〉
(BLTIN)

For each built-in function, we assume that there is a corresponding helper rule R which
specifies how the returned paths of the function results depend on the returned paths of the
parameters and if the result of the function is distinct, disjunct or ordered. The helper rules
for all built-in functions defined in [124] are listed in Appendix C.



CHAPTER 6. CORRECTNESS PROOF OF XQUERY DECOMPOSITION 109

6.2.14 Transform Expressions
Env ` E1 Z⇒~r1, ~u1, 〈⊥,⊥,⊥〉

. . .
Env ` En Z⇒~rn, ~un, 〈⊥,⊥,⊥〉
Env ` Em Z⇒~rm, ~um, 〈⊥,⊥,⊥〉
Env ` Et Z⇒~rt , ~ut , 〈ηt ,µt ,σt〉

Env ` copy $x1 := E1, . . . ,$xn := En modify Em return Et

Z⇒~rt , (
n[

i=1

(~ri ∪~ui ∪~ri/descendant::∗))∪~rm ∪~um ∪~ut , 〈ηt ,µt ,σt〉

(TRANS)

A TransformExpr expression returns the value of the expression in its return clause,
thus the returned paths of a TransformExpr are the returned paths of Et , all other paths
are propagated as used paths. Since deep-copies of the results of E1, . . . ,En are made, it is
necessary to add their descendants into used paths.

A TransformExpr makes deep copies of the subexpressions in its copy clause, and each
newly created node gets a new node identity. The subexpression in the modify clause must
be an updating expression (or a vacuous expression [58]), which does not return any value.
Thus, the η,µ,σ properties of a TransformExpr is determined by the η,µ,σ properties of the
return expression Et .

6.3 Correctness Proof of the Conservative Decomposition
Algorithm

The semantics of marshalling and unmarshalling function parameters (or results) in XRPC
under the pass-by-value semantics is defined by the functions s2n() and n2s() (see Sec-
tion 3.4). The effect of marshalling (s2n()) a sequence and then unmarshalling it (n2s()) is
that a deep-copy of the sequence is created.

Definition 6.3.1. By-value copy operator Cv: Let~s be an XQuery sequence that may contain
duplicates or overlapping nodes, we use Cv(~s) to indicate a by-value copy of~s. The semantics
of the by-value copy operator Cv is defined as: Cv(~s) = n2s(s2n(~s)).

Under the pass-by-value semantics, the semantics of executing an expression on a remote
peer is to first replace each parameter of the expression with a by-value copy, then execute the
expression (using the by-value copies on the local peer), and finally return a by-value copy of
the result.

Property 6.3.2. Cv properties:

dEq(~s,Cv(~s)) η(~s) Z⇒ η(Cv(~s)) µ(~s) Z⇒ µ(Cv(~s)) σ(~s) Z⇒ σ(Cv(~s))

Below we introduce a mapping function to denote the relationship between two corre-
sponding nodes in the subtrees rooted at node typed items in~s and Cv(~s), respectively.

Definition 6.3.3. By-value mapping function mv: Let ~e be a sequence of XML nodes and
Cv(~e) its by-value copy. The by-value mapping function mv maps each node ei∈{~e/d-o-s::
node()} to exactly one node e′i ∈{Cv(~e)/d-o-s::node()}, and vice versa. Formally, the
result of mv is defined as the following:

∀i∈1..|~e|.∀ j∈1..|~e[i]/d-o-s::node()| :
mv(~e[i]/d-o-s::node()[ j]) is Cv(~e)[i]/d-o-s::node()[ j])



110 6.3. CONSERVATIVE CORRECTNESS PROOF

For each ei, mv(ei) is called the by-value-mapping of ei in Cv(~e). The reverse function m−1
v

maps an e′i back to its corresponding ei, such that, ei is m−1
v (mv(ei)).

Lemma 6.3.4. Mapped raw results of FwdAxis steps on ~e and Cv(~e): Let ~e be a se-
quence of XML nodes and Cv(~e) its by-value copy. The raw results of applying multiple
consecutive FwdAxis steps on~e and Cv(~e) are the by-value-mapping of each other, denoted:
Cv(~e)/as1::NT1/.../asn::NTn)≡ mv(~e/as1::NT1/.../asn::NTn), where ∀asi∈FwdAxis.

Proof. If~e = (e) and n = 1, it is trivial to see that the following holds:
(t1) Cv(e)/as1::NT1 = mv(e/as1::NT1)

If |~e|> 1 and n = 1, with Definition 6.1.15, we know that the raw results of applying as1::NT1
on ~e is a literal concatenation of the intermediate raw result ~e[i]/as1::NT1 in sequence order.
The same holds for Cv(~e). Thus we have:

(t2) Cv(~e)/as1::NT1 = mv(~e/as1::NT1)
If |~e| > 1 and n > 1, the raw results is again a concatenation of each intermediate raw result
(i.e., one step on one node) in sequence order, which implies:

(t3) Cv(~e)/as1::NT1/.../asn::NTn) = mv(~e/as1::NT1/.../asn::NTn)

Definition 6.3.5. Node relationship function R: Let el and er be two XML nodes, the rela-
tionship function R takes el and er as its input and returns the relationship between el and er,
as the following:

R(el ,er) =

8<:
“� ”, if el � er;
“is”, if el is er;
“� ”, if el � er.

Note that R is exactly what is needed by ddo() to process its input sequence. The follow-
ing lemma can be directly deduced from the definition of by-value copy:
Lemma 6.3.6. By-value node relationships: Let e be a single XML node and Cv(e) its by-
value copy. Then, we have:
∀u,w∈{e/d-o-s::node()}.∀u′,w′∈{Cv(e)/d-o-s::node()} :u′ = mv(u)∧w′ = mv(w) Z⇒ R(u,w) = R(u′,w′)

That is, the relationship between any two nodes u and w in the subtree rooted at e is the same
as the relationship between their corresponding nodes u′ and w′ in Cv(e).

Lemma 6.3.7. By-value deep-equal ddo(): Let e be a single XML node and Cv(e) its by-
value copy. Let ~a be a sequence containing XML nodes in the subtree rooted at e, i.e, ∀ai∈
{e/d-o-s::node()}, and~b the by-value mapping of~a in Cv(e), then: dEq(ddo(~a),ddo(~b)).

Proof. With~b = mv(~a), we have:
(h1) ∀i∈1..|~a| :~b[i] = mv(~a[i])

With (h1) and Lemma 6.3.6, we have:
(h2) ∀i, j∈1..|~a| : R(~a[i],~a[ j]) = R(~b[i],~b[ j])

That is, the relationship between any two nodes in ~a is the same as their corresponding nodes
in~b. This directly leads to dEq(ddo(~a),ddo(~b)).

Lemma 6.3.8. By-value deep-equal FwdAxis: Let~e be a sequence of XML nodes and Cv(~e)
its by-value copy. Iff ~e is disjunct and ordered, the result sequences of applying any number
of consecutive FwdAxis steps on~e and Cv(~e) are deep equal to each other. Formally:

µ(~e),σ(~e) Z⇒ dEq(~e/AS1::NT1/.../ASn::NTn,Cv(~e)/AS1::NT1/.../ASn::NTn) ∧∀i∈1..n : ASi∈FwdAxis



CHAPTER 6. CORRECTNESS PROOF OF XQUERY DECOMPOSITION 111

Proof. We prove this lemma in two steps. First, we show that the lemma holds if ~e contains
a single XML node. Then, we generalise the proof to the case that ~e contains multiple XML
nodes. Note that computing the final results of applying XPath steps on a node sequence can
be done by first computing the raw results (Definition 6.1.15), and then applying ddo() on the
raw results to eliminate duplicates and sort nodes (Section 6.1.6). Lemma 6.3.4 has already
proven that~e/as1::NT1/.../asn::NTn and Cv(~e)/as1::NT1/.../asn::NTn are by-value-mapping
of each other. Thus, the crucial issue in this proof is to show that ddo() works correctly on
Cv(~e)/as1::NT1/.../asn::NTn.

Case 1: ~e = (e)

With Lemma 6.3.4, we have:
(h1-1) Cv(e)/as1::NT1/.../asn::NTn = mv(e/as1::NT1/.../asn::NTn)

For short, we use~u and ~w to denote e/as1::NT1/.../asn::NTn and Cv(e)/as1::NT1/.../asn::NTn,
respectively. Since all asi are FwdAxis steps, we have:

(h1-2) ∀x∈1..|~u| :~u[x]∈{e/d-o-s::node()}∧~w[x]∈{Cv(e)/d-o-s::node()}
With (h1-1) and (h1-2) Lemma 6.3.7, we have:

(h1-3) dEq(ddo(~u),ddo(~w))
With (h1-3) and Definition 6.1.15, we have:

(t1) dEq(e/AS1::NT1/.../ASn::NTn, Cv(e)/AS1::NT1/.../ASn::NTn)
Thus, the lemma holds, when~e = (e).

Case 2: ~e = (e1, ...,ex)

With (t1), we have:
(h2-1) ∀x∈1..|~e| : dEq(~e[x]/AS1::NT1/.../ASn::NTn,Cv(~e)[x]/AS1::NT1/.../ASn::NTn)

With Property 6.3.2, we have:
(h2-2) µ(~e) Z⇒ µ(Cv(~e)),σ(~e) Z⇒ σ(Cv(~e))

Which implies that the intermediate results of applying AS1::NT1/.../ASn::NTn on each node
in~e (or Cv(~e)) in sequence order, are distinct and ordered, i.e., ∀i, j∈1..|~e|∧ i < j:

(h2-3) ∀u∈{~e[i]/AS1::NT1/.../ASn::NTn}.∀w∈{~e[ j]/AS1::NT1/.../ASn::NTn} :
R(u,w) = “� ”

(h2-4) ∀u′∈{Cv(~e)[i]/AS1::NT1/.../ASn::NTn}.∀w′∈{Cv(~e)[ j]/AS1::NT1/.../ASn::NTn} :
R(u′,w′) = “� ”

With (h2-3), (h2-4) and Lemma 6.1.14 we have:
(h2-5) (~e[1]/AS1::NT1/.../ASn::NTn, ...,~e[x]/AS1::NT1/.../ASn::NTn)≡

ddo(~e[1]/AS1::NT1/.../ASn::NTn, ...,~e[x]/AS1::NT1/.../ASn::NTn)
(h2-6) (Cv(~e)[1]/AS1::NT1/.../ASn::NTn, ...,Cv(~e)[x]/AS1::NT1/.../ASn::NTn)≡

ddo(Cv(~e)[1]/AS1::NT1/.../ASn::NTn, ...,Cv(~e)[x]/AS1::NT1/.../ASn::NTn)
Which implies:

(t2) dEq(~e/AS1::NT1/.../ASn::NTn,Cv(~e)/AS1::NT1/.../ASn::NTn)
Thus, the lemma also holds, when~e = (e1, ...,ex).

Finally, the correctness of the conservative decomposition algorithm is defined as follows:

Theorem 6.3.9. Conservative Decomposition Correctness: Let Q be a normal read-only
XCore query (i.e., without any XRPC expressions) and G the corresponding d-graph. Iv(G)⊂
G is the non-empty set of decomposition points validated by the by-value insertion conditions.
Let G’ be the d-graph derived by doing an XRPCExpr insertion above each vertex in Iv(G)



112 6.3. CONSERVATIVE CORRECTNESS PROOF

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

G

v′
1

v′
2

v′
3

v′
4 =

Cv(v4)

v5

Cv(v′
6)

v′
7

v′
8 =

Cv(v′
3)

v9

v10

v11

v12

G′

Figure 6.2: A d-graph G and its by-value decomposed d-graph G′

(see Section 5.3.2), and Q’ is the corresponding query of G’. Then, dEq(Q,Q′) holds, under
the definition of deep-equal read-only queries with implementation freedom (Definition 6.1.6).

Proof. We prove this theorem by contradiction: assume ¬dEq(Q,Q′). Then there must exist
one vertex vx ∈G, which depends on by-value copies of remote sequences7, and its corre-
sponding vertex in G′ is v′x such that vx and v′x are not deep-equal, even if each vertex vz, on
which vx depends, is deep-equal to its corresponding vertex v′z in G′. Formally, ∃vx∈G and
∃v′x∈G′, such that:

(Cnd1) ¬dEq(vx,v′x) ∧ ∀vz∈{vz|vx ; vz}.∀v′z∈{v′z|v′x ; v′z} : dEq(vz,v′z)
(Cnd2) (vx∈ Iv(G)∧∃vm∈V (G)\V (Gvx )∧ vx

v;vm)∨ (∃vn∈ Iv(G)∧ vx ; vn)

This can be illustrated more clearly by an example, as shown in Figure 6.2.
The figure shows a d-graph G with Iv(G) = {v4,v6} at its left side. The varref-edge (v8,v3)

determines that the vertices v3 and v8 represent a Var and a VarRef grammar rule, respectively.
At the right side of the figure, it is the corresponding decomposed d-graph G′, in which the
effect of remote executions of v4 and v6 is indicated using by-value copy operators. As v4 does
not depend on any copied values, the effect of executing v4 remotely is equivalent to executing
v4 locally, and return a by-value copy of the result. The effect of executing v6 remotely is
equivalent to executing v6 locally on a by-value copy of its parameter v8 and return a by-value
copy of the result. Whether dEq(v6,v′6) holds is the subject of this proof, as v′6 depends on a
copied parameter,

Thus, the set of vertices that could possibly return non-deep-equal results includes {v1, v2,
v3, v6, v7, v8}. We need to check (i) if remote executions of v6 would produce non-deep-equal
results, because it depends on a by-value copied parameter; and (ii) if the vertices v1, v2, v3,
v7 and v8 return non-deep-equal results, because they depend on by-value copies of remote
results. Note that, when checking, for instance, if ¬dEq(v6,v′6) holds, we have the hypothesis:
∀i∈3,4,5,7..11 : dEq(vi,v′i). At this point, it is safe to assume, e.g., that dEq(v3,v′3) holds,
even if v3 depends on v4, because, otherwise, v3 is already a vx.

In the remainder of this proof, we examine each kind expression in the XCore grammar
(Table 5.2) to see if it could be a vx, i.e., expressions that produces non-deep-equal results, if
any of their subexpressions are replaced by a deep-equal copy (either as parameters for remote
executions, or as results of remote executions).

7Either vx is in Iv(G) and uses those sequences as its parameters; or those sequences are results of remote execu-
tions and are used by vx.



CHAPTER 6. CORRECTNESS PROOF OF XQUERY DECOMPOSITION 113

6.3.9.1 Easy cases

The easy cases include Literal, variables, ExprSeq, IfExpr, Typeswitch, OrderExpr,
value comparisons, and constructors. The results of these expressions are not determined
by XML node identities or structural properties. Hence, it is easy to see that for an expression
in this group, replacing any of its subexpressions by a deep-equal copy would not alter the
result of this expression:

• Literals and variables are trivial cases.
• An ExprSeq simply concatenates the resulting sequences of its subexpressions, thus, re-

placing any of the subexpressions of the ExprSeq with a deep-equal copy will produce
deep-equal result.

• The boolean value of the condition of an IfExpr determines the branch to be returned, and
it could be replaced by a deep-equal copy without altering the decision. Since an IfExpr
returns either its then or its else branch, the IfExpr would return deep-equal result if any
of its branches is replaced with a deep-equal copy. Similar reasoning applies to Typeswitch
and OrderExpr.

• Value comparisons compare the literal values of their operands.
• Constructors always produce fresh nodes by making a deep-copy of their operands.

Hence, vx can not be an expression listed above.

6.3.9.2 ForExpr and LetExpr

Assume vx is a ForExpr, according to condition (Cnd1), the following statement must be true:

dEq(E0,E ′0) dEq(E1(E0),E ′1(E
′
0))

¬dEq(for $x in E0 return E1, for $x in E ′0 return E ′1)
(tv

For)

Directly, the value of E0 only determines the number of iterations of a for-loop, and it is
trivial to see that E ′0 leads to the same number of iterations. The result of a for expression
is mainly determined by the result of its return clause E1, which possibly has dependency on
E0 (indicated in the second premise by passing E0 as a parameter to E1). As we have pointed
out earlier, at this point, it is safe to assume that dEq(E1(E0),E ′1(E

′
0)) holds. Thus, replacing

E1 by E ′1 implies that each iteration would produce a deep-equal sequence, and clearly, the
concatenation of all those sequences is again deep-equal.

Hence, vx can not be a ForExpr, and similarly, vx could not be a LetExpr.

6.3.9.3 NodeCmp and NodeSetExpr

The by-value insertion condition ii (Section 5.4.1) states that there must not exist a valid de-
composition point on which a NodeCmp (is,�,�) or a NodeSetExpr (union, intersect,
except) depends. This prevents NodeCmp and NodeSetExpr expressions from using by-value
copied results of remote executions. Condition ii also states that a decomposed NodeCmp or
NodeSetExpr expression may not depends on any sequences outside the decomposed sub-
graph, preventing these expressions from using copied parameters. This contradicts with
(Cnd2) above, which state that a vx must depend on at least one (copied) remote sequence.

Hence, vx can not be a node comparison or a node set expression.



114 6.3. CONSERVATIVE CORRECTNESS PROOF

6.3.9.4 StepExpr

The by-value insertion condition i excludes RevAxis and HorAxis from depending on a
(by-value) copied sequence, which contradicts with (Cnd2) above. Thus, assume vx is a
StepExpr, according to (Cnd1) above, the following statement must be true:

dEq(E1,E ′1) AS∈FwdAxis
¬dEq(E1/AS::NT, E ′1/AS::NT)

(tv
Step)

With Lemma 6.3.8 we have: dEq(E1/AS::NT,E ′1/AS::NT), iff AS∈FwdAxis and E1 is disjunct
and ordered. Thus, the statement tv

Step is true if we can find an E1 which is non-disjunct or
unordered.

According to the static property analysis rules (Section 6.2), these expressions return non-
disjunct results (regardless of the properties of their subexpressions): ExprSeq, ForExpr,
union, parent, ancestor, ancestor-or-self, descendant, descendant-or-self,
preceding, preceding-sibling, following and following-sibling, and order by ex-
pressions return unordered results. However, the by-value insertion condition iii forbids a
FwdAxis step to depend on copies of any of these expressions. This implies that E1 is always
disjunct and ordered, thus, the statement tv

Step is not true.

Hence, vx can not be a StepExpr.

6.3.9.5 Function calls

Assume vx is a FunCall to a built-in function F (r1, ...,rk)8, according to (Cnd1) above, the
following statement must be true:

∀i∈1..k : dEq(pi, p′i) F ∈built-in
¬dEq(F (p1, ..., pk), F (p′1, ..., p′k))

(tv
BltIn)

A built-in function F would return non-deep-equal result if it needs to access values out-
side the subtrees of its parameters. Such built-in functions include fn:id(), fn:idref(),
fn:root() and fn:lang(). However, the by-value insertion condition iv prevents any of
these functions to depend on copied parameters.

Hence, vx can not be a FunCall to a built-in function.

6.3.9.6 TransformExpr

Note that a TransformExpr is a read-only expression [58] and it is allowed to be decomposed
by all three decomposition algorithms. Thus, we analyse here if vx can be a TransformExpr.

Assume vx is a TransformExpr, according to condition (Cnd1), the following statement must
be true:

∀i∈1..c : dEq(Ei,E ′i ) dEq(Er,E ′r)
¬dEq(copy $x1 := E1, ...,$xc := Ec modify Em return Er,

copy $x1 := E ′1, ...,$xc := E ′c modify Em return E ′r)
(tv

Trns f )

A TransformExpr makes deep copies of its source expressions E1, ...,Ec, which is equivalent
to replacing these expressions with their by-value copies. The expression Em in the modify
clause must be an UpdExpr [58], which is not allowed to be decomposed by the XQUF inser-
tion conditions (Section 5.7.1). The result of a TransformExpr is determined by the value of

8Our XCore grammar only allows calls to built-in functions (Section 5.3).



CHAPTER 6. CORRECTNESS PROOF OF XQUERY DECOMPOSITION 115

the return expression Er. Clearly, replacing Er with a by-value copy of it will not cause the
TransformExpr to return non-deep-equal result. Thus, the statement tv

Trns f is not true.

Hence, vx can not be a TransformExpr.

In summary, we were not able to find an vx, which is not deep-equal to its corresponding
vertex v′x in G′, while all vertices, on which vx depends, are deep-equal to their corresponding
vertices in G′. Thus, the assumption ¬dEq(Q,Q′) does not hold, which proves the correctness
of the theorem.

6.4 Correctness Proof of the By-Fragment Decomposition
Algorithm

Definition 6.4.1. Canonical subsequence: The canonical subsequence of a sequence ~s, de-
noted ζ(~s)ζ(~s)ζ(~s), consists of a single occurrence of all node-typed items in~s that are not a descen-
dant of another node-typed item in~s, sorted by their document order. Formally, nodes in ζ(~s)
satisfy the following conditions:

• exist: ∀s j∈ζ(~s) : ∃si∈~s∧ si is s j

• unique: ∀si∈~s : ∃s j∈{ζ(~s)/d-o-s::node()}∧exactly-one(s j)∧ si is s j

• disjunct: ∀i, j∈1..|ζ(~s)| : i 6= j Z⇒ ζ(~s)[i] /∈{ζ(~s)[ j]/d-o-s::node()}
• ordered: ∀k∈2..|ζ(~s)| : ζ(~s)[k−1]� ζ(~s)[k]

Definition 6.4.2. By-fragment copy operator C f : Let ~s be an XQuery sequence that may
contain duplicates or overlapping nodes. A by-fragment-copy, denoted C f (~s), of ~s is a pair
〈~S , ~F 〉, where

• ~F is a set of fresh XML fragments, created by making a by-value copy (i.e., a deep-copy)
of the canonical subsequence of~s, i.e., ~F = Cv(ζ(~s));

• ~S is the return sequence of the by-fragment copy operator C f . It is a one-to-one map-
ping of the items in~s constructed according to the rules below:

∀i∈1..|~s|,
(

~S [i] =~s[i], if type(~s[i]) /∈~τ;
~S [i] is ~F [ j]/d-o-s::node()[k],where{ j,k |~s[i] is ζ(~s)[ j]/d-o-s::node()[k]}.

That is, if~s[i] is a literal value, ~S [i] gets the value of~s[i]; otherwise, ~S [i] is a reference
to the node in ~F that corresponds to~s[i].

Under the pass-by-fragment semantics, the semantics of executing an expression on a
remote peer is equal to first replacing each parameter of the expression with a by-fragment
copy, then executing the expression (using the by-fragment copies on the local peer), and
finally returning a by-fragment copy of the result. We use the notations C f (~s).~S and C f (~s).~F
to refer to the sets~S and ~F that belong to C f (~s). However, since only~S is the return value of
C f , we use the shorthand C f (~s) to refer to C f (~s).~S , if there is no ambiguity.

Definition 6.4.3. By-fragment mapping function m f : Let ~e be a sequence of XML nodes
and C f (~e) its by-fragment copy. The by-fragment mapping function m f maps each node ex

in {~e/d-o-s::node()} to exactly one node e′x in {C f (~e).~F /d-o-s::node()}. The reverse



116 6.4. BY-FRAGMENT CORRECTNESS PROOF

function m−1
f maps each node e′x in {C f (~e).~S/d-o-s::node()} to exactly one node ex in

{ζ(~e)/d-o-s::node()}. Formally, the results of m f and m−1
f are defined as the following:

∀ex∈{~e/d-o-s::node()} : ex is ζ(~e)[i]/d-o-s::node()[ j] Z⇒
m f (ex) is C f (~e).~F [i]/d-o-s::node()[ j]

∀e′x∈{C f (~e)/d-o-s::node()} : e′x is C f (~e).~F [i]/d-o-s::node()[ j] Z⇒
m−1

f (e′x) is ζ(~e)[i]/d-o-s::node()[ j]

We call m f (ex) by-fragment-mapping of ex in C f (~e), and vice versa.

Lemma 6.4.4. Mapped raw results of FwdAxis steps on~e and C f (~e): Let~e be a sequence
of XML nodes and C f (~e) its by-fragment copy. The raw results of applying multiple consecu-
tive FwdAxis steps on~e and C f (~e) are the by-fragment-mapping of each other, i.e.:

C f (~e)/as1::NT1/.../asn::NTn) = m f (~e/as1::NT1/.../asn::NTn) ∧∀asi∈FwdAxis

Proof. The proof is similar to the proof of Lemma 6.3.4.

Lemma 6.4.5. By-fragment node relationships: Let ~e be a sequence of XML nodes and
C f (~e) its by-fragment copy. Then, the relationship between any two nodes u and w in the
subtrees rooted at the nodes in~e is the same as the relationship between their corresponding
nodes u′ and w′ in C f (~e). Formally:
∀u,w∈{~e/d-o-s::node()}.∀u′,w′∈{C f (~e)/d-o-s::node()} :u′ = m f (u)∧w′ = m f (w) Z⇒ R(u,w) = R(u′,w′)

Proof. Since u and w are both nodes in the subtrees rooted at nodes in~e, with Definition 6.4.1,
we can assume:

(h1) u is ζ(~e)[i]/d-o-s::node()[k], w is ζ(~e)[ j]/d-o-s::node()[l]
where i, j∈ 1..|ζ(~e)| and k, l ∈ 1..|ζ(~e)[i]/d-o-s::node()|. With Definition 6.4.3 and u′ =
m f (u),w′ = m f (w), we have:

(h2) u′ is C f (~e).~F [i]/d-o-s::node()[k], w′ is C f (~e).~F [ j]/d-o-s::node()[l]
There are two possibilities: i = j (i.e., u,w belong to the same subtree in ζ(~e)) or i 6= j (i.e.,
u,w belong to different subtrees in ζ(~e)). Below we consider each case.
Case 1: i = j
With Definition 6.4.2 we have:

(h3) dEq(C f (~e).~F [i],ζ(~e)[i])
With (h1-3) we have:

(t1) R(u,w) = R(u′,w′)
Thus, the lemma holds when u and w belong to the same subtree in ζ(~e).
Case 2: i 6= j
With Definition 6.4.2 we have:

(h4) dEq(C f (~e).~F ,ζ(~e))
With Definition 6.4.1 we have:

(h5) µ(ζ(~e)),σ(ζ(~e))
With (h4,5) we have:

(h6) i < j Z⇒ ζ(~e)[i]� ζ(~e)[ j]∧C f (~e).~F [i]�C f (~e).~F [i]
(h7) i > j Z⇒ ζ(~e)[i]� ζ(~e)[ j]∧C f (~e).~F [i]�C f (~e).~F [i]

With (h1,2) and (h6,7), we have:
(t2) R(u,w) = R(u′,w′)

Thus, the lemma also holds when u and w belong to different subtrees in ζ(~e).



CHAPTER 6. CORRECTNESS PROOF OF XQUERY DECOMPOSITION 117

Lemma 6.4.6. By-fragment deep-equal ddo(): Let ~e be a sequence of XML nodes, and
C f (~e) its by-fragment copy. Let ~a be a sequence containing XML nodes in the subtree rooted
at ~e, i.e., ∀ai ∈ {~e/d-o-s::node()}, and ~b the by-fragment mapping of ~a in C f (~e), then
dEq(ddo(~a),ddo(~b)).

Proof. With Lemma 6.4.5, this lemma can be proven using a similar reasoning as that of the
proof of Lemma 6.3.6.

Lemma 6.4.7. By-fragment deep-equal FwdAxis: Let ~e be a single sequence of XML
nodes and C f (~e) its by-fragment copy. The results of applying any number of consecutive
FwdAxis steps on~e and C f (~e) are deep equal to each other. Formally:

dEq(~e/AS1::NT1/.../ASn::NTn,C f (~e)/AS1::NT1/.../ASn::NTn)∧∀i∈1..n : ASi∈FwdAxis

Proof. With Lemma 6.4.4, we have:
(h1) C f (~e)/as1::NT1/.../asn::NTn)≡ m f (~e/as1::NT1/.../asn::NTn)

With (h1) and Lemma 6.4.6, we have:
(h2) dEq(ddo(~e/as1::NT1/.../asn::NTn), ddo(C f (~e)/as1::NT1/.../asn::NTn))

With Definition 6.1.15, we have:
(h3) ~e/as1::NT1/.../asn::NTn ≡ ddo(~e/as1::NT1/.../asn::NTn)
(h4) C f (~e)/as1::NT1/.../asn::NTn ≡ ddo(C f (~e)/as1::NT1/.../asn::NTn)

With (h2), (h3) and (h4), we have:
(t) dEq(ddo(~e/as1::NT1/.../asn::NTn), ddo(C f (~e)/as1::NT1/.../asn::NTn))

The correctness of the by-fragment decomposition algorithm is proven as follows:

Theorem 6.4.8. By-Fragment Decomposition Correctness: Let Q be a normal read-only
XCore query (i.e., without any XRPC expressions) and G the corresponding d-graph. I f(G)⊂
G is the (non-empty) set of decomposition points validated by the by-fragment insertion con-
ditions. Let G’ be the d-graph derived by doing an XRPCExpr insertion above each vertex
in I f(G) (Section 5.3.2), and Q’ be the corresponding query of G’. Then, dEq(Q,Q′) holds,
under the definition of deep-equal read-only queries with implementation freedom (Defini-
tion 6.1.6).

Proof. We prove this theorem using a similar strategy as the proof of the correctness of the
conservative decomposition (Theorem 6.3.9). Assume ¬dEq(Q,Q′), then we need to find a
vertex vx∈G which depends on by-fragment copies of remote sequences, with its correspond-
ing vertex v′x ∈ G′, such that vx and v′x are not deep-equal, even if each vertex vz, on which vx
depends, is deep-equal to its corresponding vertex v′z in G′. Formally, ∃vx∈G and ∃v′x∈G′,
such that:

(Cnd1) ¬dEq(vx,v′x) ∧ ∀vz∈{vz|vx ; vz}.∀v′z∈{v′z|v′x ; v′z} : dEq(vz,v′z)
(Cnd2) (vx∈ I f(G)∧∃vm∈V (G)\V (Gvx )∧ vx

v;vm)∨ (∃vn∈ I f(G)∧ vx ; vn)

Compared to the conservative algorithm, the by-fragment decomposition algorithm al-
lows, in addition, the following kind of expressions to be decomposed.

• NodeCmp and NodeSetExpr expressions may depend on copied subexpressions, iff the Node-
Cmp and NodeSetExpr expressions do not depend on two different applications of fn:doc()
with the same URI (condition II). This change is considered in 6.4.8.1 and 6.4.8.2.



118 6.4. BY-FRAGMENT CORRECTNESS PROOF

• FwdAxis steps9 may depend on copied subexpressions containing OrderExprs or axis steps
including ancestor, ancestor-or-self, preceding, following, descendant and
descendant-or-self. FwdAxis steps may also depend on copied subexpressions con-
taining ForExprs, ExprSeqs or NodeSetExprs, iff such subexpressions do not depend on
two different applications of fn:doc() with the same URI (condition III). This change is
considered in 6.4.8.3.

In Theorem 6.3.9, it has already been proven that vx can not be one of the expressions
which are allowed by the conservative algorithm to depend on (by-value) copied subexpres-
sions. In this proof, we only consider if vx can be one of the expressions which are addi-
tionally allowed by the by-fragment decomposition algorithm to depend on (by-fragment)
copied subexpressions. Note that the analysis below is two-sided, i.e., a subexpression could
be copied either because it is used as a parameter of a decomposed expression, or because the
subexpression itself is a decomposed expression whose result is used further in the query.

6.4.8.1 NodeCmp

Assume vx is a NodeCmp, according to (Cnd1) above, the following statement must be true:

dEq(E0,E ′0) dEq(E1,E ′1) ¬hasMatchingDoc(E0,E1)
¬dEq(E0�E1, E ′0�E ′1)

(t f
Ncmp)

where the symbol � represents the node comparison operators: is,� and�.

The premise ¬hasMatchingDoc(E0,E1) implies that E0 and E1 contain nodes from different
documents. Thus, the query “E0 is E1” will always return false. The decomposed query
“E ′0 is E ′1” also always returns false, since E ′0 and E ′1 refer to nodes in different fragments.
The result of “E0� E1” is implementation dependent. It is either true or false. The query
“E ′0 � E ′1” also returns either true or false, as it depends on two distinct trees Cv(ζ(E0))
and Cv(ζ(E1)). Recall that the definition of deep-equal queries (Definition 6.1.6) takes into
account the XQuery features with implementation freedom, and regards “E ′0�E ′1” to be deep-
equal to “E0� E1”, if “E ′0� E ′1” returns a value that also could be returned by “E0� E1”.
Thus, we have dEq(E0� E1,E ′0� E ′1). Similar reasoning holds for “E0� E1”.

Hence, vx can not be a NodeCmp whose subexpressions depend on calls to fn:doc() with
different URIs.

6.4.8.2 NodeSetExpr

Assume vx is a NodeSetExpr, according to (Cnd1) above, the following statement must hold:

dEq(E0,E ′0) dEq(E1,E ′1) ¬hasMatchingDoc(E0,E1)
¬dEq(E0�E1, E ′0�E ′1)

(t f
Nset )

where the symbol � represents the node set operators: union, intersect or except.

The premise ¬hasMatchingDoc(E0,E1) implies that E0 and E1 contain nodes from different
documents. The expression “E0 union E1” returns either (ddo(E0), ddo(E1)) or (ddo(E1),
ddo(E0)). Similarly, the decomposed expression “E ′0 union E ′1” returns either (ddo(E ′0),
ddo(E ′1)) or (ddo(E ′1), ddo(E ′0)). By Lemma 6.4.6, we have dEq(ddo(E0),ddo(E ′0)) and
dEq(ddo(E1),ddo(E ′1)), which implies:

9XPath steps on other axes are excluded by the by-fragment insertion condition I.



CHAPTER 6. CORRECTNESS PROOF OF XQUERY DECOMPOSITION 119

dEq((ddo(E0),ddo(E1)), (ddo(E ′0),ddo(E
′
1))), and

dEq((ddo(E1),ddo(E0)), (ddo(E ′1),ddo(E
′
0)))

With Definition 6.1.6, we have dEq(E0 union E1, E ′0 union E ′1). Thus, the statement
¬dEq(E0�E1, E ′0�E ′1) does not hold in this case.

If � represents intersect or except, with ¬hasMatchingDoc(E0,E1), the expression “E0
intersect E1” returns the empty sequence, and the expression “E0 except E1” returns
ddo(E0). Similarly, the decomposed expression “E ′0 intersect E ′1” returns the empty se-
quence, and “E ′0 except E ′1” returns ddo(E ′0). By Lemma 6.4.6, we have that dEq(ddo(E0),
ddo(E ′0)). Thus, the statement ¬dEq(E0�E1, E ′0�E ′1) does not hold in these cases.

Hence, vx can not be a NodeSetExpr, whose subexpressions depend on calls to fn:doc()
with different URIs.

6.4.8.3 FwdAxis steps

Assume vx is a FwdAxis, according to (Cnd1) above, at least one of the following statements
must be true:

dEq(E1,E ′1)
E1∈{AxisStep, OrderExpr}

AS∈FwdAxis
@Ei : E1 ;Ei ∧Ei∈{ForExpr, ExprSeq, NodeSetExpr}

¬dEq(E1/AS::NT, E ′1/AS::NT)

(t f
Step1

)

dEq(E1,E ′1)
E1∈{ForExpr, ExprSeq, NodeSetExpr}

AS∈FwdAxis
¬hasMatchingDoc(E1,E1)

¬dEq(E1/AS::NT, E ′1/AS::NT)

(t f
Step2

)

In Lemma 6.4.7, it is proven that the results of applying a FwdAxis on a single sequence~v (i.e.,
E1 does not depend on any subexpressions Ei that combine two sequences in their results; this
case is covered by the statement t f

Step2
) and its by-fragment copy C f (~v) are deep equal to each

other. Note that Lemma 6.4.7 holds for any XML node sequence, regardless of their distinct,
disjunct and ordered properties. Thus, the statement t f

Step1
is not true.

If the result of E1 is a combination of two single subsequences (e0,e1), then the result of E ′1 is
a combination of the by-fragment copies of the two subsequences (e′0,e

′
1). The statement t f

Step2
would be true, if we are not able to eliminate duplicate nodes that appear in both e′0 and e′1,
or sort e′0 and e′1 in the same document order as e0 and e1. As described earlier (Section 5.2,
Problem 4), this could only happen, if e0 and e1 contain nodes from the same document on
a peer. There are three kinds of expressions that return combined subsequences: ForExpr,
ExprSeq and NodeSetExpr. For these expressions, the problem with “mixed-call” is guarded
by the predicate hasMatchingDoc() in the by-fragment insertion condition III, which simply
forbids a FwdAxis to depends on a E1 that contain multiple fn:doc() calls to access the same
document. Thus, the statement t f

Step2
does not hold.

Hence, vx can not be a FwdAxis that depends on an OrderExpr or an AxisStep, or on a
ForExpr, an ExprSeq or a NodeSetExpr which do not access the same XML document with
multiple fn:doc().



120 6.5. BY-PROJECTION CORRECTNESS PROOF

In summary, we were not able to find a vx which is not deep-equal to its corresponding
vertex v′x in G′, while all vertices on which vx depends are deep-equal to their corresponding
vertices in G′. Thus, the assumption ¬dEq(Q,Q′) does not hold, which proves the correctness
of the theorem.

6.5 Correctness Proof of the By-Projection Decomposition
Algorithm

When the by-projection decomposition algorithm is used, the set of projection paths ~Pvi are
calculated for each vertex vi in a d-graph which consists of a set of used paths ~Pvi .

~U and a set
of returned paths ~Pvi .

~R (Section 5.6). Each path in ~Pvi is a ProjectionPath (Table 5.6) that
can contain XPath steps on any axes and any of the special built-in functions root(), id()
and idref().

The concept relative projection paths (i.e., path suffixes) is always defined between two
vertices. Assume vi and v j are vertices in a d-graph with vi ; v j. We use ~P rel

vi;v j
to denote

the set of relative projection paths between vi and v j which consists of a set of relative used
paths ~P rel

vi;v j
.~U and a set of relative returned paths ~P rel

vi;v j
.~U, computed using the function

allSuffixes() (Section 5.6.2):
~P rel

vi;v j
.~U = allSuffixes(~Pv j .

~R , ~Pvi .
~U)

~P rel
vi;v j

.~R = allSuffixes(~Pv j .
~R , ~Pvi .

~R )

However, beside the path vi ;v j, vi could also depend on v j via other paths, say vi ;vk ;
v j. This happens if v j is a variable declaration (or a subexpression of a variable declaration)
and is referred to by vk. For instance, as shown in the left part of Figure 6.4, v1 depends on v4
both via the path v1 ;v2 ;v4 and via the path v1 ;v6 ;v4. Thus, we use ~P rel

vi;vk;v j
to denote

the set of relative projection path that vi will apply on v j via its subexpression vk. ~P rel
vi;vk;v j

is
computed using the function allSuffixesVia() (Section 5.6.2):

~P rel
vi;vk;v j

.~U = allSuffixesVia(~Pv j .
~R , ~Pvk .

~U, ~Pvi .
~U)

~P rel
vi;vk;v j

.~R = allSuffixesVia(~Pv j .
~R , ~Pvk .

~R , ~Pvi .
~R )

The paths~P rel
vi;v j

.~U and~P rel
vi;v j

.~R overestimate the set of nodes, with respect to v j, that will
be used and respectively returned by vi. Intuitively, if v j represents an expression executed
on a peer different than the peer, on which vi is executed10, shipping the nodes determined
by ~P rel

vi;v j
.~U and ~P rel

vi;v j
.~R together with the result of v j could enable correct evaluation of vi.

In other words, evaluating vi on those shipped nodes produces deep-equal results to those of
evaluating v j in the original query. The main task of this section is to give a formal proof
for this statement. But first, let us use an example to make the differences and relationships
between projection paths and relative projection paths more clear.

Example 6.5.1. Figure 6.3 shows an abstract d-graph in which three vertices are shown
explicitly. The root vertex of this d-graph is vi. The vertex vk depends on v j via a varref varref
edge (indicated using a dotted arrow). Thus, starting from vi, there are two paths with which
we can reach v j, i.e., vi ;v j and vi ;vk ;v j. The exact projection paths of all three vertices
are also shown in Figure 6.3.

10This includes both cases: (i) v j is a parameter of the valid decomposition point vi, or (ii) v j is a valid decompo-
sition point, whose result is used by vi.



CHAPTER 6. CORRECTNESS PROOF OF XQUERY DECOMPOSITION 121

vi

vj

vk

~Pvi .
~U : {/descendant::a,

/descendant::a/child::b,
/descendant::a/child::b/child::c,
/descendant::a/child::b/child::d,
/descendant::a/child::b/child::d/child::e}

~Pvi
. ~R : {/descendant::a/child::b/child::d/child::f,

/descendant::a/child::b/child::g}

~Pvk
. ~U : {/descendant::a,

/descendant::a/child::b,
/descendant::a/child::b/child::c}

~Pvk
. ~R : {/descendant::a/child::b/child::d}

~Pvj .
~U : {/descendant::a}

~Pvj
. ~R : {/descendant::a/child::b}

Figure 6.3: A d-graph with projection paths

It can be seen that vk applies two XPath steps on (the result of) v j: a child::c step as a
used path and a child::d step as a returned path. Then, vi applies two XPath steps on vk:
a child::e step as a used path and a child::f step as a returned path. This implies that
vi applies, via vk, the following XPath steps on v j: a used path child::d/child::e and a
returned path child::d/child::f. Since we also have vi ;v j, vi can also directly (i.e., not
via vk) apply XPath steps on v j, which is, in this example, the child::g step. Thus, we can
compute the following relative projection paths among these three vertices:

~P rel
vk;v j

.~U = allSuffixes(~Pv j .
~R , ~Pvk .~U) = {child::c}

~P rel
vk;v j

.~R = allSuffixes(~Pv j .
~R , ~Pvk .~R ) = {child::d}

~P rel
vi;vk

.~U = allSuffixes(~Pvk .~R , ~Pvi .
~U) = {child::e}

~P rel
vi;vk

.~R = allSuffixes(~Pvk .~R , ~Pvi .
~R ) = {child::f}

~P rel
vi;v j

.~U = allSuffixes(~Pv j .
~R , ~Pvi .

~U) = {child::c,child::d,child::d/child::e}
~P rel

vi;v j
.~R = allSuffixes(~Pv j .

~R , ~Pvi .
~R ) = {child::d/child::f,child::g}

~P rel
vi;vk;v j

.~U = allSuffixesVia(~Pv j .
~R , ~Pvk .~U, ~Pvi .

~U) = {child::c,child::d,child::d/child::e}
~P rel

vi;vk;v j
.~R = allSuffixesVia(~Pv j .

~R , ~Pvk .~R , ~Pvi .
~R ) = {child::d/child::f}

Note the difference between~P rel
vi;v j

.~R and~P rel
vi;vk;v j

.~R , which indicates that the step child::g
is not applied on the result of vk. Thus, if vk would be decomposed (v j is then a parameter
of this remote expression), we do not need to project the g child nodes of v j for the request
message.

From the above example, the following property for the projection paths can be deduced11:
Property 6.5.2. Increasing projection paths: Starting from leaf vertices12, an expression
always propagates all projection paths of all its subexpression(s). Thus, an existing projection
path is never removed, only a new projection path is added, when there is an XPath step.

The definition of the by-projection-copy operator Cp is based on the concept of relative
projection paths.

11The property for the projection paths can also be deduced by examining the static properties analysis rules in
Section 6.2

12By ignoring the varref edges, a d-graph has a tree shape. The leaf vertices are then those vertices without any
outgoing edges.



122 6.5. BY-PROJECTION CORRECTNESS PROOF

Definition 6.5.3. By-projection-copy operator Cp: The by-projection-copy operator takes
as its input a pair 〈~s,~P rel〉, where:

• ~s is an XQuery sequence that may contain duplicates or overlapping nodes,

• ~P rel is the set of relative projection paths that will be applied on~s;

and produces as its output a pair 〈~S , ~F 〉, where:

• 〈~S , ~F 〉= C f (~s), if ~P rel = /0; otherwise
• ~F is the set of projected XML fragments which is the projection of ~P rel on ~s, i.e., ~F =
P(~s,~P rel); ~S is the return sequence of the by-projection-copy operator Cp. It is a one-to-
one mapping of the items in~s constructed as follows:

∀i∈1..|~s| :~S [i] is ~F [ j]/d-o-s::node()[k], where { j,k |~s[i] is ~D[ j]/d-o-s::node()[k]}.

That is, ~S [i] is a reference to the k-th node in the projected document ~D[ j]13 which corre-
sponds to the node referred by~s[i] in the original document.

We use Cp(〈~s,~P rel〉) to denote a by-projection copy of ~s with relative projection paths
~P rel . The outputs of Cp are referred to as Cp(〈~s,~P rel〉).~S and Cp(〈~s,~P rel〉).~F . If there is no
ambiguity, Cp(〈~s,~P rel〉).~S is abbreviated as Cp(~s). Since all node typed items in the return
sequence Cp(〈~s,~P rel〉).~S refer to the projected XML fragments ~F of ~P rel on~s, it is trivial to
see that the results of applying ~P rel on both~s and Cp(〈~s,~P rel〉).~S are deep-equal. Hence, we
define the following property for the by-projection operator Cp:

Property 6.5.4. Cp properties: dEq~P rel
(~s, Cp(〈~s,~P rel〉).~S)

Under the pass-by-projection semantics, the semantics of executing an expression vi on a
remote peer is to first replace each of its parameter vparamk with a by-projection copy, with
~P rel

vroot;vi;vparamk
(called: the relative projection paths of the parameter vparamk ), where vroot

is the root vertex of the d-graph containing vi. Then the expression vi is executed on the
local peer using the by-projection copies of its parameters, and finally a by-projection copy of
the result is returned, with ~P rel

vroot;vi
(called: the relative projection paths of the expression vi).

Thus, when computing the projection for a remote expression, we always compare its returned
paths with the projection paths of the root vertex vroot (either directly, or via a third vertex).
Example 6.5.5. The left part of Figure 6.4 shows a d-graph G, in which each vertex is an-
notated with a set of projection paths. The right part of Figure 6.4 shows what the decom-
posed d-graph G′ looks like (the paths annotations are omitted), expressed using by-projection
copies, if, for instance, v4 and v6 are pushed to remote peers. The vertex v4 has no parameter,
so only its result is projected using the relative projection paths ~P rel

v1;v4
of v4, where:

~P rel
v1;v4

.~U = allSuffixes(~Pv4 .
~R , ~Pv1 .

~U)
~P rel

v1;v4
.~R = allSuffixes(~Pv4 .

~R , ~Pv1 .
~R )

For vertex v6, its parameter v3 is first projected using the relative paths ~P rel
v1;v6;v3

, where:

~P rel
v1;v6;v3

.~U = allSuffixesVia(~Pv3 .
~R , ~Pv6 .

~U, ~Pv1 .
~U)

~P rel
v1;v6;v3

.~R = allSuffixesVia(~Pv3 .
~R , ~Pv6 .

~R , ~Pv1 .
~R )

Then, the result of v6 is projected using the relative paths ~P rel
v1;v6

.



CHAPTER 6. CORRECTNESS PROOF OF XQUERY DECOMPOSITION 123

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

~Pv1

~Pv2

~Pv3

~Pv4

~Pv5

~Pv6

~Pv7

~Pv8

~Pv9

~Pv10

~Pv11

~Pv12

G

v′
1

v′
2

v′
3

v′
4 = Cp(v4, ~Prel

vroot v4
)

v5

v′
6 = Cp(v6, ~Prel

vroot v6
)

v′
7

v′
8 = Cp(v3, ~Prel

vroot v6 v3
)

v9

v10

v11

v12

G′

Figure 6.4: A d-graph G and its by-projection decomposed d-graph G′

The correctness of the by-projection decomposition algorithm is proven as follows:

Theorem 6.5.6. By-Projection Decomposition Correctness: Let Q be a normal read-only
XCore query (i.e., without any XRPC expressions) and G the corresponding d-graph. Ip(G)⊂
G is the (non-empty) set of decomposition points validated by the by-projection insertion con-
ditions. Let G’ be the d-graph derived by doing an XRPCExpr insertion above each vertex
in Ip(G) (Section 5.3.2), and let Q’ be the corresponding query of G’. Then, dEq(Q,Q′) holds
under the definition of deep-equal read-only queries with implementation freedom (Defini-
tion 6.1.6).

Proof. We prove this theorem by contradiction, similar to the proof of the correctness theorem
of the conservative decomposition (Theorem 6.3.9). Since the relative projection paths of
parameters of remote expressions are computed slightly differently than the relative projection
paths of remote expressions, we split this proof into two parts. In Part I, we temporarily ignore
this difference and assume that the relative projection paths of each vertex vi in a d-graph are
computed in the same way, i.e., ~P rel

vroot;vi
. Under this assumption, we search for a vertex vx,

which could invalidate the statement dEq(Q,Q′). If we are not able to find such a vx in Part I,
we check in Part II if projecting parameters of a remote expression, using relative projection
paths computed via the remote expression, could invalidate the statement dEq(Q,Q′).
Part I

Assume ¬dEq(Q,Q′). There must exist one vertex vx ∈G which depends on by-projection
copies of remote sequences14 with its corresponding vertex v′x ∈ G′, such that vx and v′x are
not by-projection equal with respect to ~P rel

vroot;vx , even if each vertex vz on which vx depends
is by-projection equal with respect to ~P rel

vroot;vx to its corresponding vertex v′z in G′. Formally,
∃vx∈G and ∃v′x∈G′, such that:

(Cnd1) ¬dEq
~P rel

vroot;vx (vx,v′x) ∧ ∀vz∈{vz|vx ; vz}.∀v′z∈{v′z|v′x ; v′z} : dEq
~P rel

vroot;vz (vz,v′z)
(Cnd2) (vx∈ Ip(G)∧∃vm∈V (G)\V (Gvx )∧ vx

v;vm)∨ (∃vn∈ Ip(G)∧ vx ; vn)

In the remainder of Part I, we examine each kind of expression15in the XCore grammar
13Since XPath steps can only be applied on XML nodes, we assume that~s in this case only contain XML nodes.
14Either vx is in Ip(G) and uses those sequences as its parameters; or those sequences are results of remote execu-

tion and are used by vx.
15But with focus on expressions whose result sequence can contain XML node-typed items, since it is trivial to see

that copying a literal value (under any of our three semantics) does not alter query result.



124 6.5. BY-PROJECTION CORRECTNESS PROOF

(Table 5.2) to see if it could be a vx that satisfies (Cnd1) and (Cnd2) above. For brevity, we
call two corresponding vertices from G and G′ to be by-projection equal without explicitly
mentioning the relative projection paths with respect to which they are deep-equal, since all
projection paths are computed in the same way in Part I. Similar with what we have explained
in the proof of the correctness theorem of the conservative decomposition (Theorem 6.3.9),
when checking if a vertex in G could be a vx as defined above, it is safe to assume that all
vertices on which this vertex depends are by-projection deep-equal to their corresponding
vertices in G′ (i.e., no vx has been found among these vertices). Because, otherwise, we have
already proven the assumption ¬dEq(Q,Q′).

6.5.6.1 Easy cases

Empty sequences, Literal values and variables are easy cases. Literals are not projected,
but rather copied literally. It is trivial to see that Literals can always be replaced by a
copy of them without altering the query result. A variable merely represents the value of the
expression, to which the variable is bound. Thus, it is also trivial to see that if this expression
is by-projection deep-equal to its corresponding expression in Q′, the variable is also by-
projection equal to its corresponding variable in Q′.
6.5.6.2 LetExpr, IfExpr, Typeswitch, OrderExpr, Constructor and TransformExpr

If vx is a LetExpr, according to condition (Cnd1), the following statement must be true:

dEq
~P rel

vroot;E0 (E0,E ′0) dEq
~P rel

vroot;E1 (E1,E ′1)

¬dEq
~P rel

vroot;Elet (Elet ,E ′let), where

Elet = let $x := E0 return E1, and E ′let = let $x := E ′0 return E ′1

(t p
let )

A LetExpr expression merely returns its return clause E1. Since it does not apply any XPath

steps on E1, it is clear that ~P rel
vroot;Elet

= ~P rel
vroot;E1

. With the premise dEq
~P rel

vroot;E1 (E1,E ′1), we

thus have dEq
~P rel

vroot;Elet (Elet ,E ′let).

Similar reasoning applies to the expressions IfExpr, Typeswitch, OrderExpr, Constructor
and TransformExpr since they do not apply any XPath steps on their subexpressions or test
node identities or structural properties of the nodes returned by their subexpressions. Hence,
vx can not be any one of these kinds of expressions.

6.5.6.3 ExprSeq and ForExpr

If vx is a non-empty ExprSeq, according to condition (Cnd1), the following statement must
be true:

dEq
~P rel

vroot;E0 (E0,E ′0) dEq
~P rel

vroot;E1 (E1,E ′1)

¬dEq
~P rel

vroot;Eseq (Eseq,E ′seq), where Eseq = (E0,E1), and E ′seq = (E ′0,E
′
1)

(t p
Seq)

A ExprSeq concatenates its two subexpressions into one expression. There are two cases.

If E0 and E1 contain nodes from the same XML documents, according to the by-projection
insertion condition (b), there is no AxisStep, NodeCmp or NodeSetExpr that depends on
Eseq

16. Hence, all three sets of relative projection paths ~P rel
vroot;Eseq , ~P rel

vroot;E0
and ~P rel

vroot;E1
are

16If any of these kinds of expressions depend on Eseq in this case, we are not able to eliminate duplicates required
by these expressions. Thus, the by-projection insertion condition (b) forbids decomposing (i) Eseq, (ii) all vertices
on which Eseq depends, and (iii) all vertices depending on Eseq which could be reached from this AxisStep.



CHAPTER 6. CORRECTNESS PROOF OF XQUERY DECOMPOSITION 125

empty. With the third and fourth premises and Definition 6.1.4, we have: dEq(E0,E ′0) and
dEq(E1,E ′1). With the first and second premises we have: dEq(Eseq,E ′seq). Since ~P rel

vroot;Eseq =

/0, with Definition 6.1.4 we have: dEq(Eseq,E ′seq) Z⇒ dEq
~P rel

vroot;Eseq (Eseq,E ′seq).

If E0 and E1 only contain nodes from different XML documents, nodes in E0 are disjunct with
nodes in E1. XPath steps on Eseq are allowed17, thus the relative projection paths might not
be empty (if they are empty, the reasoning is the same as that of the first case). Based on
the static properties analysis rule SEQ (Section 6.2.3), it can be deduced that: ~P rel

vroot;Eseq =
~P rel

vroot;E0
∪~P rel

vroot;E1
. The result of applying ~P rel

vroot;Eseq on Eseq is equivalent to concatenating

the results of applying ~P rel
vroot;E0

on E0 and applying ~P rel
vroot;E1

on E1. The same holds for E ′seq,

E ′1 and E ′2. With the third and fourth premises, we have dEq
~P rel

vroot;Eseq (Eseq,E ′seq).

If vx is a ForExpr, according to condition (Cnd1), the following statement must be true:

dEq
~P rel

vroot;E0 (E0,E ′0) dEq
~P rel

vroot;E1 (E1(E0),E ′1(E
′
0))

¬dEq
~P rel

vroot;E f or (E f or,E ′f or), where

E f or = for $x in E0 return E1, and E ′f or = for $x in E ′0 return E ′1

(t p
f or)

The ForExpr expressions have similar behaviour to the ExprSeq expressions, i.e., they con-
catenate multiple subsequences into one sequence as their results. Using similar reasoning as
above, we can deduce that the statement (t p

f or) is not true.

Hence, vx can not be an ExprSeq or a ForExpr.

6.5.6.4 CompExpr

Assume vx is a CompExpr, according to condition (Cnd1), the following statement must be
true:

dEq
~P rel

vroot;E0 (E0,E ′0) dEq
~P rel

vroot;E1 (E1,E ′1)

¬dEq
~P rel

vroot;Ecmp (Ecmp,E ′cmp), where Ecmp = E0�E1, and E ′cmp = E ′0�E ′1
(t p

cmp)

The symbol � represents a value or a node comparison operator: =, !=, <, <=, >, >=, is,�
and �. A CompExpr does not apply any XPath steps on its subexpressions, and it returns a
boolean value, on which no XPath steps can be applied, thus: ~P rel

vroot;E0
= /0, ~P rel

vroot;E1
= /0 and

~P rel
vroot;Ecmp = /0.

If Ecmp is a value comparison expression, with ~P rel
vroot;E0

= /0, ~P rel
vroot;E1

= /0 and Definition 6.1.4

we have dEq(E0,E ′0) and dEq(E1,E ′1). It is then clear that dEq
~P rel

vroot;Ecmp (Ecmp,E ′cmp) holds.

If Ecmp is a node comparison expression, according to the by-projection insertion condition
(a), E0 and E1 only contain XML nodes from different XML documents18. If� represents the
is operator, both Ecmp and E ′cmp return false. If � represents the� or the� operator, both
Ecmp and E ′cmp return either true or false. Thus, Ecmp and E ′cmp are deep-equal, under the

17NodeCmp and NodeSetExpr are also allowed. The requirements that these expressions must eliminate duplicates
and order nodes in their results can be treated as if they apply a self step on Eseq.

18If E0 and E1 contain XML nodes from the XML documents, the by-projection insertion condition (a) forbids
these two expressions and all their subexpressions to be decomposed. This conflicts with condition (Cnd2), which
requires that Ecmp must depend on at least one remote sequence.



126 6.5. BY-PROJECTION CORRECTNESS PROOF

definition of deep-equal read-only queries with implementation freedom (Definition 6.1.6).

Then, with ~P rel
vroot;Ecmp = /0 and Definition 6.1.4, we have dEq

~P rel
vroot;Ecmp (Ecmp,E ′cmp).

Hence, vx can not be a CompExpr.

6.5.6.5 NodeSetExpr

Assume vx is a NodeSetExpr. According to condition (Cnd1), the following statement must
be true:

dEq
~P rel

vroot;E0 (E0,E ′0) dEq
~P rel

vroot;E1 (E1,E ′1)

¬dEq
~P rel

vroot;Enset (Enset ,E ′nset), where Enset = E0�E1, and E ′nset = E ′0�E ′1
(t p

nset )

The symbol � represents a node set operator: union, intersect or except. Like the restric-
tion on node comparison expressions, the by-projection insertion condition (a) enforces that
E0 and E1 only contain XML nodes from different XML documents.

If � represents an intersect, both Enset and E ′nset return the empty sequence. It is trivial to

see that dEq
~P rel

vroot;Enset (Enset ,E ′nset) holds.

If � represents a union, Enset returns (E0,E1) or (E1,E0), and E ′nset returns (E ′0,E
′
1) or

(E ′1,E
′
0). Thus, we have dEq(Enset ,E ′nset) (with implementation freedom). Based on the

static properties analysis rule UNION (Section 6.2.10), it can be deduced that: ~P rel
vroot;Enset =

~P rel
vroot;E0

∪~P rel
vroot;E1

. The result of applying ~P rel
vroot;Enset on Enset is equivalent to concatenating

the results of applying ~P rel
vroot;E0

on E0 and applying ~P rel
vroot;E1

on E1. The same holds for E ′nset ,

E ′1 and E ′2. Thus, we have dEq
~P rel

vroot;Enset (Enset ,E ′nset).

If � represents an except, Enset and E ′nset return E0 and E ′0, respectively. With the premise

dEq
~P rel

vroot;E0 (E0,E ′0), we have dEq
~P rel

vroot;Enset (Enset ,E ′nset).

Hence, vx can not be an NodeSetExpr.

6.5.6.6 StepExpr

Assume vx is a StepExpr (shortened as: ST), according to (Cnd1) above, the following state-
ment must be true:

dEq
~P rel

vroot;E1 (E1,E ′1)

¬dEq
~P rel

vroot;Estep (Estep,E ′step), where Estep = E1/ST, and E ′step = E ′1/ST
(t p

step)

Assume that the returned paths of E1 are ~PE1 .
~R = {pE1

1 , . . . , pE1
k }. Then the returned paths

of Estep are 19 ~PEstep .
~R = {pEstep

1 /ST, . . . , pEstep
k /ST}. Assume that expressions that depend on

Estep apply a number of paths, with each path containing a number of XPath steps, on Estep,
either as returned paths or as used paths. Then, the relative projection paths of Estep are:

~P rel
vroot;Estep .

~U = { ST
u1
1 /ST

u1
2 /. . ./ST

u1
u , ~P rel

vroot;Estep .
~R = { ST

r1
1 /ST

r1
2 /. . ./ST

r1
x ,

ST
u2
1 /ST

u2
2 /. . ./ST

u2
v , ST

r2
1 /ST

r2
2 /. . ./ST

r2
y ,

· · · , · · · ,
STum

1 /STum
2 /. . ./STum

w } STrn
1 /STrn

2 /. . ./STrn
z }

19See the rules STEPa, STEPsc and STEP 6µ in Section 6.2.12.



CHAPTER 6. CORRECTNESS PROOF OF XQUERY DECOMPOSITION 127

The relative projection paths of E1 are20:

~P rel
vroot;E1

.~U = { ST/ST
u1
1 /ST

u1
2 /. . ./ST

u1
u , ~P rel

vroot;E1
.~R = { ST/ST

r1
1 /ST

r1
2 /. . ./ST

r1
x ,

ST/ST
u2
1 /ST

u2
2 /. . ./ST

u2
v , ST/ST

r2
1 /ST

r2
2 /. . ./ST

r2
y ,

· · · , · · · ,
ST/STum

1 /STum
2 /. . ./STum

w } ST/STrn
1 /STrn

2 /. . ./STrn
z }

The premise dEq
~P rel

vroot;E1 (E1,E ′1) means that ∀pi ∈ ~P rel
vroot;E1

: dEq(E1/pi,E ′1/pi). Substitute
E1/ST with Estep and E ′1/ST with E ′step, we have ∀p j ∈ ~P rel

vroot;Estep : dEq(Estep/p j,E ′step/p j).

Hence, vx can not be a StepExpr.

6.5.6.7 Built-in function calls

Under the by-projection semantics, the built-in functions fn:root(), fn:id(), fn:idref()
and fn:lang() and their parameters can also be decomposed. A common property of these
functions is that they need to access nodes outside the subtree(s) of their parameters, some-
thing not supported by the by-value and by-fragment semantics. In pass-by-projection, we
have extended the projection path to allow the functions root(), id() and idref() to be part
of a SimplePath (Table 5.6), while the function fn:lang() can be represented by ancestor
and attribute steps21.

For all FunCalls to built-in functions, we can use similar reasoning to that for StepExpr
expressions to deduce that vx can not be a FunCall to a built-in function.

In summary, we were not able to find a vx among all vertices in a d-graph G (including
the root vertex vroot ) which is not deep-equal to its corresponding vertex v′x in G′, while all
vertices on which vx depends are deep-equal to their corresponding vertices in G′. This implies
dEq

~P rel
vroot;vroot (vroot ,v′root). It is trivial to see that ~P rel

vroot;vroot = /0, according to Definition 6.1.4,
we have dEq(vroot ,v′root). Hence, the assumption ¬dEq(Q,Q′) of Part I does not hold.
Part II

In this part we drop the assumption used by Part I that the relative projection paths of
all vertex vi ∈ G are ~P rel

vroot;vi
. The relative projection paths for a parameter v j of a remote

expression vi are actually ~P rel
vroot;vi;v j

. Since ~P rel
vroot;vi;v j

is more selective than ~P rel
vroot;vi

, we

need to check if projecting v j using ~P rel
vroot;vi;v j

could cause the remote expression vi to return
an incorrect result.

Assume ¬dEq(Q,Q′), then there must exist one vertex vx ∈ G, which is a parameter of a
by-projection decomposition point vd ∈G, such that projecting vx using the paths ~P rel

vroot;vd;vx
will cause the corresponding vertex v′d of vd (in the decomposed d-graph G′) to be not by-
projection equal to vd . Formally, ∃vx,vd ∈ G : vd

v;vx∧ vd ∈ Ip(G) and ∃v′x,v′d ∈ G : vd
v;vx,

such that dEq
~P rel

vroot;vd;vx (vx,v′x) Z⇒¬dEq
~P rel

vroot;vd (vd ,v′d) holds.
In XQuery, remote expressions can be seen as black boxes with one or more inputs22 and

one (possibly empty) output. Let vp be a parameter of vd . We examine all possible cases to

20As shown in Example 6.5.1, the relative projection paths of E1 are longer than the relative projection paths of
Estep, because E1 is further away from vroot than Estep.

21See the rule (BLTINlang) in Section C.14.
22Remote expressions with zero input have already been handled in Part I.



128 6.6. XQUF CORRECTNESS PROOF

see if vp can be a vx as defined above (if vd has multiple parameters, the steps below can be
repeated to check each parameter):

• vp is not returned by vd

This is an easy case. Since vp is only used by vd to compute its result, the relative projection

paths of vp is equal to ~P rel
vd;vp (where ~P rel

vd;vp .
~R = /0). Thus dEq

~P rel
vroot;vd;vx (vx,v′x) implies

dEq
~P rel

vd;vx (vx,v′x). The subgraph rooted at vd can be seen as a separate query graph, with vd

as root vertex. In Part I, it has already been proven that dEq
~P rel

vd;vp (vp,v′p) Z⇒ dEq(vd ,v′d)
holds, if vd is a root vertex. Thus, the assumption ¬dEq(Q,Q′) is not true.

• vp is returned by vd , but no XPath steps are applied on vd

In this case, the relative projection paths of vp is also equal to ~P rel
vd;vp . Using the same

reasoning as that of the previous item, we again have dEq
~P rel

vd;vp (vp,v′p) Z⇒ dEq(vd ,v′d).
Thus, the assumption ¬dEq(Q,Q′) is not true.

• vp is returned by vd and a number of XPath steps are applied to vd

Although vd could also return nodes originating from other expressions, those nodes are not
relevant to our proof. Thus, it is safe to assume that vd only returns nodes originating from
vp.

Let ~Fvp be the projection of ~P rel
vroot;vd;vp on vp, i.e., ~Fvp = P(vp,~P rel

vroot;vd;vp). The set
~P rel

vroot;vd
contains all XPath steps that will by applied to vd . In this case, if ~Fvp does not

contain all nodes that should be returned, when applying ~P rel
vroot;vd

on vd , the assumption
¬dEq(Q,Q′) is proven.

However, with the projection paths property (see Property 6.5.2) and the functions allSuf-
fixesVia() and allSuffixes() with which ~P rel

vroot;vd;vp and ~P rel
vroot;vd

were computed, it

is easy to see that each path in ~P rel
vroot;vd

.~U is a suffix of a path in ~P rel
vroot;vd;vp .

~U. The same

holds for the returned paths. In other words, ~Fvp contains all nodes that are needed, when
applying ~P rel

vroot;vd
to vd . Thus, the assumption ¬dEq(Q,Q′) is not true.

In summary, we were not able to find a parameter vp, which can satisfy the condition

dEq
~P rel

vroot;vd;vx (vx,v′x) Z⇒¬dEq
~P rel

vroot;vd (vd ,v′d). Hence, the assumption ¬dEq(Q,Q′) of Part
II does not hold.
In conclusion, Part I and Part II together prove the correctness of the theorem.

6.6 Correctness Proof of the XQUF Decomposition Algo-
rithm

Theorem 6.6.1. XQUF Decomposition Correctness: Let Qu be a normal updating XCore
query (i.e., without any XRPC expressions, but containing at least one updating expression
which is not a subexpression of a TransformExpr) and G the corresponding d-graph.
I(G)⊂G is the (non-empty) set of decomposition points validated by one of the decomposition
algorithms, and the vertices in I(G) also satisfy the XQUF insertion conditions (Section 5.7.1).



CHAPTER 6. CORRECTNESS PROOF OF XQUERY DECOMPOSITION 129

Let G’ be the d-graph derived by doing an XRPCExpr insertion above each vertex in I(G)
(Section 5.3.2), and Q′u the corresponding query of G′. Then, dEq(Qu,Q′u) holds under the
definition of deep-equal updating queries with implementation freedom (Definition 6.1.9).

Proof. Let ∆ and ∆′ be the PULs yielded by Qu and Q′u, respectively. By Definition 6.1.9,
dEq(Qu,Q′u) holds if we can prove that dEq(∆,∆′) holds according to the definition of deep-
equal pending update lists (Definition 6.1.8). Definition 6.1.8 states that two PULs are deep-
equal to each other if they both contain

(i) at least one upd:delete action on the same target nodes,

(ii) exactly one upd:replaceNode, upd:replaceValue, upd:replaceElementContent
or upd:rename action on the same target nodes with deep-equal new contents, and

(iii) the same number of the same kind of insertion action on the same target nodes with
deep-equal new contents.

Thus, there are three determining factors for two PULs to be deep-equal: (1) identifiers of the
target nodes, (2) the new contents with which the target nodes will be updated, and (3) the
number of the same update actions on the same target nodes.

The new contents for the target nodes and the number of times that a certain update action
will be executed are computed by the read-only subexpressions that might be decomposed by
the particular decomposition algorithm. In Theorem 6.3.9, 6.4.8 and 6.5.6, it has already been
proven that a decomposed read-only subexpression produces deep-equal results to those of its
corresponding subexpression in the original query. Thus, we only need to prove that Qu and
Q′u update the same nodes, whose identifiers are computed by the TargetExpr subexpression
of an UpdExpr.

Case 1: Qu contains only updates on local documents
For this class of updating queries, the XQUF insertion conditions (Section 5.7.1) forces all

UpdExprs and their TargetExpr subexpressions in Q′u to be executed on the local peer. This
also prevents target nodes from being passed as function parameters or results, which would
lose the original identities of the target nodes. Thus, it is easy to see that the target nodes of Q′u
are equivalent to those of Qu, which proves dEq(∆,∆′). Hence, dEq(Qu,Q′u) holds, in case
Qu only contains updates on local documents.

Case 2: Qu contains only updates on remote documents In Section 5.7.2, we have extended
the semantics of XQUF to allow updating expressions on remote documents. We specified
that updates on a remote document are first applied on a local copy of the document (i.e., the
remote document is retrieved to the local peer using fn:doc()), after which the updated local
copy is sent to the peer hosting the remote document using fn:put() to overwrite the existing
document.

When computing Q′u, our XQUF rewrites allows those UpdExprs (together with their
TargetExpr subexpressions) which only contain updates on remote documents hosted by
a single peer pi to be decomposed and executed on pi

23. The constraint on a single peer is
necessary to ensure that the target nodes are never passed as function parameters or results.

23As pointed out in Section 5.7.2, the updating functions could also be executed on other peers than the hosting
peer, however, it implies the same semantics as executing those functions on the local peer, which makes remote
execution not meaningful.



130 6.7. CODE MOTION CORRECTNESS PROOF

Let UpdExprloc denote those UpdExprs in Qu that will not be decomposed, and UpdExprhi

denote the UpdExprs in Qu that can be executed on peer hi. Let ∆loc and ∆hi denote the partial
PULs that evaluating UpdExprloc and UpdExprhi will yield, respectively. They correspond to
∆′loc and ∆′hi

in Q′u, i.e., ∆′loc is the result of evaluating UpdExprloc on the local peer, while ∆′hi
is the result of evaluating UpdExprhi on peer hi. Hence,

∆ = ∆loc ∪ (
n[

i=1

∆hi ) and ∆′ = ∆′loc ∪ (
n[

i=1

∆
′
hi

)

where n is the number of remote peers involved in the execution of Q′u. Clearly, dEq(∆loc,∆
′
loc).

For each ∆′hi
, it is also easy to see that it identifies the same target nodes, since each ∆′hi

is created by evaluating UpdExprhi on the peer hosting the documents. Together, we have
dEq(∆,∆′), which implies that dEq(Qu,Q′u) holds if Qu only contains updates on remote doc-
uments.
Case 3: Qu contains updates on both local and remote documents

For this case, dEq(Qu,Q′u) is proven by combining Case 1 and 2.

6.7 Correctness Proof of Distributed Code Motion
In Section 5.4.4, we have described that, in certain cases, subexpressions of a valid decom-
position point rs could be moved out of the subgraph rooted at rs and be replaced by a new
parameter presenting this subexpression. In this section, we prove that applying this so-called
distributed code motion technique to the resulting decomposed d-graph of a certain decom-
position algorithm will not cause a valid decomposition point rs to produce non-deep-equal
result.

Theorem 6.7.1. Distributed Code Motion Correctness: Let G be a d-graph and Grs is the
subgraph of G rooted at the vertex rs, where rs is a decomposition point validated by one of the
decomposition algorithms. Let {p1, ..., pm}∈V (G) be the set of vertices that are parameters
of rs. Let vi be a vertex in the subgraph rooted at rs which satisfies all of the following
constraints:

• vi is also a decomposition point validated by the same decomposition algorithm, i.e., vi∈
V (Grs)∧ vi∈ I(G);

• there is exactly one px∈{p1, ..., pm} such that vi
p

; px;
• there is exactly one path (vi,vi+1, ...,vi+n, px) that can reach px starting from vi.

Then, moving vi out of Grs by introducing a new parameter pn to represent vi, and replacing
vi with pn will not cause remote executing of rs to produce non-deep-equal result to the local
execution of rs.

Proof. Since rs and vi are both valid decomposition points, they could be executed on possibly
different remote peers. With Theorem 6.3.9, Theorem 6.4.8 and Theorem 6.5.6, we have that,
regardless of on which peer rs is executed, it produces deep-equal results, possibly using the
result of a remote execution of its subexpression vi. Moving vi out of Grs and passing its value
as a parameter to rs implies that vi will be executed on a different peer than the peer, on which
rs will be executed. Therefore, this code motion will cause remote execution of rs to produce
a deep-equal result.



7
StreetTiVo: Manage Multimedia

Data Using A P2P XDBMS

StreetTiVo is a project that aims at bringing research results into the living room; in particu-
lar, a mix of current results in the areas of Peer-to-Peer XML Database Management System
(P2P XDBMS), advanced multimedia analysis techniques, and advanced information retrieval
techniques. The project develops a plug-in application for so-called Home Theatre PCs, such
as set-top boxes with MythTV or Windows Media Center Edition installed, that can be con-
sidered as programmable digital video recorders. StreetTiVo distributes compute-intensive
multimedia analysis tasks over multiple peers (i.e., StreetTiVo users) that have recorded the
same TV program, such that a user can search in the content of a recorded TV program
shortly after its broadcasting; i.e., it enables near real-time availability of the meta-data (e.g.,
speech recognition) required for searching the recorded content. StreetTiVo relies on our P2P
XDBMS technology, which in turn is based on a DHT overlay network, for distributed collab-
orator discovery, work coordination and meta-data exchange in a volatile WAN environment.
The technologies of video analysis and information retrieval are seamlessly integrated into the
system as XQuery functions.

7.1 Motivation
Things are changing in the living room, under the TV set: TV is going digital and consumer
electronics gets networked. The so-called “set-top” boxes that are needed for digital televi-
sion have appeared in the houses of many; and, many of these set-top boxes are rather pow-
erful computers connected to the Internet, running Windows Media Center or its open-source
MythTV equivalent.

A related trend is the increasing demand for multimedia information access. Presently,
“ordinary” people own hundreds of gigabytes of multimedia data, resulting from their dig-
ital photo cameras, hard-disk video recorders, etc. However, searching multimedia files is
usually restricted to simple look up in the meta-data of files, such as file names and (human-
edited) descriptions. More advanced multimedia retrieval requires highly compute-intensive
pre-processing of the data (e.g., speech recognition and image processing); as a rough estima-
tion, it takes a moderate computer more than one order of magnitude more time to derive the
auxiliary data that would enable better search facilities.

The idea of the StreetTiVo project is to unite the computing power of those Media Center
devices (peers) in the living rooms. By distributed and parallel execution of compute-intensive

131



132 7.2. P2P DATA MANAGEMENT

multimedia analysis tasks on multiple peers, near real-time indexing of the content can be
provided using just the ordinary hardware available in the network. StreetTiVo divides the
Media Center devices into groups and assigns each group a short time slice of a recording
(e.g., ten seconds), to run multimedia analysis tools on those time slices only. Thus, the peers
form virtual digital streets and are virtual neighbours of each other. StreetTiVo uses the P2P
concept in a strictly legal way, as it is not used to distribute the video files themselves. Users
can only watch the content they have recorded themselves. What is exchanged by StreetTiVo
are only the results of multimedia analysis of those videos, i.e., generated meta-data.

Summarising, the goal of the StreetTiVo project is: unite Media Center devices using P2P
technologies to cooperatively run compute intensive multimedia analysis applications just in
everybody’s living room so that they could produce results in near real-time.

Imagine for example, if only a tiny fraction of the millions of people recording the Cham-
pions League soccer competition would participate in StreetTiVo! Useful media analysis tools
would include the transcription of the text spoken by the presenters during the match, but also
the cross-media analysis to recognise goals and other exciting moments (e.g., from audio vol-
ume and/or camera motion patterns). After each group of media centers has exchanged its
partial analysis results with the other groups (that recorded the same match), all StreetTiVo
participants obtain the complete set of automatically derived annotations, such that meta-data
could be used for direct entry to the most exciting moment(s) of the game, or, the automatic
generation of a summary including all highlights.
Project Embedding StreetTiVo is a demo application of the Dutch national research project
MultimediaN1 that unites multimedia and database researchers in various academic and in-
dustrial research institutes to achieve high-quality multimedia solutions for the digital world
of today and tomorrow. In this project, participating parties work together on new and exist-
ing multimedia applications, especially applications that involve audio and video analysis, for
instance, finding back objects and people by shape. One of the goals of StreetTiVo is thus to
ease the early adoption of research results in the practice, by using the existing hardware in
everybody’s living room.

7.2 P2P Data Management
From a network communication perspective, DHT-based overlays have gained much popu-
larity in both research projects and real-world P2P applications [2, 153, 143, 162, 101, 147,
142, 43, 148, 100, 108, 185]. DHT networks have proven to be efficient and scalable (guar-
antees O(logN) scalability) in volatile WAN environments [147, 146]. From a data manage-
ment perspective, XML has become the de facto standard for data exchange over the Internet,
and XQuery the W3C standard for querying XML data. The infrastructure of StreetTiVo is
therefore provided by MonetDB/XQuery? [179], a P2P XML DBMS that supports distributed
evaluation of XQuery[38] queries over DHT networks [2, 143, 162, 147].

Each peer runs an XDBMS, MonetDB/XQuery [41], to manage its local data. Communica-
tion among peers is done by remote execution of XQuery functions using XRPC [180, 181], a
simple XQuery extension for Remote Procedure Calls (RPC) that enables efficient distributed
querying of heterogeneous XQuery data sources.

The current implementation of StreetTiVo as XQuery expressions applies a Dutch Au-
tomatic Speech Recognition system (ASR) [102] to the recorded programmes, and provides

1See www.multimedian.nl



CHAPTER 7. STREETTIVO 133

GUI

MonetDB/XQuery

MonetDB/XQuery

Search

ASR

extraction engine
Multimedia feature

1. register−recording($channel, $startDT, $duration, $clntAddr): fragment
2. start−asr($progID, $fragID, $start, $end)

Coordinator

PF/Tijah
(IR engine)

3. add−finished−fragment($progID, $fragID, $text, $clntAddr): fragment

StreetTiVo Client

XRPC

4. get−speech−text($progID, $fragIDs)

XRPC 2

StreetTiVo Client

StreetTiVo Client

1 3 4

StreetTiVo Client

Figure 7.1: StreetTiVo architecture: client-server model

a full-text retrieval service of the ASR output by employing PF/Tijah, a MonetDB/XQuery
extension[97]. When a TV program is broadcast, all participants (peers that are recording
this TV program) jointly extract the (Dutch) spoken text using the ASR component, and ex-
change local partial ASR results with each other. ASR produces XML documents contain-
ing speech texts and some meta-data, for example, start/end timestamp of a sentence in the
video file. Each participant stores all resulting XML documents of the recording in its local
MonetDB/XQuery that can then be queried using PF/Tijah. The meta-data of the retrieved
sentences provide sufficient information for the StreetTiVo GUI to display only the desired
video fragment.

7.3 StreetTiVo Architecture
The current version of StreetTiVo uses a simple client-server network model, as shown in
Figure 7.1. In this setup, we assume that the coordinator is a reliable host, while the clients
join and leave unpredictably (similar to the early work of [65]). While our next step will be to
replace this model with a more sophisticated DHT-based P2P model, we first detail the current
implementation.

Each peer runs a MonetDB/XQuery server and communicates with other peers via XRPC,
by sending SOAP XRPC request/response messages. The central StreetTiVo coordinator is
responsible for registration of recordings, and the generation and distribution of ASR tasks.
For each recording, the coordinator maintains a list of participating peers and a list of tasks
(called fragments). A recording is divided into short fragments (usually several seconds) to
be analysed parallelly by the participants. For each fragment, the coordinator maintains if it
is being processed by a peer (i.e., it has an assignee), or if its speech text is already available
(i.e., it has an owner). All meta-data are in XML format and stored in MonetDB/XQuery.

Example 7.3.1. The XML snippet in Table 7.1 shows the recording element for the TV
program bbc1_20080425_200000. The progID is determined by channel+date+start time.
The TV program is recorded by two peers and is divided into 4 fragments. The attributes start
and end of a fragment indicate the relative start/end timestamps of the fragment in the video
file. Fragments are assigned to the participants in the order they register, so initially fragments
1 and 2 are assigned to the hosts x.example.org and y.example.org, respectively. So far,



134 7.3. STREETTIVO ARCHITECTURE

〈recording progID=“bbc1_20080425_200000”〉
〈participants〉
〈participant host=“x.example.org”/〉
〈participant host=“y.example.org”/〉

〈/participants〉
〈fragments〉
〈fragment fragID=“1” start=“0” end=“10”〉〈owner host=“x.example.org”/〉〈/fragment〉
〈fragment fragID=“2” start=“10” end=“25”〉〈assignee host=“y.example.org”/〉〈/fragment〉
〈fragment fragID=“3” start=“25” end=“30”〉〈assignee host=“x.example.org”/〉〈/fragment〉
〈fragment fragID=“4” start=“30” end=“38”/〉

〈/fragments〉
〈/recording〉

Table 7.1: Information maintained for each recording

x.example.org has finished analyse fragment 1 (indicated as the owner of the fragment)
and has been assigned a new job fragment 3. The host y.example.org is still processing
fragment 2. Since there are no more participants, fragment 4 is waiting to be assigned.

All interfaces between coordinator, clients and the local ASR engine have been defined as
XQuery functions. A small Java program implements the XQuery function (start-asr() in
Figure 7.1) that triggers the ASR engine. The interaction between one StreetTiVo client and
the coordinator is shown in details. Collaborative speech recognition works as follows.

Step ¬ When a TV program is scheduled for recording, the StreetTiVo client sends an XRPC
request to the coordinator to execute the function register-recording(). The coordinator
responds with a fragment, which has not been processed by any participants, and inserts the
client as an assignee into the fragment element. For reliability reasons, each fragment is
assigned to multiple clients.

If the request is the first registration for a TV program, the coordinator first needs to
generate ASR tasks. An easy way to do this is to divide the whole recording into equal sized
fragments. To get high quality ASR result, the ASR segmenter should be used, which is
able to filter out the audio that do not contain speech and generates fragments accordingly
(see Section 7.3). Information provided by the ASR segmenter ensures that the ASR speech
recogniser produces more accurate results. However, the better quality comes at a high cost
of speed, because the coordinator must record the TV program itself and run ASR segmenter
afterwards. So, there is a trade-off between speed and quality.

Step  Upon receipt of the response from the coordinator (in Step ¬), the StreetTiVo client
starts its local ASR engine to analyse the fragment specified in the response message, by
calling the interface function start-asr().

Step ® After the ASR engine has finished analysing a fragment, the StreetTiVo client reports
this by calling add-finished-fragment() on the coordinator and passing among others the
retrieved text as parameter.

Step ¯ After having finished one task, the StreetTiVo client is expected to request a new task
(get-job()), until the coordinator responds with an empty task, which might mean that there
are sufficient number of assignees for each fragment, or that the coordinator has received the
ASR results of all fragments.

Step ° If there are no new tasks, the StreetTiVo client waits for some predefined time to give
the other participants the opportunity to finish their ASR tasks, and then attempts to retrieve
the speech text of the missing fragments. The StreetTiVo client can directly ask the coordinator



CHAPTER 7. STREETTIVO 135

Determination
Clustering

Segmentation
and

Speech
Activity

Detection
Decode II

Unsupervised
adaptationDecode I

warp factor

Figure 7.2: Overview of the ASR decoding system.

for the missing fragments (get-speech-text()), since all ASR results are also stored at the
coordinator, but the preferred procedure is to just call the coordinator’s get-fragments()
function (not shown) to find out what participant owns which ASR result, and retrieve the
fragments’ texts from those nodes.

Once the ASR results are locally available, StreetTiVo users can search for video frag-
ments by entering keywords in the GUI. The keywords are subsequently translated into Tijah
queries. PF/Tijah returns matching sentences ranked by their estimated probability of rele-
vance to the query. Each sentence is tagged with its relative start/end timestamps in the video
file, this way, the desired video fragments can be retrieved. In summary, StreetTiVo has three
major components: XRPC takes care of communication among peers, ASR provides video
analysis functions, and PF/Tijah enables retrieval of video fragments using keywords. In the
remainder of this section, we briefly give a overview of ASR and PF/Tijah.

ASR The Automatic Speech Recognition (ASR) supports the conceptual querying of video
content and the synchronisation to any kind of textual resource that is accessible, including
other annotations for audiovisual material such as subtitles. The potential of ASR-based in-
dexing has been demonstrated most successfully in the broadcast news domain. Typically
large vocabulary speaker independent continuous speech recognition (LVCSR) is deployed to
this end.

The ASR system deployed in StreetTiVo was developed at the University of Twente and
is part of the open-source SHoUT speech recognition toolkit2. Figure 7.2 gives an overview
of the ASR decoding system. Each step provides the input for the following step. The whole
process can be roughly divided into two stages. During the first stage, the Speech Activity
Detection (SAD) is used to filter out the audio parts that do not contain speech. This step is
crucial for the performance of the ASR system to avoid that it tries to recognise non-speech
audio that is typically found in recorded TV programs such as music, sound effects or back-
ground noise with high volume (traffic, cheering audience, etc). After SAD, the system tries
to figure out ‘who spoke when’, a procedure that is typically referred to as speaker diarisation.
In this step, the speech fragments are split into segments that only contain speech from one
single speaker. Each segment is labelled with its corresponding speaker ID. Next, for each
segment the vocal tract length (VTLN) warping factor is determined for vocal tract length
normalisation. Variation of vocal tract length between speakers makes it harder to train robust
acoustic models. In the SHoUT system, normalisation of the feature vectors is obtained by
shifting the Mel-scale windows by a certain warping factor during feature extraction for the
first decoding step.

After having cleaned up the input sound and gained sufficient meta information, speech
recognition can be started in the second stage. Decoding is done using the HMM-based Viterbi
decoder. In the first decoding iteration, triphone VTLN acoustic models and trigram language
models are used. For each speaker, a first best hypothesis aligned on a phone basis is created
for unsupervised acoustic model adaptation. Optionally, for each file a topic specific language

2For information on the use of the SHoUT speech recognition toolkit see http://wwwhome.cs.utwente.nl/
~huijbreg/shout/index.html



136 7.3. STREETTIVO ARCHITECTURE

model can be generated based on the input of first recognition pass. The second decoding
iteration uses the speaker adapted acoustic models and the topic specific language models to
create the final first best hypothesis aligned on word basis. Also, for each segment, a word
lattices is created. A more detailed description of each step can be found in [102].
PF/Tijah: XML Text Search PF/Tijah [97] is another research project run by the Univer-
sity of Twente with the goal to create a flexible environment for setting up search systems
by integrating MonetDB/XQuery that uses the Pathfinder compiler [88] with the Tijah XML
Information Retrieval (IR) system [121]. PF/Tijah includes out-of-the-box solutions for com-
mon tasks like index creation, stemming, result ranking (using several retrieval models), and
relevance feedback, but it remains at the same time open to any adaptation or extension. The
system aims to be (i) a general purpose tool for developing IR end user applications using
XQuery statements with text search extensions, and (ii) a playground for the information re-
trieval scientist and advanced user to easily set up and test new search systems. The main
features supported by PF/Tijah include the following:

• Retrieving arbitrary parts of textual data, unlike traditional IR systems for which the notion
of a document needs to be defined up front by the application developers. For example, if
the data consists of scientific journals one can query for complete journals, journal issues,
single articles, sections from articles or paragraphs without adapting the index or any other
part of the system configuration;

• Complex scoring and ranking of the retrieved results by means of so-called Narrowed Ex-
tended XPath (NEXI) [133] queries. NEXI is a query language similar to XPath that only
supports the descendant and the self axis step, but that is extended with a special about()
function that takes a sequence of nodes and ranks those by their estimated probability of rel-
evance to the query;

• Ad hoc result presentation by means of its query language. For instance, when searching
for a special issue of a journal, it is easy to print any information from that retrieved result
on the screen in a declarative way (i.e., not by means of a general purpose programming
language), such as its title, date, and the preface. This is simply done by means of XQuery
element construction;

• PF/Tijah supports incremental indexing: when new ASR fragments are added to the database,
their text will be automatically indexed by PF/Tijah, without the need to re-index the entire
database from scratch;

• Search combined with traditional database querying, including for instance joins on values.
As an example, one could search for employees from the financial department, who have
also worked for the sales department and have sent an email about “tax refunds”.

StreetTiVo inserts fragments containing the transcripts of ASR whenever they are avail-
able. Therefore, they will not be nicely grouped per programme in the database, nor will they
be in chronological order. The combination XQuery and NEXI text search enables StreetTiVo
to search matching fragments, combine the fragments with the same programme identifier,
combine their scores (or take the score of the best matching fragment), rerank programmes
by the scores of their fragments, and display the matching programmes along with their best
matching fragments: all of this is done in one query.



CHAPTER 7. STREETTIVO 137

1. register−recording($channel, $startDT, $duration, $clntAddr)
2. start−asr($progID, $fragID, $start, $end)

5. get−speech−text($progID, $fragIDs)

3. report−finished−fragment($progID, $fragID, $clntAddr)
4. get−fragments($progID)

streettivo
P40 (keys [40,53])

streettivo
P54

Hash("bbc1_20080425_200000") => 42

streettivo
P73

streettivo
P65

streettivo
P82

streettivo
P8

streettivo
P23

1

4

1
3

4

1
3 4

5

5

5

3

Figure 7.3: StreetTiVo architecture: DHT model

7.4 Next Steps
Our next step in the development of StreetTiVo is to replace the client-server model with
MonetDB/XQuery? [179], which integrate the P2P data structure Distributed Hash Tables
(DHTs) into XQuery (see Figure 7.3). A DHT [2, 143, 162, 147] provides (i) robust connec-
tivity (i.e., it tries to prevent network partitioning), (ii) high data availability (i.e., prevent data
loss if a peer goes down by automatic replication), and (iii) a scalable (key,value) storage
mechanism with O(log(N)) cost complexity, where N is the number of peers in the network.
A number of P2P database prototypes have already used DHTs [101, 142, 43, 100, 108].

In a StreetTiVo system using a DHT model, peers are managed by a DHT ring. There is no
single StreetTiVo coordinator. All peers are unreliable and each can be both a coordinator and
a client, thus, each peer must additionally support the functions provided by the coordinator,
as discussed in Section 7.3. The process to collectively speech extraction using ASR is similar
as in the client-server model, except several small changes:

Example 7.4.1. Figure 7.3 shows an example scenario, in which three peers N65, N73 and
N82 will record the TV program with progID=“bbc1_20080425_200000”. All participants
use the same hash function to calculate the hash of the progID, which is 42 here. Since the
peer P40 is responsible for keys [40,53], it is chosen as the coordinator for this TV program.
The participating peers register the recording at P40 (Step ¬). Generating ASR tasks is still
done by the (temporary) coordinator, P40. When a peer finished an ASR task, it reports this at
the coordinator (Step ®), but without sending the extracted text. All participants will repeat
steps ¯,  and ® to process more fragments, until there are no more ASR tasks. Finally, the
participants exchange the ASR results by first finding the owner of each fragments from the
coordinator (Step °), and then retrieving the missing ASR results from each other (Step °).

In the DHT model, the availability of the recording meta-data (i.e., the recording ele-
ments maintained by a coordinator as discussed in Section 7.3) is guaranteed thanks to the
automatic replication facility provided by the underlying DHT network, that is, all data on a
peer managed by the DHT network are replicated on the peer’s predecessors and successors.



138 7.4. NEXT STEPS

Thus, if peer P40 would fail in our example, all request with key 42 would be routed by the
DHT network to P23 or P54. Also note that, the ASR results are not managed by the DHT
network. Basically, all StreetTiVo peers can retrieve these data, but only the peers that have
recorded the particular TV program can display the video. The availability of the ASR results
is affected by the number of participants (more participants ⇒ higher availability). How-
ever, this is not a crucial issue, since every StreetTiVo peer is able to run ASR on a missing
fragments.
Integrating XQuery and DHT The challenges in integration of XQuery and DHT are:

(i) How a DHT should be exploited by an XQuery processor?

(ii) If and how the DHT functionality should surface in the query language?

As described in Section 4.6, in MonetDB/XQuery?, we propose to avoid any additional
language extensions, but rather introduce a new dht:// network protocol, accepted in the
destination URI of fn:doc(), fn:put() and execute at. The generic form of such URIs
is dht://dht_id/key, where dht:// is the network protocol, dht_id is the ID of the DHT
network to be used. Such an ID is useful to allow a P2P XDBMS to participate in multiple
(logical) DHTs simultaneously (see Figure 4.6(b)). The key is used to store and retrieve values
in the DHT.

In the architecture that was shown in Figure 4.6(b), we run the DHT as a separate pro-
cess called the Local DHT Agent (LDA). Each LDA is is connected to one DHT dht_id.
In this tight coupling (Section 4.6.3) between the DHT network and the XDBMS [179],
each DHT peer uses its local XDBMS to store the data (i.e., XML documents) and the lo-
cal XDBMS uses its underlying DHT network to route XQuery queries to remote peers for
execution (i.e., pass XRPC requests to the LDA). A positive side-effect of this tight coupling
is that the DBMS gets access to the information internal to the P2P network. This infor-
mation (e.g. peer resources, connectivity) can be exploited in query optimisation. To realise
this coupling, we need to extend the DHT API (put() and get()) with one new method:
xrpc(key,q,m, f (ParamList)):item()*, where f (ParamList) is the XQuery function that is
to be executed on a remote DHT peer determined by key. The parameters q and m specify
XQuery module, in which the function fr is defined and the location of the module file. With
this method, an XRPC call on a peer p0 to a dht://dhtx/keyy URI is handled as follows:

1. The XRPC request(q,m, f ,ParamList) is passed to the Local DHT Agent ldax
0 of p0,

which in turn passes the request to the DHT network dhtx.

2. The DHT dhtx routes the request using the normal DHT routing mechanism to the peer
pi responsible for keyy.

3. When the LDA ldax
i on pi receives such a request, it performs an XRPC call containing

the same request to the MonetDB/XQuery instance on pi.

4. When ldax
i receives the response message, it transports the response back via dhtx to the

query originator p0.

Use Cases Below we show how two main StreetTiVo functions can be implemented as
XQuery module functions, which then can be executed using XRPC and the tightly coupled
DHT semantics.



CHAPTER 7. STREETTIVO 139

(i) Collaborator Discovery. In StreetTiVo, every TV program has a unique identifier progID,
and for each recorded TV program a recording element is maintained by the peer responsible
for the key hash(progID) with lists of participants and fragments. If a peer is going to
record the TV program “bbc1_20080425_200000”, it should register the recording at the
coordinator of this TV program. This can be done by the following XRPC call:

import module namespace stv = "streettivo" at "http://example.org/stv.xq";
let $key := hash("bbc1_20080425_200000"),

$dst := fn:concat("dht://dht_x/", $key)
return execute at {$dst}

{stv:register-recording(bbc1, "2008-04-25T20:00:00", "1H", "x.example.org")}

(ii) Distributed Keyword Retrieval. Assume a StreetTiVo user wants to search in today’s news-
cast “bbc1_20080425_20-0000”, he/she has recorded, for video fragments that were about
the situation in Tibet, but the ASR results are not completely available (yet) on his/her local
machine. Then the search request might be sent to other StreetTiVo peers that have recorded
the same newscast. The following pseudo-code first retrieves the list of fragments from the
coordinator, and then sends a search request to each peer that owns ($frags//owner/@host)
the ASR results of a fragment:

import module namespace stv = "streettivo" at "http://example.org/stv.xq";
let $key := hash("bbc1_20080425_200000"),

$dst := fn:concat("dht://dht_x/", $key)
$frags := execute at {$dst} {stv:get-fragments(bbc1, "2008-04-25T20:00:00")

return for $p in $frags//owner/@host
return execute at {$p} {stv:search("situation in Tibet")}

7.5 Conclusion
In this chapter, we have described StreetTiVo, a P2P Information Retrieval system that enables
near real-time search in video contents by just using existing hardware in the living rooms to
collectively run compute-intensive video analysis video content analysis tools.

Thanks to its implementation in a high-level declarative database language, it is straight-
forward to extend StreetTiVo with other types of functionality. We plan to complement the
current media analysis with image processing techniques to automatically detect celebrities in
news broadcasts or goals in soccer matches. Maybe even more interesting is that StreetTiVo
users can also easily share their own human made annotations. For example, people usually
schedule a recording several minutes before/after the start/end of the to be recorded TV pro-
gram, to prevent missing part of the program. If just one StreetTiVo user has annotated the
exact start/end timestamp of the TV program, the information can be shared in the platform
with other StreetTiVo users who have recorded the same program, and the unnecessary parts
of their recordings can be removed transparently.





8
Conclusion and Outlook

P2P content sharing applications have gained enormous popularity in less than a decade. But
nowadays, the demand of more sophisticated P2P applications that go beyond simple key-
words search is growing. However, developing P2P applications that provide non-trivial dis-
tributed data management facilities is a rather cumbersome task, since applications have to
deal with information from huge collections of highly heterogeneous and volatile data sources.
A P2P data management system which acts as a database middle-ware and offers a uniform
database abstraction on top of a dynamic set of distributed data sources, should ease the de-
velopment of data-intensive P2P applications. In this PhD work, we research which features
such a database abstraction should offer and how it can be realised efficiently by extending
and combining existing XDBMS with P2P technologies.

8.1 Research Summary
The main research question we try to answer in this thesis is:

How to support efficient processing of full-fledged XQuery queries –
including those containing XQUF expressions – on large amounts of
XML data served by heterogeneous XQuery engines in P2P settings?

The main research question is divided into five more specific questions, as stated in Chapter 1.
Below we summarise the contributions of this thesis as the answers to those specific research
questions.

1. How should we extend XQuery with a query shipping mechanism that is suitable for
the targeted environments?
Before extending XQuery, we have first carefully analysed the characteristics of our tar-
get environments and defined a list of criteria which such extensions must satisfy (Sec-
tion 3.1). The result is XRPC, a simple but powerful extension of XQuery that adds the
RPC paradigm to XQuery. At the syntax level, the “execute at” statement of XRPC is
inspired by that of XQueryD [144, 29]. However, XRPC has several properties that makes
it particularly suitable for large scale P2P settings.

XRPC is simple because (i) it adds RPC in the least invasive way to XQuery: adding
a destination URI to an XQuery function application; (ii) it respects well-accepted (de
factor) Web standards, e.g., RPC, SOAP, HTTP and Java; (iii) the SOAP XRPC protocol
is a stateless protocol; and (iv) it is easy for other XQuery engines to adopt XRPC (we

141



142 8.1. RESEARCH SUMMARY

will come back to this point in the next research question). As an orthogonal extension,
XRPC preserves the expressiveness of XQuery, and the SOAP XRPC protocol supports all
XDM data types, including user-defined XML Schema types with the ability to validate
the SOAP messages.

XRPC is flexible because (i) an XRPC call can be made anywhere in a query where an
XQuery function call is allowed; (ii) modules only need to be imported once and all the
imported functions can be executed both locally and remotely on an arbitrary number of
peers, avoiding any additionally effort to compile a module.

XRPC is efficient because (i) the Bulk RPC technique not only greatly reduces network
latency, but also exploits the set-at-a-time infrastructure of DBMSs, e.g., turning bulk se-
lections into a join between the SOAP message and the XML documents; (ii) with the
by-projection decomposition algorithm, almost every XQuery expression can be decom-
posed, giving a large number of possibilities for distributed query optimisation; and (iii) the
runtime projection algorithm can be much more accurate than the compile time techniques,
which minimises the sizes of the SOAP messages. The efficiency of XRPC also implies
that it is scalable with respect to the number of peers in the network (achieving minimal
number of network round-trips thanks to the stateless protocol), the number of documents
and the sizes of the documents.

However, XRPC is not only a language extension. The SOAP XRPC network protocol
makes XRPC the only distributed XQuery proposal that is interoperable and full-fledged,
at the time of this writing1. Within the scope of the XRPC project, we have also studied
topics such as distributed transaction management and query optimisation. These topics
are addressed by the remaining four research questions.

2. How can different XQuery engines be united to jointly evaluate a single query?

This problem calls for an interoperable and easy to support solution. Concerning interop-
erability, the basic building blocks of XRPC, i.e., XML, XQuery, SOAP and HTTP, are all
well-defined and generally accepted Web standards. To enable communication among dif-
ferent XQuery engines, we propose a well-defined SOAP-based protocol, the SOAP XRPC
protocol, in Section 3.3. Thus, network communication in XRPC uses XML messages over
HTTP. Such a protocol is easy for existing XQuery engines to support, since they are al-
ready perfectly equipped to process XML messages, and there is ubiquitous support for
URIs and HTTP.

The design of XRPC has been kept as simple as possible, which makes it easy to understand
and support. RPC is an obvious and popular paradigm for implementing the client-server
model of distributed computing2. Hence, to support XRPC, an XQuery engine merely
needs to extend its grammar rules to support the “execute at” statement and implement
the stub code and request handler. Serialisation and parsing of the SOAP messages are
functionalities that already exist in every XQuery engine.

1XButler [134] is the only distributed XQuery proposal that also adopts an open communication protocol, i.e.,
SOAP RPC. However, due to the limitations in the supported data types by SOAP RPC (as discussed in Chapter 1),
XButler is restricted to support functions, which only have atomic values as their parameters and results, like the
WSDL services.

2The idea of RPC was first described in RFC707 [145] in 1976.



CHAPTER 8. CONCLUSION AND OUTLOOK 143

An XQuery engine can even participate in the evaluation of a distributed XQuery query
without having XRPC integrated. The XRPC Wrapper, described in Section 4.2, is a SOAP
service handler, implemented in Java and XQuery for reasons of interoperability. It can be
run on top of any XQuery systems that is XQuery 1.0 compliant. The XRPC Wrapper
translates a SOAP XRPC request message into a standard XQuery query, which is passed
to the underlying XQuery engine for execution. Query results are wrapped in an XRPC re-
sponse envelope and sent back to the caller. Extracting information from a request message
(i.e., information of the called function and its parameter values) is done using XPath steps
and generating the XRPC response message is done using element construction, again,
features that are available in every XQuery engine.

3. How are distributed updating queries supported?
Since the XRPC extension is orthogonal to all XQuery features, it automatically supports
remote execution of XQUF expressions by means of calling updating functions on remote
peers. If updates are allowed in a system, dealing with transactional semantics is a matter
of course. In this Ph.D. work, we have spent some effort on formally specifying the se-
mantics of distributed updating XRPC queries and the support for atomically committing
of distributed transactions. In Section 3.4, we have formally defined the semantics for both
read-only and updating XRPC queries under different levels of isolation, and the neces-
sary extensions to the SOAP XRPC message format. To support atomic committing of
distributed transactions, we have chosen not to extend the SOAP XRPC protocol with any
2PC-like features, but rather to rely on the recent industry standard Web Services Atomic
Transaction [55, 54], which provides a SOAP-based 2PC interface. Section 4.5 describes
how updating queries are handled utilising this standard. By using the XRPC Wrapper,
we have demonstrated processing of distributed updating XRPC queries involving Galax,
MonetDB/XQuery, Saxon and X-Hive [181].

If multiple groups of XML nodes are inserted by multiple uses of the same kind of insert
expression3 with the same target node, XQUF leaves the ordering among these groups to
be implementation-dependent, which implies an undeterministic ordering. However, node
order plays an important role in XML and XQuery. We thus regard it worthwhile to define
a deterministic update order that simply respect the order in which updates appear in for-
loops and sequence constructions. In XRPC, a deterministic distributed updates order can
be ensured by a simple extension to the SOAP XRPC protocol, as described in Section 4.4.

Finally, in Section 5.7.2 we extend the semantics of XQUF to allow updates on remote
documents which are identified by an xrpc:// URI scheme. In this section, we also pro-
pose rewriting rules to ensure the correctness of decomposed queries that contain updates
on remote peers, that is, updating expressions may only be carried out on the peer owning
the document to be updated.

4. How can we automatically decompose XQuery queries for distributed execution?
Decomposing queries to address multiple data sources is a well-known optimisation mech-
anism in distributed query processing. While many of the existing techniques can be car-
ried over in distributed XQuery processing, there are challenges, introduced by the XML
data model and the XQuery language, which do not exist in a value-based relational data

3This includes insert into, or insert as first|last into, or insert before|after.



144 8.2. FUTURE WORK

model. That is, XML nodes have node identities and structural properties. In Chapter 5, we
studied in detail automatic decomposition of standard XQuery queries with semantic guar-
antees. We have presented three decomposition algorithms for both read-only and updating
queries. All three algorithms use a copy-based protocol (i.e., the SOAP XRPC protocol and
its extensions) for (un)marshalling function parameters and results. In Chapter 1, we have
argued our choice for a stateless protocol, which we believe is more suitable for our target
large scale P2P environments than a stateful protocol. In Chapter 5, we show, especially
with the by-projection algorithm, that such a simple stateless protocol is extremely efficient
and gives sufficient freedom for distributed query optimisation. The correctness of all de-
composition algorithms are formally proven in Chapter 6, which adds a strong theoretic
foundation to the algorithms.

5. How can we integrate existing DBMS with P2P overlay networks to provide non-
trivial data management facilities to P2P applications?
During this Ph.D. work, we have taken some preliminary steps toward an integration of
existing XDBMS and DHT network structures. This is described in Section 4.6. The basic
idea is to avoid any additional extension to the XQuery language. Section 4.6 proposes
two different ways of coupling an XDBMS with one or more DHT networks, i.e., loose
coupling and tight coupling. Both couplings rely on a new dht:// scheme to address
resources in the underlying DHT network. In the tight coupling, we have to extend the
DHT API with a new function so that a DHT peer can benefit from its local XDBMS to
enable a more complex querying facility than the standard DHT API, with which only a
complete document can be stored and retrieved by its name.

The XRPC remote function execution mechanism and the ideas of MonetDB/XQuery? are
applied in a P2P application called StreetTiVo [182]. StreetTiVo enables near real-time
search in video contents by distributed and parallel execution of compute-intensive video
analysis tasks on multiple peers. Our work on the StreetTiVo application confirms our as-
sumption that a P2P middle-ware DBMS could ease the development of data-intensive P2P
applications. With XRPC, the rather complex functionalities of StreetTiVo were quickly
implemented using just a handful XQuery functions, which in turn are executed on the
participating machines.

Theories proposed in this Ph.D. work have also been adopted in practice. XRPC has
been included in the open-source XDBMS MonetDB/XQuery, which can be downloaded via
http://monetdb.cwi.nl/Download/. The software includes the XRPC client and server
for distributed XQuery processing, a Java package containing an XRPC Wrapper for cross-
system XQuery processing, and an interface for directly making XRPC calls from within web
pages. User experience has shown that XRPC is an easy to use mechanism for distributed
XML querying.

8.2 Future Work
With this Ph.D. work, we have taken the first steps towards building a middle-ware PDBMS.
However, there are still plenty of open areas for future research work. The following questions
are particularly interesting.
Distributed Query Placement With the by-projection decomposition algorithm, we are able
to decompose almost all XQuery expressions. A natural next step is to decide the placement



CHAPTER 8. CONCLUSION AND OUTLOOK 145

for each decomposed subexpression, i.e., to find the optimal peers on which a subexpression
should be executed. Basically, this needs a cost-based optimisation that takes network, CPU
and data distribution into account [68, 21, 80, 187, 188]. However, in P2P setting, it is unre-
alistic to assume the availability of these statistics. As a possible solution direction, one could
contemplate using runtime methods to improve optimisation quality. One idea is to express
peer selection criteria in XQuery expressions and attach such expressions to the destination
URI of each execute at statement. At runtime, when the query (with the peer selection rules
added) is evaluated, it will select the best remote peers at that moment, for each decomposed
subquery to be executed. We could also borrow ideas from the execution model of Mutant
Query Plans [136, 137], in which distributed query plans are evaluated incrementally (by try-
ing to resolve as many as possible logical URNs into URLs at each peer). However, we will
not consider exchanging query plans among peers for reasons of interoperability.
Scalable P2P Transaction Management So far, we have only used a strict 2PC protocol for
transaction management. In P2P settings, we deem it important to define less strict but more
scalable protocols to manage transactions. Distributed Snapshot Isolation (DSI) is especially
interesting because it requires weaker locking protocols, which makes it likely to perform
better than a classical two-phase locking protocol in high-latency WAN environments. To
our knowledge, there has not been much previous work on Distributed Snapshot Isolation,
while lately in commercial applications (centralised) snapshot isolation has found wide user
acceptance. One idea here is to use Lamport Clocks [116] as the timestamp for DSI, providing
the notion of Lamport consistency. The objectives of such work would contain a formal
definition of this consistency criterion, as well as an analysis of the protocols needed. The
StreetTiVo application could be used to validate this approach.
Query Optimisation in MonetDB/XQuery? Our initial work described in MonetDB/XQuery?

needs more work to become mature. A first goal of using DHTs is to create “logical URL”s
that specify XML data items without necessarily pinning down the actual URL (hostname,
path). Such logical URLs may even be used as synonyms for XML data items that are spread
over multiple locations. Another benefit of using DHTs is to allow O(log(N)) network cost
equi-selections (N is the number of peers) and add self-managing properties to the distributed
system under churn, i.e. maintaining connectivity, and providing an automatic replication
mechanism that prevents data loss. Apart from these design aspects of the XDBMS-DHT
integration, another interesting topic is to research which query optimisation possibilities the
proposed tight DHT coupling can provide.





A
XML Schema Definition of the

XRPC SOAP Messages

〈?xml version=“1.0”?〉
〈xs:schema version=“0.1” xml:lang=“EN” xmlns:xs=“http://www.w3.org/2001/XMLSchema”

xmlns:xrpc=“http://monetdb.cwi.nl/XQuery” elementFormDefault=“qualified”
targetNamespace=“http://monetdb.cwi.nl/XQuery”〉

〈xs:element name=“atomic-value” type=“xs:anySimpleType”/〉 〈! - - simple elements - -〉
〈xs:element name=“attribute”/〉
〈xs:element name=“comment”/〉
〈xs:element name=“document”/〉
〈xs:element name=“element”/〉
〈xs:element name=“processing-instruction”/〉
〈xs:element name=“text”/〉
〈xs:element name=“udf-element” type=“xrpc:udfElemType”/〉
〈xs:element name=“request” type=“xrpc:requestType”/〉 〈! - - complex elements - -〉
〈xs:element name=“call” type=“xrpc:callType”/〉
〈xs:element name=“response” type=“xrpc:responseType”/〉
〈xs:element name=“sequence” type=“xrpc:sequenceType”/〉
〈xs:element name=“queryID” type=“xrpc:qidType”/〉
〈xs:attribute name=“host” type=“xs:anyURI”/〉 〈! - - attributes - -〉
〈xs:attribute name=“timestamp” type=“xs:dateTime”/〉 〈! - - micro-seconds - -〉
〈xs:attribute name=“timeout” type=“xs:double”/〉 〈! - - mini-seconds - -〉
〈xs:attribute name=“module” type=“xs:string”/〉
〈xs:attribute name=“method” type=“xs:string”/〉
〈xs:attribute name=“location” type=“xs:anyURI”/〉
〈xs:attribute name=“arity” type=“xs:integer”/〉
〈xs:attribute name=“iter-count” type=“xs:integer”/〉
〈xs:attribute name=“updCall” type=“xs:string”/〉
〈xs:attribute name=“tag” type=“xs:string”/〉
〈xs:attribute name=“caller” type=“xs:string”/〉
〈xs:complexType name=“qidType”〉 〈! - - complex types - -〉
〈xs:attribute ref=“xrpc:timestamp” use=“required”/〉
〈xs:attribute ref=“xrpc:host” use=“required”/〉
〈xs:attribute ref=“xrpc:timeout” use=“required”/〉

147



148 XRPC Schema Definition

〈/xs:complexType〉
〈xs:complexType name=“udfElemType”〉
〈xs:sequence〉〈xs:any minOccurs=“0” maxOccurs=“1”/〉〈/xs:sequence〉
〈/xs:complexType〉
〈xs:complexType name=“sequenceType”〉
〈xs:sequence minOccurs=“0” maxOccurs=“unbounded”〉
〈xs:choice〉
〈xs:element ref=“xrpc:atomic-value”/〉
〈xs:element ref=“xrpc:attribute”/〉
〈xs:element ref=“xrpc:comment”/〉
〈xs:element ref=“xrpc:document”/〉
〈xs:element ref=“xrpc:element”/〉
〈xs:element ref=“xrpc:processing-instruction”/〉
〈xs:element ref=“xrpc:text”/〉
〈xs:element ref=“xrpc:udf-element”/〉
〈/xs:choice〉
〈/xs:sequence〉
〈/xs:complexType〉
〈xs:complexType name=“callType”〉
〈xs:sequence〉
〈xs:element ref=“xrpc:sequence” minOccurs=“0” maxOccurs=“unbounded”/〉
〈/xs:sequence〉
〈xs:attribute ref=“xrpc:tag”/〉
〈/xs:complexType〉
〈xs:complexType name=“requestType”〉
〈xs:sequence〉
〈xs:element ref=“xrpc:queryID” minOccurs=“0” maxOccurs=“1”/〉
〈xs:element ref=“xrpc:call” minOccurs=“1” maxOccurs=“unbounded”/〉
〈/xs:sequence〉
〈xs:attribute ref=“xrpc:module” use=“required”/〉
〈xs:attribute ref=“xrpc:method” use=“required”/〉
〈xs:attribute ref=“xrpc:location” use=“required”/〉
〈xs:attribute ref=“xrpc:arity” use=“required”/〉
〈xs:attribute ref=“xrpc:iter-count”/〉
〈xs:attribute ref=“xrpc:updCall” use=“required”/〉
〈xs:attribute ref=“xrpc:caller”/〉
〈/xs:complexType〉
〈xs:complexType name=“responseType”〉
〈xs:sequence〉
〈xs:element ref=“xrpc:queryID” minOccurs=“0” maxOccurs=“1”/〉
〈xs:element ref=“xrpc:sequence” minOccurs=“1” maxOccurs=“unbounded”/〉
〈/xs:sequence〉
〈xs:attribute ref=“xrpc:module” use=“required”/〉
〈xs:attribute ref=“xrpc:method” use=“required”/〉
〈/xs:complexType〉
〈/xs:schema〉



B
XQuery Implementation Defined
and Implementation Dependent

Features

In this chapter, we give a complete list of implementation defined and implementation de-
pendent features defined by the XQuery specifications, including [XQuery 1.0 and XPath 2.0
Data Model] [71], [XQuery 1.0: An XML Query Language] [38], [XQuery 1.0 and XPath 2.0
Functions and Operators] [124], [XSLT 2.0 and XQuery 1.0 Serialization] [39], and [XQuery
Update Facility 1.0] [58].

B.1 XQuery 1.0 and XPath 2.0 Data Model
Implementation Defined Features

• Support for additional user-defined or implementation defined types.

• Some typed values in the data model are undefined. Attempting to access an undefined
property is always an error. Behavior in these cases is implementation defined and the host
language is responsible for determining the result.

• The internal structure of the values of the unparsed-entities property.

• When mapping a Document Node to a document information item, the declaration base
URI property of the unparsed entities property.

• When constructing the children property for an Element Node from a PSVI, the relative
order of Processing Instruction and Comment Nodes must be preserved, but the position of
the Text Node, if it is present, among them is implementation defined.

Implementation Dependent Features

• The relative order of Namespace Nodes nodes is stable but implementation dependent.

• The relative order of Attribute Nodes nodes is stable but implementation dependent.

• The relative order of nodes in distinct trees is stable but implementation dependent.

• The names of anonymous types.

• The prefix associated with type names.

149



150 B.2. XQUERY 1.0: AN XML QUERY LANGUAGE

• The representation of the set of prefix/URI pairs returned by the dm:namespace-bindings
accessor.

• The representation of namespaces, i.e. whether or not they are represented as nodes.

• When constructing the children property for an Element Node from a PSVI, where a fixed
or default value for an element is defined in the schema, and the element takes this default
value, a text node will be created to contain the value, even though there are no character
information items representing the value in the PSVI. The position of this text node relative
to any comment or processing instruction children is implementation dependent.

B.2 XQuery 1.0: An XML Query Language
Implementation Defined Features

• The version of Unicode that is used to construct expressions.

• The statically-known collations.

• The implicit timezone.

• The circumstances in which warnings are raised, and the ways in which warnings are han-
dled.

• The method by which errors are reported to the external processing environment.

• Whether the implementation is based on the rules of [XML 1.0][49] and [XML Names][47]
or the rules of [XML 1.1][50] and [XML Names 1.1][48] is implementation defined. One
of these sets of rules must be applied consistently by all aspects of the implementation.

• Any components of the static context or dynamic context that are overwritten or augmented
by the implementation.

• Which of the optional axes are supported by the implementation, if the Full-Axis Feature is
not supported.

• The default handling of empty sequences returned by an ordering key (sortspec) in an order
by clause (empty least or empty greatest).

• The names and semantics of any extension expressions (pragmas) recognised by the imple-
mentation.

• The names and semantics of any option declarations recognised by the implementation.

• Protocols (if any) by which parameters can be passed to an external function, and the result
of the function can returned to the invoking query.

• The process by which the specific modules to be imported by a module import are identified,
if the Module Feature is supported (includes processing of location hints, if any.).

• Each module import names a target namespace and imports an implementation defined set
of modules that share this target namespace.

• In a module import, the URILiterals that follow the at keyword are optional location hints,
and can be interpreted or disregarded in an implementation defined way.

• Any static typing extensions supported by the implementation, if the Static Typing Feature
is supported.



APPENDIX B. XQUERY IMPLEMENTATION FREEDOM 151

• The means by which serialisation is invoked, if the Serialization Feature is supported.

• The default values for the byte-order-mark, media-type, normalization-form,
encoding, omit-xml-declaration, standalone and version parameters, if the Serial-
ization Feature is supported.

• The result of an unsuccessful call to an external function (for example, if the function im-
plementation cannot be found or does not return a value of the declared type).

• The following limits on ranges of values is implementation defined:

◦ For the xs:decimal type, the maximum number of decimal digits (totalDigits facet)
(must be at least 18).

◦ For the types xs:date, xs:time, xs:dateTime, xs:gYear, and xs:gYearMonth: the
maximum value of the year component and the maximum number of fractional second
digits (must be at least 3).

◦ For the xs:duration type: the maximum absolute values of the years, months, days,
hours, minutes, and seconds components.

◦ For the xs:yearMonthDuration type: the maximum absolute value, expressed as an
integer number of months.

◦ For the xs:dayTimeDuration type: the maximum absolute value, expressed as a decimal
number of seconds.

◦ For the types xs:hexBinary, xs:base64Binary, xs:QName, xs:anyURI, xs:NOTATION,
xs:string and types derived from them: limitations (if any) imposed by the implemen-
tation on lengths of values.

• The in-scope variables may be augmented by implementation defined variables.

Implementation Dependent Features

• If an implementation does not support the Static Typing Feature, but can nevertheless deter-
mine during the static analysis phase that an expression, if evaluated, will necessarily raise
a type error at run time, the implementation may raise that error during the static analy-
sis phase. The choice of whether to raise such an error at analysis time is implementation
dependent.

• Each schema type definition is identified either by an expanded QName (for a named type)
or by an implementation dependent type identifier (for an anonymous type).

• Each element declaration is identified either by an expanded QName (for a top-level ele-
ment declaration) or by an implementation dependent element identifier (for a local element
declaration).

• Each attribute declaration is identified either by an expanded QName (for a top-level at-
tribute declaration) or by an implementation dependent attribute identifier (for a local at-
tribute declaration).

• The function implementation for a built-in function or external function,

• The current dateTime represents an implementation dependent point in time during the pro-
cessing of a query, and includes an explicit timezone.



152 B.2. XQUERY 1.0: AN XML QUERY LANGUAGE

• During the static analysis phase, if the Static Typing Feature is not supported, the static
types that are assigned to expressions are implementation dependent.

• In addition to the errors defined in this specification, an implementation may raise a dynamic
error for a reason beyond the scope of this specification. For example, limitations may
exist on the maximum numbers or sizes of various objects. Any such limitations, and the
consequences of exceeding them, are implementation dependent.

• The fn:collection() function with zero arguments returns the default collection, an im-
plementation dependent sequence of nodes.

• When an unknown schema type is encountered during the process of SequenceType match-
ing, an implementation is allowed (but is not required) to provide an implementation de-
pendent mechanism for determining whether the unknown schema type is derived from the
expected schema type.

• When evaluating the argument expressions of a function call, the order of argument eval-
uation is implementation dependent and a function need not evaluate an argument if the
function can evaluate its body without evaluating that argument.

• The order of the returned sequence of a path expression, if ordering mode is not ordered.

• If ordering mode is not ordered, the resulting sequence of the operators union, intersect,
“|” and except is returned in implementation dependent order.

• The order, in which the operands of an arithmetic expression (i.e., UnaryExpr, ValueExpr,
AdditiveExpr and MultiplicativeExpr) are evaluated.

• The order, in which the operands of a value comparison are evaluated.

• The order, in which the operands of a node comparison are evaluated.

• The order, in which the operands of a logical expression are evaluated.

• For each namespace used in the name of a constructed element or in the names of its at-
tributes, a namespace binding must exist. If a namespace binding does not already exist for
one of these namespaces, a new namespace binding is created for it. If the name of the node
includes a prefix, that prefix is used in the namespace binding; if the name has no prefix,
then a binding is created for the empty prefix. If this would result in a conflict, because it
would require two different bindings of the same prefix, then the prefix used in the node
name is changed to an arbitrary implementation dependent prefix that does not cause such
a conflict, and a namespace binding is created for this new prefix.

• In a for clause, if the ordering mode is not ordered, the ordering of the variable bindings
is implementation dependent.

• In the order by and return clauses, when two orderspec values are compared to determine
their relative position in the ordering sequence, the order of two tuples T1 and T2 in the tuple
stream is implementation dependent, if nether of the first pair of values encountered during
the evaluation is “greater-than” the other, and if stable is not specified.

• The order, in which test expressions of a quantified expression (i.e., QuantifiedExpr) are
evaluated for the various binding tuples, is implementation dependent.

• When evaluating a cast expression (i.e., CastExpr), an implementation may determine that
one type is derived by restriction from another type either by examining the in-scope schema



APPENDIX B. XQUERY IMPLEMENTATION FREEDOM 153

definitions or by using an alternative, implementation dependent mechanism such as a data
dictionary.

• The handling of an encoding declaration.

• If a version declaration is present, no XQuery Comment may occur before the end of the
version declaration. If such a Comment is present, the result is implementation dependent.

• In a schema import, the URILiterals that follow the at keyword are optional location hints,
and can be interpreted or disregarded in an implementation dependent way.

B.3 XQuery 1.0 and XPath 2.0 Functions and Operators
Implementation Defined Features

• The destination of the trace output.

• For xs:integer operations, implementations that support limited-precision integer oper-
ations must either raise an error [err:FOAR0002] or provide an implementation defined
mechanism that allows users to choose between raising an error and returning a result that
is modulo the largest representable integer value.

• For xs:decimal values the number of digits of precision returned by the numeric operators
is implementation defined.

• If the number of digits in the result of a numeric operation exceeds the number of digits
that the implementation supports, the result is truncated or rounded in an implementation
defined manner.

• It is implementation defined which version of Unicode is supported by the features defined
in this specification, but it is recommended that the most recent version of Unicode be used.

• For fn:normalize-unicode(), conforming implementations must support normalisation
form “NFC” and may support normalisation forms “NFD”, “NFKC”, “NFKD”, “FULLY-
NORMALIZED”. They may also support other normalisation forms with implementation
defined semantics.

• The ability to decompose strings into collation units suitable for substring matching is an
implementation defined property of a collation.

• All minimally conforming processors must support year values with a minimum of 4 digits
(i.e., YYYY) and a minimum fractional second precision of 1 millisecond or three digits
(i.e., s.sss). However, conforming processors may set larger implementation defined limits
on the maximum number of digits they support in these two situations.

• The result of casting a string to xs:decimal, when the resulting value is not too large
or too small but nevertheless has too many decimal digits to be accurately represented, is
implementation defined.

• Various aspects of the processing provided by fn:doc() are implementation defined. Im-
plementations may provide external configuration options that allow any aspect of the pro-
cessing to be controlled by the user.

• The manner in which implementations provide options to weaken the stable characteristic
of fn:collection() and fn:doc() are implementation defined.



154 B.3. XQUERY 1.0 AND XPATH 2.0 FUNCTIONS AND OPERATORS

Implementation Dependent Features

• For fn:error(), the method by which the xs:anyURI or xs:QName is returned to the ex-
ternal processing environment is implementation dependent.

• For fn:error(), if an invocation provides $description and $error-object, then these
values may also be returned to the external processing environment. The method by which
these values are provided to the external environment is implementation dependent.

• The format of the trace output is implementation dependent.

• The ordering of output from invocations of the fn:trace() function.

• For fn:distinct-values(), the order in which the distinct values are returned.

• For fn:distinct-values(), which value of a set of values that compare equal is returned.

• The function fn:unordered() returns the items of its parameter $sourceSeq in an imple-
mentation dependent order.

• The function fn:max() selects an item from the input sequence $arg whose value is greater
than or equal to the value of every other item in the input sequence. If there are two or more
such items, then the specific item whose value is returned is implementation dependent.

• The function fn:min() selects an item from the input sequence $arg whose value is less
than or equal to the value of every other item in the input sequence. If there are two or more
such items, then the specific item whose value is returned is implementation dependent.

• fn:min((xs:float(0.0E0), xs:float(-0.0E0))) can return either positive or negative
zero. XML Schema Part 2: Datatypes Second Edition [35] does not distinguish between the
values positive zero and negative zero. The result is implementation dependent.

• For fn:doc(), its result depends entirely on the run-time environment in which the expres-
sion is evaluated. This run-time environment includes not only an unpredictable collection
of resources (“the web”), but configurable machinery for locating resources and turning
their contents into document nodes within the XPath data model. Both the set of resources
that are reachable, and the mechanisms by which those resources are parsed and validated,
are implementation dependent.

• The precise instant during the query or transformation represented by the value of
fn:current-dateTime(), fn:current-time() and fn:current-time().

• When casting from xs:string and xs:untypedAtomic, for xs:anyURI, the extent to
which an implementation validates the lexical form of xs:anyURI.

• When casting to xs:string and xs:untypedAtomic, for data types that do not have a
canonical lexical representation defined, an implementation dependent canonical represen-
tation may be used.

• When casting an xs:float or xs:double to an xs:string or xs:untypedAtomic, if more
than one representation of the same value are valid, it is implementation dependent which of
these representations is chosen. For example, the xs:float value whose exact decimal rep-
resentation is 1.26743223E15 might be represented by any of the strings “1.26743223E15”,
“1.26743222E15” or “1.26743224E15” (inter alia).



APPENDIX B. XQUERY IMPLEMENTATION FREEDOM 155

B.4 XSLT 2.0 and XQuery 1.0 Serialization
Implementation Defined Features

• For any implementation defined output method, it is implementation defined whether se-
quence normalisation process takes place.

• If the namespace URI is non-null for the method serialisation parameter, then the parameter
specifies an implementation defined output method.

• The effect of additional serialisation parameters on the output of the serialiser, where the
name of such a parameter must be namespace-qualified, is implementation defined or imple-
mentation dependent. The extent of this effect on the output must not override the provisions
of this specification.

• The effect of providing an option that allows the encoding phase to be skipped, so that the
result of serialisation is a stream of Unicode characters, is implementation defined. The
serialiser is not required to support such an option.

• An serialise may provide an implementation defined mechanism to place CDATA sections in
the result tree.

• If the value of the normalization-form form parameter is not NFC, NFD, NFKC, NFKD,
fully-normalized, or none then the meaning of the value and its effect is implementation
defined.

Implementation Dependent Features

• The actual octet order used.

• In those cases where they have no important effect on the content of the serialised result, de-
tails of the output methods defined by this specification are left unspecified and are regarded
as implementation-dependent. Whether a serialise uses apostrophes or quotation marks to
delimit attribute values in the XML output method is an example of such a detail.

• If the serialisation method is one of the four methods xml, html, xhtml, or text, then
the additional serialisation parameters may affect the output of the serialise to the extent
(but only to the extent) that this specification leaves the output implementation defined or
implementation dependent.

• For characters such as > where XML defines a built-in entity but does not require its use in
all circumstances, it is implementation dependent whether the character is escaped.

• If the html element is generated by an XSLT literal result element of the form

<html xmlns=“http://www.w3.org/1999/xhtml”>...</html>

or by an XQuery direct element constructor of the same form, then the html element in
the result document will have a node name whose prefix is “”, which will satisfy the re-
quirements of the DTD. In other cases the prefix assigned to the element is implementation
dependent.



156 B.5. XQUERY UPDATE FACILITY 1.0

B.5 XQuery Update Facility 1.0
Implementation Defined Features

• The revalidation modes that are supported by this implementation.

• The default revalidation mode for this implementation.

• The mechanism (if any), by which an external function can return an XDM instance and/or
a pending update list to the invoking query, is implementation defined.

• The semantics of fn:put(), including the kinds of nodes accepted as operands by this
function.

Implementation Dependent Features

• If multiple groups of nodes are inserted by multiple insert expressions in the same snapshot,
adjacency and ordering of nodes within each group is preserved but ordering among the
groups is implementation dependent.

• If an insert into expression is specified without as first or as last, the positions of
the inserted nodes among the children of the target node are implementation dependent.

• When processing an upd:applyUpdates, if as a net result of making all update primitives
other than upd:put effective, the children property of some node contains adjacent text
nodes, these adjacent text nodes are merged into a single text node. The string-value of
the resulting text node is the concatenated string-values of the adjacent text nodes, with no
intervening space added. The node identity of the resulting text node is implementation
dependent.

• When processing an upd:revalidate($top as node(), $revalidation-mode as xs:
string), if $revalidation-mode is lax, define $topV as the result of the XQuery expres-
sion validate lax {$top}. During computation of $topV, it is necessary to maintain a
mapping between each node in $topV and the corresponding node (if any) in the subtree
rooted at $top (this mapping is maintained in an implementation dependent way.)

• Marking of nodes is accomplished in an implementation dependent way – for example, an
implementation might maintain a list of marked nodes.

• If an implementation does not support the Update Static Typing Feature, but can neverthe-
less determine during the static analysis phase that an expression, if evaluated, will neces-
sarily raise a type error at run time, the implementation may raise that error during the static
analysis phase. The choice of whether to raise such an error at analysis time is implementa-
tion dependent.



C
Static Property Analysis Rules for

Built-in Functions

C.1 General Rules
Here we list analysis rules that are shared by multiple functions:

• The rule BLTINnone2atom applies to some built-in functions with zero parameters and return
a sequence of atomic values:

Env ` F () Z⇒ (), (), 〈η,µ,σ〉 (BLTINnone2atom)

• The rule BLTINatom2atom applies to some built-in functions, whose parameters are all atomic
typed sequences, and return a sequence of atomic values:

∀i∈1..k : Env ` Ei Z⇒~ri, ~ui, 〈⊥,⊥,⊥〉

Env ` F (E1, ...,Ek) Z⇒(),
k[

i=1

(~ri ∪~ui ∪~ri/descendant::text()), 〈η,µ,σ〉 (BLTINatom2atom)

Note that XQuery implicitly converts the values of function arguments, thus, in all rules in
this section, we add a descendant::text() step to each returned path of a parameter1.

• The rule BLTINitem2atom applies to some built-in functions, which have one or more se-
quences of item() as parameters, and return a sequence of atomic values. Such functions
do not access the descendants of node typed items in their parameter sequences:

∀i∈1..k : Env ` Ei Z⇒~ri, ~ui, 〈⊥,⊥,⊥〉

Env ` F (E1, ...,Ek) Z⇒ (),
k[

i=1

(~ri ∪~ui), 〈η,µ,σ〉 (BLTINitem2atom)

C.2 Accessory
• fn:node-name($arg as node()?) as xs:QName?

Env ` E1 Z⇒~r1, ~u1, 〈⊥,⊥,⊥〉
Env ` fn:node-name(E1) Z⇒ (),~r1 ∪~u1, 〈η,µ,σ〉 (BLTINnodename)

1In XQuery, the actual argument to a function is called an argument and the formal argument of a function is
called a parameter. We use the same terminology here.

157



158 C.3. THE ERROR FUNCTION

• fn:nilled($arg as node()?) as xs:boolean?

Env ` E1 Z⇒~r1, ~u1, 〈⊥,⊥,⊥〉
Env ` fn:nilled(E1) Z⇒ (),~r1 ∪~u1, 〈η,µ,σ〉 (BLTINnilled )

• fn:string($arg as item()?) as xs:string

To this function, the general rule BLTINatom2atom (Section C.1) applies.
• fn:data($arg as item()*) as xs:anyAtomicType*

To this function, the general rule BLTINatom2atom (Section C.1) applies.
• fn:base-uri($arg as node()?) as xs:anyURI?

Env ` E1 Z⇒~r1, ~u1, 〈⊥,⊥,⊥〉
Env ` fn:base-uri(E1) Z⇒ (),~r1 ∪~u1, 〈η,µ,σ〉 (BLTINbaseuri)

• fn:document-uri($arg as node()?) as xs:anyURI?

Env ` E1 Z⇒~r1, ~u1, 〈⊥,⊥,⊥〉
Env ` fn:document-uri(E1) Z⇒ (),~r1 ∪~u1, 〈η,µ,σ〉 (BLTINdocuri)

C.3 The Error Function
• fn:error($error as xs:QName?, $description as xs:string, $error-object as item()*)

as none

∀i ∈ 1..3 : Env ` Ei Z⇒~ri, ~ui, 〈⊥,⊥,⊥〉
Env ` fn:error(E1,E2,E3) Z⇒ (),~r1 ∪~r2 ∪~r3 ∪~u1 ∪~u2 ∪~u3 ∪~r1/descendant::text()∪

~r2/descendant::text()∪~r3/descendant-or-self::∗, 〈η,µ,σ〉
(BLTINerror)

C.4 The Trace Function
• fn:trace($value as item()*, $label as xs:string) as item()*

Env ` E1 Z⇒~r1, ~u1, 〈η1,µ1,σ1〉
Env ` E2 Z⇒~r2, ~u2, 〈⊥,⊥,⊥〉

Env ` fn:trace(E1,E2) Z⇒~r1,~r2 ∪~u1 ∪~u2 ∪~r2/descendant::text(),〈η1,µ1,σ1〉
(BLTINtrace)

C.5 Constructor Functions
To the following function, the general rule BLTINatom2atom (Section C.1) applies:

• fn:dateTime($arg1 as xs:date?, $arg2 as xs:time?) as xs:dateTime?

C.6 Functions and Operators on Numerics
To all functions and operators on numerics, the general rule BLTINatom2atom (Section C.1)
applies:

• op:numeric-add($arg1 as numeric, $arg2 as numeric) as numeric

• op:numeric-subtract($arg1 as numeric, $arg2 as numeric) as numeric



APPENDIX C. STATIC PROPERTY ANALYSIS RULES FOR BUILT-IN FUNCTIONS 159

• op:numeric-multiply($arg1 as numeric, $arg2 as numeric) as numeric

• op:numeric-divide($arg1 as numeric, $arg2 as numeric) as numeric

• op:numeric-integer-divide($arg1 as numeric,$arg2 as numeric) as xs:integer

• op:numeric-mod($arg1 as numeric, $arg2 as numeric) as numeric

• op:numeric-unary-plus($arg as numeric) as numeric

• op:numeric-unary-minus($arg as numeric) as numeric

• op:numeric-equal($arg1 as numeric, $arg2 as numeric) as xs:boolean

• op:numeric-less-than($arg1 as numeric, $arg2 as numeric) as xs:boolean

• op:numeric-greater-than($arg1 as numeric, $arg2 as numeric) as xs:boolean

• fn:abs($arg as numeric?) as numeric?

• fn:ceiling($arg as numeric?) as numeric?

• fn:floor($arg as numeric?) as numeric?

• fn:round($arg as numeric?) as numeric?

• fn:round-half-to-even($arg as numeric?, $precision as xs:integer) as numeric?

C.7 Functions on Strings
To all functions on string, the general rule BLTINatom2atom (Section C.1) applies:

• fn:codepoints-to-string($arg as xs:integer*) as xs:string

• fn:string-to-codepoints($arg as xs:string?) as xs:integer*

• fn:compare($comparand1 as xs:string?,$comparand2 as xs:string?,$collation as

xs:string) as xs:integer?

• fn:codepoint-equal($comparand1 as xs:string?,$comparand2 as xs:string?)as

xs:boolean?

• fn:concat($arg1 as xs:anyAtomicType?, $arg2 as xs:anyAtomicType?, ...) as

xs:string

• fn:string-join($arg1 as xs:string*, $arg2 as xs:string) as xs:string

• fn:substring($sourceString as xs:string?, $startingLoc as xs:double, $length as

xs:double) as xs:string

• fn:string-length($arg as xs:string?) as xs:integer

• fn:normalize-space($arg as xs:string?) as xs:string

• fn:normalize-unicode($arg as xs:string?, $normalizationForm as xs:string) as

xs:string

• fn:upper-case($arg as xs:string?) as xs:string

• fn:lower-case($arg as xs:string?) as xs:string

• fn:translate($arg as xs:string?, $mapString as xs:string, $transString as

xs:string) as xs:string

• fn:encode-for-uri($uri-part as xs:string?) as xs:string

• fn:iri-to-uri($iri as xs:string?) as xs:string

• fn:escape-html-uri($uri as xs:string?) as xs:string

• fn:contains($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string)

as xs:boolean



160 C.8. FUNCTIONS ON ANYURI

• fn:starts-with($arg1 as xs:string?,$arg2 as xs:string?,$collation as xs:string)

as xs:boolean

• fn:ends-with($arg1 as xs:string?, $arg2 as xs:string?, $collation as xs:string)

as xs:boolean

• fn:substring-before($arg1 as xs:string?, $arg2 as xs:string?, $collation as

xs:string) as xs:string

• fn:substring-after($arg1 as xs:string?, $arg2 as xs:string?, $collation as

xs:string) as xs:string

• fn:matches($input as xs:string?, $pattern as xs:string, $flags as xs:string) as

xs:boolean

• fn:replace($input as xs:string?, $pattern as xs:string, $replacement as

xs:string, $flags as xs:string) as xs:string

• fn:tokenize($input as xs:string?, $pattern as xs:string, $flags as xs:string)

as xs:string*

C.8 Functions on anyURI
To the following function the general rule BLTINatom2atom (Section C.1) applies:

• fn:resolve-uri($relative as xs:string?, $base as xs:string) as xs:anyURI?

C.9 Functions and Operators on Boolean Values
To the following functions, the general rule BLTINnone2atom (Section C.1) applies:

• fn:true() as xs:boolean

• fn:false() as xs:boolean

To the following functions, the general rule BLTINatom2atom (Section C.1) applies:

• op:boolean-equal($value1 as xs:boolean, $value2 as xs:boolean) as xs:boolean

• op:boolean-less-than($arg1 as xs:boolean, $arg2 as xs:boolean) as xs:boolean

• op:boolean-greater-than($arg1 as xs:boolean, $arg2 as xs:boolean) as xs:boolean

• fn:not($arg as item()*) as xs:boolean

C.10 Functions and Operators on Durations, Dates and Times
The general rule BLTINatom2atom (Section C.1) applies to all functions and operators on dura-
tions, dates and times:

• op:yearMonthDuration-less-than($arg1 as xs:yearMonthDuration, $arg2 as

xs:yearMonthDuration) as xs:boolean

• op:yearMonthDuration-greater-than($arg1 as xs:yearMonthDuration, $arg2 as

xs:yearMonthDuration) as xs:boolean

• op:dayTimeDuration-less-than($arg1 as xs:dayTimeDuration, $arg2 as

xs:dayTimeDuration) as xs:boolean

• op:dayTimeDuration-greater-than($arg1 as xs:dayTimeDuration, $arg2 as

xs:dayTimeDuration) as xs:boolean



APPENDIX C. STATIC PROPERTY ANALYSIS RULES FOR BUILT-IN FUNCTIONS 161

• op:duration-equal($arg1 as xs:duration, $arg2 as xs:duration) as xs:boolean

• op:dateTime-equal($arg1 as xs:dateTime, $arg2 as xs:dateTime) as xs:boolean

• op:dateTime-less-than($arg1 as xs:dateTime, $arg2 as xs:dateTime) as xs:boolean

• op:dateTime-greater-than($arg1 as xs:dateTime, $arg2 as xs:dateTime) as

xs:boolean

• op:date-equal($arg1 as xs:date, $arg2 as xs:date) as xs:boolean

• op:date-less-than($arg1 as xs:date, $arg2 as xs:date) as xs:boolean

• op:date-greater-than($arg1 as xs:date, $arg2 as xs:date) as xs:boolean

• op:time-equal($arg1 as xs:time, $arg2 as xs:time) as xs:boolean

• op:time-less-than($arg1 as xs:time, $arg2 as xs:time) as xs:boolean

• op:time-greater-than($arg1 as xs:time, $arg2 as xs:time) as xs:boolean

• op:gYearMonth-equal($arg1 as xs:gYearMonth, $arg2 as xs:gYearMonth) as

xs:boolean

• op:gYear-equal($arg1 as xs:gYear, $arg2 as xs:gYear) as xs:boolean

• op:gMonthDay-equal($arg1 as xs:gMonthDay, $arg2 as xs:gMonthDay) as xs:boolean

• op:gMonth-equal($arg1 as xs:gMonth, $arg2 as xs:gMonth) as xs:boolean

• op:gDay-equal($arg1 as xs:gDay, $arg2 as xs:gDay) as xs:boolean

• fn:years-from-duration($arg as xs:duration?) as xs:integer?

• fn:months-from-duration($arg as xs:duration?) as xs:integer?

• fn:days-from-duration($arg as xs:duration?) as xs:integer?

• fn:hours-from-duration($arg as xs:duration?) as xs:integer?

• fn:minutes-from-duration($arg as xs:duration?) as xs:integer?

• fn:seconds-from-duration($arg as xs:duration?) as xs:decimal?

• fn:year-from-dateTime($arg as xs:dateTime?) as xs:integer?

• fn:month-from-dateTime($arg as xs:dateTime?) as xs:integer?

• fn:day-from-dateTime($arg as xs:dateTime?) as xs:integer?

• fn:hours-from-dateTime($arg as xs:dateTime?) as xs:integer?

• fn:minutes-from-dateTime($arg as xs:dateTime?) as xs:integer?

• fn:seconds-from-dateTime($arg as xs:dateTime?) as xs:decimal?

• fn:timezone-from-dateTime($arg as xs:dateTime?) as xs:dayTimeDuration?

• fn:year-from-date($arg as xs:date?) as xs:integer?

• fn:month-from-date($arg as xs:date?) as xs:integer?

• fn:day-from-date($arg as xs:date?) as xs:integer?

• fn:timezone-from-date($arg as xs:date?) as xs:dayTimeDuration?

• fn:hours-from-time($arg as xs:time?) as xs:integer?

• fn:minutes-from-time($arg as xs:time?) as xs:integer?

• fn:seconds-from-time($arg as xs:time?) as xs:decimal?

• fn:timezone-from-time($arg as xs:time?) as xs:dayTimeDuration?

• op:add-yearMonthDurations($arg1 as xs:yearMonthDuration, $arg2 as

xs:yearMonthDuration) as xs:yearMonthDuration

• op:subtract-yearMonthDurations($arg1 as xs:yearMonthDuration, $arg2 as

xs:yearMonthDuration) as xs:yearMonthDuration



162 C.10. FUNCTIONS AND OPERATORS ON DURATIONS, DATES AND TIMES

• op:multiply-yearMonthDuration($arg1 as xs:yearMonthDuration, $arg2 as xs:double)

as xs:yearMonthDuration

• op:divide-yearMonthDuration($arg1 as xs:yearMonthDuration, $arg2 as xs:double)

as xs:yearMonthDuration

• op:divide-yearMonthDuration-by-yearMonthDuration($arg1 as xs:yearMonthDuration,

$arg2 as xs:yearMonthDuration) as xs:decimal

• op:add-dayTimeDurations($arg1 as xs:dayTimeDuration, $arg2 as

xs:dayTimeDuration) as xs:dayTimeDuration

• op:subtract-dayTimeDurations($arg1 as xs:dayTimeDuration, $arg2 as

xs:dayTimeDuration) as xs:dayTimeDuration

• op:multiply-dayTimeDuration($arg1 as xs:dayTimeDuration, $arg2 as xs:double) as

xs:dayTimeDuration

• op:divide-dayTimeDuration($arg1 as xs:dayTimeDuration, $arg2 as xs:double) as

xs:dayTimeDuration

• op:divide-dayTimeDuration-by-dayTimeDuration($arg1 as xs:dayTimeDuration, $arg2

as xs:dayTimeDuration) as xs:decimal

• fn:adjust-dateTime-to-timezone($arg as xs:dateTime?) as xs:dateTime?

• fn:adjust-dateTime-to-timezone($arg as xs:dateTime?, $timezone as

xs:dayTimeDuration?) as xs:dateTime?

• fn:adjust-date-to-timezone($arg as xs:date?) as xs:date?

• fn:adjust-date-to-timezone($arg as xs:date?, $timezone as xs:dayTimeDuration?)

as xs:date?

• fn:adjust-time-to-timezone($arg as xs:time?) as xs:time?

• fn:adjust-time-to-timezone($arg as xs:time?, $timezone as xs:dayTimeDuration?)

as xs:time?

• op:subtract-dateTimes($arg1 as xs:dateTime, $arg2 as xs:dateTime) as

xs:dayTimeDuration?

• op:subtract-dates($arg1 as xs:date, $arg2 as xs:date) as xs:dayTimeDuration?

• op:subtract-times($arg1 as xs:time, $arg2 as xs:time) as xs:dayTimeDuration

• op:add-yearMonthDuration-to-dateTime($arg1 as xs:dateTime, $arg2 as

xs:yearMonthDuration) as xs:dateTime

• op:add-dayTimeDuration-to-dateTime($arg1 as xs:dateTime, $arg2 as

xs:dayTimeDuration) as xs:dateTime

• op:subtract-yearMonthDuration-from-dateTime($arg1 as xs:dateTime, $arg2 as

xs:yearMonthDuration) as xs:dateTime

• op:subtract-dayTimeDuration-from-dateTime($arg1 as xs:dateTime, $arg2 as

xs:dayTimeDuration) as xs:dateTime

• op:add-yearMonthDuration-to-date($arg1 as xs:date, $arg2 as

xs:yearMonthDuration) as xs:date

• op:add-dayTimeDuration-to-date($arg1 as xs:date, $arg2 as xs:dayTimeDuration)

as xs:date

• op:subtract-yearMonthDuration-from-date($arg1 as xs:date, $arg2 as

xs:yearMonthDuration) as xs:date



APPENDIX C. STATIC PROPERTY ANALYSIS RULES FOR BUILT-IN FUNCTIONS 163

• op:subtract-dayTimeDuration-from-date($arg1 as xs:date, $arg2 as

xs:dayTimeDuration) as xs:date

• op:add-dayTimeDuration-to-time($arg1 as xs:time, $arg2 as xs:dayTimeDuration)

as xs:time

• op:subtract-dayTimeDuration-from-time($arg1 as xs:time, $arg2 as

xs:dayTimeDuration) as xs:time

C.11 Functions Related to QNames
• fn:resolve-QName($qname as xs:string?, $element as element()) as xs:QName?

Env ` E1 Z⇒~r1, ~u1, 〈⊥,⊥,⊥〉
Env ` E2 Z⇒~r2, ~u2, 〈⊥,⊥,⊥〉

Env ` fn:resolve-QName(E1,E2) Z⇒
(),~r1 ∪~r2 ∪~u1 ∪~u2 ∪~r1/descendant::text(), 〈η,µ,σ〉

(BLTINresolveqname)

• fn:namespace-uri-for-prefix($prefix as xs:string?, $element as element()) as

xs:anyURI?

Env ` E1 Z⇒~r1, ~u1, 〈⊥,⊥,⊥〉
Env ` E2 Z⇒~r2, ~u2, 〈⊥,⊥,⊥〉

Env ` fn:namespace-uri-for-prefix(E1,E2) Z⇒
(),~r1 ∪~r2 ∪~u1 ∪~u2 ∪~r1/descendant::text(), 〈η,µ,σ〉

(BLTINnsuri4pre f ix)

• fn:in-scope-prefixes($element as element()) as xs:string*

To this function, the general rule BLTINitem2atom (Section C.1) applies.

To the remaining functions related to QNames, the general rule BLTINatom2atom (Section C.1)
applies:

• fn:QName($paramURI as xs:string?, $paramQName as xs:string) as xs:QName

• op:QName-equal($arg1 as xs:QName, $arg2 as xs:QName) as xs:boolean

• fn:prefix-from-QName($arg as xs:QName?) as xs:NCName?

• fn:local-name-from-QName($arg as xs:QName?) as xs:NCName?

• fn:namespace-uri-from-QName($arg as xs:QName?) as xs:anyURI?

C.12 Operators on base64Binary and hexBinary
To all operators on base64Binary and hexBinary, the general rule BLTINatom2atom (Sec-
tion C.1) applies:

• op:hexBinary-equal($value1 as xs:hexBinary, $value2 as xs:hexBinary) as

xs:boolean

• op:base64Binary-equal($value1 as xs:base64Binary, $value2 as xs:base64Binary)

as xs:boolean

C.13 Operators on NOTATION
To the following function, the general rule BLTINatom2atom (Section C.1) applies:

• op:NOTATION-equal($arg1 as xs:NOTATION, $arg2 as xs:NOTATION) as xs:boolean



164 C.14. FUNCTIONS AND OPERATORS ON NODES

C.14 Functions and Operators on Nodes
• fn:number($arg as xs:anyAtomicType?) as xs:double

To this function, the general rule BLTINatom2atom (Section C.1) applies.
• fn:lang($testlang as xs:string?, $node as node()) as xs:boolean

Env ` E1 Z⇒~r1, ~u1, 〈⊥,⊥,⊥〉
Env ` E2 Z⇒~r2, ~u2, 〈⊥,⊥,⊥〉

Env ` fn:lang(E1,E2) Z⇒(),~r1 ∪~r2 ∪~u1 ∪~u2 ∪~r1/descendant::text()∪~r2/ancestor::∗∪
~r2/ancestor-or-self::∗/attribute::xml:lang, 〈η,µ,σ〉

(BLTINlang)

For the function fn:lang(), we repeat the rule LANG defined in Section 5.6.1 and extend it
with the analysis of the η, µ and σ properties. Since the function fn:lang() returns a single
atomic value, by Lemma 6.1.12, we have that the result of fn:lang() has the properties η,
µ and σ.

• fn:root($arg as node()?) as node()?

Env ` E1 Z⇒~r1, ~u1, 〈⊥,⊥,⊥〉

Env ` fn:root(E1) Z⇒
|~r1 |[
i=1

~r1[i]/root(), ~u1, 〈η,µ,σ〉 (BLTINroot )

We repeat the rule ROOT defined in Section 5.6.1 and extend it with the analysis of the η, µ

and σ properties. As the function fn:root() returns a single node, by Lemma 6.1.12, we
have that the result of fn:root() has the properties η, µ and σ.

To the remaining functions and operators on nodes, the general rule BLTINitem2atom (Sec-
tion C.1) applies:

• fn:name($arg as node()?) as xs:string

• fn:local-name($arg as node()?) as xs:string

• fn:namespace-uri($arg as node()?) as xs:anyURI

• op:is-same-node($parameter1 as node(), $parameter2 as node()) as xs:boolean

• op:node-before($parameter1 as node(), $parameter2 as node()) as xs:boolean

• op:node-after($parameter1 as node(), $parameter2 as node()) as xs:boolean

C.15 Functions and Operators on Sequences
C.15.1 General Functions and Operators on Sequences
• fn:boolean($arg as item()*) as xs:boolean

To this function, the general rule BLTINitem2atom (Section C.1) applies.
• op:concatenate($seq1 as item()*, $seq2 as item()*) as item()*

Env ` E1 Z⇒~r1, ~u1, 〈⊥,⊥,⊥〉
Env ` E2 Z⇒~r2, ~u2, 〈⊥,⊥,⊥〉

Env ` op:concatenate(E1,E2) Z⇒~r1 ∪~r2, ~u1 ∪~u2, 〈∅,∅,∅〉
(BLTINconcat )



APPENDIX C. STATIC PROPERTY ANALYSIS RULES FOR BUILT-IN FUNCTIONS 165

• fn:index-of($seqParam as xs:anyAtomicType*, $srchParam as xs:anyAtomicType) as

xs:integer*

To this function, the general rule BLTINatom2atom (Section C.1) applies.
• fn:index-of($seqParam as xs:anyAtomicType*, $srchParam as xs:anyAtomicType,

$collation as xs:string) as xs:integer*

To this function, the general rule BLTINatom2atom (Section C.1) applies.
• fn:empty($arg as item()*) as xs:boolean

To this function, the general rule BLTINitem2atom (Section C.1) applies.
• fn:exists($arg as item()*) as xs:boolean

To this function, the general rule BLTINitem2atom (Section C.1) applies.
• fn:distinct-values($arg as xs:anyAtomicType*) as xs:anyAtomicType*

To this function, the general rule BLTINatom2atom (Section C.1) applies.
• fn:distinct-values($arg as xs:anyAtomicType*, $collation as xs:string) as

xs:anyAtomicType*

To this function, the general rule BLTINitem2atom (Section C.1) applies.
• fn:insert-before($target as item()*,$position as xs:integer,$inserts as item()*)

as item()*

Env ` E1 Z⇒~r1, ~u1, 〈⊥,⊥,⊥〉
Env ` E2 Z⇒~r2, ~u2, 〈⊥,⊥,⊥〉
Env ` E3 Z⇒~r3, ~u3, 〈⊥,⊥,⊥〉

Env ` fn:insert-before(E1,E2,E3) Z⇒~r1 ∪~r3,~r2 ∪~u1 ∪~u2 ∪~u3, 〈∅,∅,∅〉
(BLTINinsertbe f ore)

• fn:remove($target as item()*, $position as xs:integer) as item()*

Env ` E1 Z⇒~r1, ~u1, 〈η1,µ1,σ1〉
Env ` E2 Z⇒~r2, ~u2, 〈⊥,⊥,⊥〉

Env ` fn:remove(E1,E2) Z⇒~r1,~r2 ∪~u1 ∪~u2, 〈η1,µ1,σ1〉
(BLTINremove)

• fn:reverse($arg as item()*) as item()*

Env ` E1 Z⇒~r1, ~u1, 〈η1,µ1,σ1〉
Env ` fn:reverse(E1) Z⇒~r1, ~u1, 〈η1,µ1,¬σ1〉 (BLTINreverse)

Since fn:reverse() returns the reverse of its input sequence, the σ property of the result
of fn:reverse() is the negation of the σ property of its input sequence.

• fn:subsequence($sourceSeq as item()*, $startingLoc as xs:double, $length as

xs:double) as item()*

Env ` E1 Z⇒~r1, ~u1, 〈η1,µ1,σ1〉
Env ` E2 Z⇒~r2, ~u2, 〈⊥,⊥,⊥〉
Env ` E3 Z⇒~r3, ~u3, 〈⊥,⊥,⊥〉

Env ` fn:subsequence(E1,E2,E3) Z⇒~r1,~r2 ∪~r3 ∪~u1 ∪~u2 ∪~u3, 〈η1,µ1,σ1〉
(BLTINsubsequence)

• fn:unordered($sourceSeq as item()*) as item()*

Env ` E1 Z⇒~r1, ~u1, 〈η1,µ1,⊥〉
Env ` fn:unordered(E1) Z⇒~r1, ~u1, 〈η1,µ1,∅〉 (BLTINunordered )



166 C.15. FUNCTIONS AND OPERATORS ON SEQUENCES

C.15.2 Functions that Test the Cardinality of Sequences
Env ` E1 Z⇒~r1, ~u1, 〈η1,µ1,σ1〉

F ∈{fn:zero-or-one, fn:one-or-more, fn:exactly-one}

Env ` F (E1) Z⇒~r1, ~u1, 〈η1,µ1,σ1〉
(BLTINcard )

The rule BLTINcard applies to all functions that test the cardinality of sequences:

• fn:zero-or-one($arg as item()*) as item()?

• fn:one-or-more($arg as item()*) as item()+

• fn:exactly-one($arg as item()*) as item()

C.15.3 Equals, Union, Intersection and Except
• fn:deep-equal($parameter1 as item()*, $parameter2 as item()*, $collation as

xs:string) as xs:boolean

Env ` E1 Z⇒~r1, ~u1, 〈⊥,⊥,⊥〉
Env ` E2 Z⇒~r2, ~u2, 〈⊥,⊥,⊥〉
Env ` E3 Z⇒~r3, ~u3, 〈⊥,⊥,⊥〉

Env ` fn:deep-equal(E1,E2,E3) Z⇒(),
3[

i=1

(~ui ∪~ri/descendant-or-self::∗), 〈η,µ,σ〉
(BLTINdeepequal )

• op:union($parameter1 as node()*, $parameter2 as node()*) as node()*

Env ` E1 Z⇒~r1, ~u1, 〈⊥,⊥,⊥〉
Env ` E2 Z⇒~r2, ~u2, 〈⊥,⊥,⊥〉

Env ` op:union(E1,E2) Z⇒~r1 ∪~r2, ~u1 ∪~u2, 〈η,∅,σ〉
(BLTINunion)

• op:intersect($parameter1 as node()*, $parameter2 as node()*) as node()*

Env ` E1 Z⇒~r1, ~u1, 〈⊥,µ1,⊥〉
Env ` E2 Z⇒~r2, ~u2, 〈⊥,⊥,⊥〉

Env ` op:intersect(E1,E2) Z⇒~r1 ∪~r2, ~u1 ∪~u2, 〈η,µ1,σ〉
(BLTINintersect )

• op:except($parameter1 as node()*, $parameter2 as node()*) as node()*

Env ` E1 Z⇒~r1, ~u1, 〈⊥,µ1,⊥〉
Env ` E2 Z⇒~r2, ~u2, 〈⊥,⊥,⊥〉

Env ` op:except(E1,E2) Z⇒~r1 ∪~r2, ~u1 ∪~u2, 〈η,µ1,σ〉
(BLTINexcept )

C.15.4 Aggregate Functions
To the following function fn:count(), the general rule BLTINitem2atom (Section C.1) applies.

• fn:count($arg as item()*) as xs:integer

To all other aggregate functions, the general rule BLTINatom2atom (Section C.1) applies:

• fn:avg($arg as xs:anyAtomicType*) as xs:anyAtomicType?

• fn:max($arg as xs:anyAtomicType*, $collation as string) as xs:anyAtomicType?

• fn:min($arg as xs:anyAtomicType*, $collation as string) as xs:anyAtomicType?

• fn:sum($arg as xs:anyAtomicType*, $zero as xs:anyAtomicType?) as

xs:anyAtomicType?



APPENDIX C. STATIC PROPERTY ANALYSIS RULES FOR BUILT-IN FUNCTIONS 167

C.15.5 Functions and Operators that Generate Sequences
• op:to($firstval as xs:integer, $lastval as xs:integer) as xs:integer*

To this function, the general rule BLTINatom2atom (Section C.1) applies:
• fn:id($arg as xs:string*, $node as node()) as element()*

fn:idref($arg as xs:string*, $node as node()) as element()*

Env ` E1 Z⇒~r1, ~u1, 〈⊥,⊥,⊥〉
Env ` E2 Z⇒~r2, ~u2, 〈⊥,⊥,⊥〉

Env ` fn:id(E1,E2) Z⇒
|~r2 |[
i=1

~r2[i]/id(),~r1 ∪~r2 ∪~u1 ∪~u2 ∪~r1/descendant::text(), 〈η,∅,σ〉
(BLTINid )

For the function fn:id(), we repeat the rule ID defined in Section 5.6.1 and extend it with
the analysis of the η, µ and σ properties. We omit the rule for fn:idref(), as it is similar
to the rule BLTINid .

• fn:doc($uri as xs:string?) as document-node()?

Env ` E1 Z⇒~r1, ~u1, 〈⊥,⊥,⊥〉
Env ` fn:doc(E1) Z⇒doc(E1),~r1 ∪~u1 ∪~r1/descendant::text(), 〈η,µ,σ〉 (BLTINdoc)

For the function fn:doc(), we repeat the rule DOC defined in Section 5.6.1 and extend it
with the analysis of the η, µ and σ properties.

• fn:doc-available($uri as xs:string?) as xs:boolean

To this function, the general rule BLTINatom2atom (Section C.1) applies:
• fn:collection($arg as xs:string?) as node()*

Env ` E1 Z⇒~r1, ~u1, 〈⊥,⊥,⊥〉
Env ` fn:collection(E1) Z⇒doc(∗),~r1 ∪~u1 ∪~r1/descendant::text(), 〈η,µ,σ〉 (BLTINcollection)

C.16 Context Functions
To all context functions, the general rule BLTINnone2atom (Section C.1) applies:

• fn:position() as xs:integer

• fn:last() as xs:integer

• fn:current-dateTime() as xs:dateTime

• fn:current-date() as xs:date

• fn:current-time() as xs:time

• fn:implicit-timezone() as xs:dayTimeDuration

• fn:default-collation() as xs:string

• fn:static-base-uri() as xs:anyURI?





References

[1] K. Aberer. P-Grid: A Self-Organizing Access Structure for P2P Information Systems. In CoopIS, pages
179–194, London, UK, 2001. Springer-Verlag.

[2] K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth, M. Punceva, and R. Schmidt. P-Grid:
a self-organizing structured P2P system. SIGMOD Rec., 32(3):29–33, 2003.

[3] S. Abiteboul. Managing an XML Warehouse in a P2P Context. In CAiSE, volume 2681 of Lecture Notes in
Computer Science, pages 4–13. Springer, June 2003.

[4] S. Abiteboul, Z. Abrams, S. Haar, and T. Milo. Diagnosis of Asynchronous Discrete Event Systems: Datalog
to the Rescue! In PODS, pages 358–367, New York, NY, USA, 2005. ACM.

[5] S. Abiteboul, T. Allard, P. Chatalic, G. Gardarin, A. Ghitescu, F. Goasdoué, I. Manolescu, B. Nguyen,
M. Ouazara, A. Somani, N. Travers, G. Vasile, and S. Zoupanos. WebContent: efficient P2P Warehousing
of web data. Proceedings of the VLDB Endowment, 1(2):1428–1431, 2008.

[6] S. Abiteboul, O. Benjelloun, B. Cautis, I. Manolescu, T. Milo, and N. Preda. Lazy Query Evaluation for Active
XML. In SIGMOD, pages 227–238, New York, NY, USA, 2004. ACM.

[7] S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo, and R. Weber. Active XML: Peer-to-Peer Data and Web
Services Integration. In VLDB, pages 1087–1090, February 2002.

[8] S. Abiteboul, O. Benjelloun, and T. Milo. Positive Active XML. In PODS, pages 35–45, New York, NY, USA,
2004. ACM.

[9] S. Abiteboul, O. Benjelloun, and T. Milo. The Active XML Project: an Overview. VLDB Journal, 17(5):1019–
1040, August 2008.

[10] S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu, and T. Milo. Dynamic XML Documents with Distribution
and Replication. In SIGMOD, pages 527–538, 2003.

[11] S. Abiteboul, I. Dar, R. Pop, G. Vasile, D. Vodislav, and N. Preda. Large scale P2P distribution of open-source
software. In VLDB, pages 1390–1393. VLDB Endowment, 2007.

[12] S. Abiteboul, I. Manolescu, N. Polyzotis, N. Preda, and C. Sun. XML processing in DHT networks. In ICDE,
pages 606–615, Washington, DC, USA, 2008. IEEE Computer Society.

[13] S. Abiteboul, I. Manolescu, and N. Preda. Constructing and Querying Peer-to-Peer Warehouses of XML
Resources. In SWDB, pages 219–225, August 2004.

[14] S. Abiteboul, I. Manolescu, and N. Preda. Constructing and Querying Peer-to-Peer Warehouses of XML
Resources. In ICDE, pages 1122–1123, Washington, DC, USA, April 2005. IEEE Computer Society.

[15] S. Abiteboul, I. Manolescu, and E. Taropa. A Framework for Distributed XML Data Management. In EDBT,
volume 3896 of Lecture Notes in Computer Science, pages 1049–1058. Springer, March 2006.

[16] S. Abiteboul and B. Marinoiu. Distributed monitoring of peer to peer systems. In WIDM, pages 41–48, New
York, NY, USA, 2007. ACM.

[17] S. Abiteboul, R. Pop, et al. EDOS: Environment for the Development and Distribution of Open Source
Software. In OSS, July 2005. http://www.edos-project.org.

[18] S. Abiteboul, L. Segoufin, and V. Vianu. Static analysis of active XML systems. In PODS, pages 221–230,
New York, NY, USA, 2008. ACM.

[19] S. Abiteboul, L. Segoufin, and V. Vianu. Modeling and Verifying Active XML Artifacts. IEEE Data Engi-
neering Bulletin, 32(3):10–15, 2009.

[20] S. Abiteboul, L. Segoufin, and V. Vianu. Static analysis of active xml systems. TODS, 34(4):1–44, 2009.

[21] S. Adali, K. S. Candan, Y. Papakonstantinou, and V. S. Subrahmanian. Query caching and optimization in
distributed mediator systems. In SIGMOD, pages 137–146, New York, NY, USA, June 1996. ACM.

[22] V. Aguilera. XOQL home page - Active XML. http://www.activexml.net/xoql/.

169



170 REFERENCES

[23] R. Akbarinia and V. Martins. Data Management in the APPA System. Journal of Grid Computing, 5(3):303–
317, September 2007.

[24] M. Altinel and M. J. Franklin. Efficient Filtering of XML Documents for Selective Dissemination of Infor-
mation. In VLDB, pages 53–64, San Francisco, CA, USA, September 2000. Morgan Kaufmann Publishers
Inc.

[25] P. Apers, A. Hevner, and S. Yao. Optimization Algorithms for Distributed Queries. IEEE TSE, 9(1):57–68,
1983.

[26] P. M. G. Apers. Data Allocation in Distributed Database Systems. TODS, 13(3):263–304, 1988.

[27] M. Arenas, V. Kantere, A. Kementsietsidis, I. Kiringa, R. J. Miller, and J. Mylopoulos. The Hyperion Project:
from Data Integration to Data Coordination. SIGMOD Record, 32(3):53–58, 2003.

[28] The ActiveXML Project. http://activexml.net.

[29] N. Bales, J. Brinkley, E. S. Lee, S. Mathur, C. Re, and D. Suciu. A Framework for XML-Based Integration of
Data, Visualization and Analysis in a Biomedical Domain. In XSym, pages 207–221, 2005.

[30] O. Benjelloun. Active XML: A data-centric perspective on Web services. PhD thesis, Universite Paris Sud XI,
September 2004.

[31] V. Benzaken, G. Castagna, D. Colazzo, and K. Nguyen. Type-Based XML Projection. In VLDB, pages 271–
282. VLDB Endowment, September 2006.

[32] H. Berenson, P. A. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil. A critique of ANSI SQL isolation
levels. In SIGMOD, pages 1–10, New York, NY, USA, 1995. ACM.

[33] P. A. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos, L. Serafini, and llya Zaihrayeu. Data
Management for Peer-to-Peer Computing: A Vision. In WebDB, pages 89–94, June 2002.

[34] E. Bertino. Query decomposition in an object-oriented database system distributed on a local area network. In
RIDE-DOM, page 2, Washington, DC, USA, 1995. IEEE Computer Society.

[35] P. V. Biron and A. Malhotra. XML Schema Part 2: Datatypes. W3C Recommendation 28 October 2004,
October 2004.

[36] D. Biswas. Active XML Replication and Recovery. In CISIS, pages 263–269, Washington, DC, USA, 2008.
IEEE Computer Society.

[37] D. Biswas and I.-G. Kim. Atomicity for P2P based XML Repositories. In ICDEW, pages 363–370, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

[38] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, and J. Siméon. XQuery 1.0: An XML Query
Language. W3C Recommendation 23 January 2007, January 2007.

[39] S. Boag, M. Kay, J. Tong, N. Walsh, and H. Zongaro. XSLT 2.0 and XQuery 1.0 Serialization. W3C Recom-
mendation 23 January 2007, January 2007.

[40] F. Bonchi, C. Castillo, D. Donato, and A. Gionis. Topical Query Decomposition. In KDD, pages 52–60, New
York, NY, USA, 2008. ACM.

[41] P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and J. Teubner. MonetDB/XQuery: A Fast
XQuery Processor Powered by a Relational Engine. In SIGMOD, pages 479–490, New York, USA, June
2006. ACM.

[42] A. Bonifati, E. Q. Chang, T. Ho, and L. V. S. Lakshmanan. HePToX: Heterogeneous Peer to Peer XML
Databases. CoRR, abs/cs/0506002(UBC TR-2005-15), 2005.

[43] A. Bonifati, E. Q. Chang, A. V. S. Lakshmanan, T. Ho, and R. Pottinger. HePToX: marrying XML and
heterogeneity in your P2P databases. In VLDB, 2005.

[44] A. Bonifati, P. K. Chrysanthis, A. M. Ouksel, and K.-U. Sattler. Distributed Databases and Peer-to-Peer
Databases: Past and Present. SIGMOD Rec., 37(1):5–11, 2008.

[45] A. Bonifati and A. Cuzzocrea. Storing and retrieving XPath fragments in structured P2P networks. Data &
Knowledge Engineering, 59(2):247–269, 2006.

[46] A. Bonifati, U. Matrangolo, A. Cuzzocrea, and M. Jain. XPath lookup queries in P2P networks. In WIDM,
pages 48–55, New York, NY, USA, 2004. ACM.



REFERENCES 171

[47] T. Bray, D. Hollander, A. Layman, and R. Tobin. Namespaces in XML 1.0. W3C Recommendation 16 August
2006, August 2006.

[48] T. Bray, D. Hollander, A. Layman, and R. Tobin. Namespaces in XML 1.1. W3C Recommendation 16 August
2006, August 2006.

[49] T. Bray, J. Paoli, C. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible Markup Language (XML) 1.0.
W3C Recommendation 16 August 2006, August 2006.

[50] T. Bray, J. Paoli, C. Sperberg-McQueen, E. Maler, F. Yergeau, and J. Cowan. Extensible Markup Language
(XML) 1.1. W3C Recommendation 16 August 2006, August 2006.

[51] J.-M. Bremer and M. Gertz. On Distributing XML Repositories. In WebDB, pages 73–78, June 2003.

[52] S. Bressan, B. Catania, Z. Lacroix, Y. G. Li, and A. Maddalena. Accelerating queries by pruning XML
documents. Data Knowl. Eng., 54(2):211–240, 2005.

[53] P. Buneman, G. Cong, W. Fan, and A. Kementsietsidis. Using Partial Evaluation in Distributed Query Evalu-
ation. In VLDB, pages 211–222. VLDB Endowment, September 2006.

[54] L. F. Cabrera, G. Copeland, M. Feingold, R. W. Freund, T. Freund, J. Johnson, S. Joyce, C. Kaler, J. Klein,
D. Langworthy, M. little, A. Nadalin, E. Newcomer, D. Orchard, I. Robinson, J. Shewchuk, and T. Storey.
Web Services Coordination (WS-Coordination), August 2005.

[55] L. F. Cabrera, G. Copeland, M. Feingold, R. W. Freund, T. Freund, J. Johnson, S. Joyce, C. Kaler, J. Klein,
D. Langworthy, M. little, A. Nadalin, E. Newcomer, D. Orchard, I. Robinson, T. Storey, and S. Thatte. Web
Services Atomic Transaction (WS-AtomicTransaction), August 2005.

[56] K. S. Candan, W.-P. Hsiung, S. Chen, J. Tatemura, and D. Agrawal. AFilter: Adaptable XML Filtering with
Prefix-Caching Suffix-Clustering. In VLDB, pages 559–570. VLDB Endowment, 2006.

[57] S. Ceri and G. Pelagatti. Distributed Databases Principles and Systems. McGraw-Hill, Inc., Singapore, 1984.

[58] D. Chamberlin, M. Dyck, D. Florescu, J. Melton, J. Robie, and J. Siméon. XQuery Update Facility 1.0. W3C
Candidate Recommendation 09 June 2009, June 2009.

[59] D. D. Chamberlin, M. J. Carey, D. Florescu, D. Kossmann, and J. Robie. XQueryP: Programming with
XQuery. In XIME-P, June 2006.

[60] C.-Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi. Efficient filtering of XML documents with XPath
expressions. VLDB Journal, 11(4):354–379, 2002.

[61] S. Chen, H.-G. Li, J. Tatemura, W.-P. Hsiung, D. Agrawal, and K. S. Candan. Scalable Filtering of Multiple
Generalized-Tree-Pattern Queries over XML Streams. TKDE, 20(12):1627–1640, 2008.

[62] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Service Description Language (WSDL)
1.1. W3C Note 15 March 2001, March 2001.

[63] G. Cong, W. Fan, and A. Kementsietsidis. Distributed query evaluation with performance guarantees. In
SIGMOD, pages 509–520, New York, NY, USA, 2007. ACM.

[64] DataDirect XQuery. http://www.datadirect.com.

[65] A. de Vries, B. Eberman, and D. Kovalcin. The design and implementation of an infrastructure for multimedia
digital libraries. In IDEAS, pages 103–110, Cardiff, UK, July 1998.

[66] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. M. Fischer. Path sharing and predicate evaluation for
high-performance XML filtering. TODS, 28(4):467–516, 2003.

[67] D. Draper, P. Fankhauser, M. Fernández, A. Malhotra, K. Rose, M. Rys, J. Siméon, and P. Wadler. XQuery
1.0 and XPath 2.0 Formal Semantics. W3C Recommendation 23 January 2007, January 2007.

[68] W. Du, R. Krishnamurthy, and M.-C. Shan. Query Optimization in a Heterogeneous DBMS. In VLDB, pages
277–291, San Francisco, CA, USA, 1992. Morgan Kaufmann Publishers Inc.

[69] eXist Open Source Native XML Database. http://exist.sourceforge.net.

[70] M. Fernández, T. Jim, K. Morton, N. Onose, and J. Siméon. DXQ: a distributed XQuery scripting language.
In XIME-P, pages 1–6, New York, NY, USA, 2007. ACM.

[71] M. Fernández, A. Malhotra, J. Marsh, M. Nagy, and N. Walsh. XQuery 1.0 and XPath 2.0 Data Model (XDM).
W3C Recommendation 23 January 2007, January 2007.



172 REFERENCES

[72] M. Fernández, N. Onose, and J. Siméon. Yoo-Hoo!: building a presence service with XQuery and WSDL. In
SIGMOD, pages 911–912, New York, NY, USA, June 2004. ACM.

[73] M. F. Fernández, J. Hidders, P. Michiels, J. Siméon, and R. Vercammen. Optimizing sorting and duplicate
elimination in xquery path expressions. In DEXA, volume 3588 of Lecture Notes in Computer Science, pages
554–563. Springer, August 2005.

[74] M. F. Fernàndez, T. Jim, K. Morton, N. Onose, and J. Siméon. Highly distributed XQuery with DXQ. In
SIGMOD, pages 1159–1161, New York, NY, USA, 2007. ACM.

[75] D. Florescu, A. Grünhagen, and D. Kossmann. XL: an XML programming language for web service specifi-
cation and composition. In WWW, pages 65–76, May 2002.

[76] J. Flum, M. Frick, and M. Grohe. Query evaluation via tree-decompositions. JACM, 49(6):716–752, 2002.

[77] G. Fourny, D. Kossmann, T. Kraska, M. Pilman, and D. Florescu. XQuery in the browser. In SIGMOD, pages
1337–1340, New York, NY, USA, 2008. ACM.

[78] G. Fourny, M. Pilman, D. Florescu, D. Kossmann, T. Kraska, and D. McBeath. XQuery in the browser. In
WWW, pages 1011–1020. ACM, April 2009.

[79] L. Galanis, Y. Wang, S. R. Jeffery, and D. J. Dewitt. Locating Data Sources in Large Distributed Systems. In
VLDB, 2003.

[80] G. Gardarin, F. Sha, and Z.-H. Tang. Calibrating the Query Optimizer Cost Model of IRO-DB, an Object-
Oriented Federated Database System. In VLDB, pages 378–389, San Francisco, CA, USA, 1996. Morgan
Kaufmann Publishers Inc.

[81] G. Ghelli, K. Rose, and J. Siméon. Commutativity analysis for XML updates. TODS, 33(4):1–47, 2008.

[82] G. Gottlob, Z. Miklos, and T. Schwentick. Generalized hypertree decompositions: np-hardness and tractable
variants. In PODS, pages 13–22, New York, NY, USA, 2007. ACM.

[83] G. Gou and R. Chirkova. Efficient Algorithms for Evaluating XPath over Streams. In SIGMOD, pages 269–
280, New York, NY, USA, 2007. ACM.

[84] M. Govindaraju, A. Slominski, K. Chiu, P. Liu, R. van Engelen, and M. J. Lewis. Toward Characterizing
the Performance of SOAP Toolkits. In GRID, pages 365–372, Washington, DC, USA, 2004. IEEE Computer
Society.

[85] J. Gray and L. Lamport. Consensus on transaction commit. TODS, 31(1):133–160, 2006.

[86] S. D. Gribble, A. Y. Halevy, Z. G. Ives, M. Rodrig, and D. Suciu. What Can Peer-to-Peer Do For Databases,
and Vice Versa? In WebDB, pages 31–36, May 2001.

[87] P. Grosso and D. Weillard. XML Fragment Interchange. W3C Candidate Recommendation 12 February 2001,
February 2001.

[88] T. Grust, S. Sakr, and J. Teubner. XQuery on SQL Hosts. In VLDB, pages 252–263. VLDB Endowment,
September 2004.

[89] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, H. F. Nielsen, A. Karmarkar, and Y. Lafon. SOAP
Version 1.2 Part 1: Messaging Framework. W3C Recommendation 27 April 2007, April 2007.

[90] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, H. F. Nielsen, A. Karmarkar, and Y. Lafon. SOAP
Version 1.2 Part 2: Adjuncts. W3C Recommendation 27 APril 2007, April 2007.

[91] N. Gupta, J. R. Haritsa, and M. Ramanath. Distributed Query Processing on the Web. Technical Report TR-
1999-01, Database Systems Lab, Supercomputer Education and Research Centre, Indian Institute of Science,
Bangalore, India, 1999.

[92] N. Gupta, J. R. Haritsa, and M. Ramanath. Distributed Query Processing on the Web. In ICDE, page 84,
Washington, DC, USA, February 2000. IEEE Computer Society.

[93] A. Y. Halevy, O. Etzioni, A. Doan, Z. G. Ives, J. Madhavan, L. Mcdowell, and I. Tatarinov. Crossing the
Structure Chasm. In CIDR, January 2003.

[94] A. Y. Halevy, Z. G. Ives, P. Mork, and I. Tatarinov. Piazza: data management infrastructure for semantic web
applications. In WWW, 2003.

[95] A. Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov. Schema Mediation in Peer Data Management Systems.
In ICDE, pages 505–516. IEEE, March 2003.



REFERENCES 173

[96] J. Hidders and P. Michiels. Avoiding Unnecessary Ordering Operations in XPath. In DBPL, volume 2921/2004
of Lecture Notes in Computer Science, pages 113–114. Springer Berlin / Heidelberg, September 2003.

[97] D. Hiemstra, H. Rode, R. van Os, and J. Flokstra. PFTijah: text search in an XML database system. In OSIR,
pages 12–17. Ecole Nationale Supérieure des Mines de Saint-Etienne, August 2006.

[98] B. D. Homayoun. Query decomposition in a distributed database system. PhD thesis, University of Connecti-
cut, Storrs, CT, USA, 1988.

[99] K. Hose, A. Roth, A. Zeitz, K.-U. Sattler, and F. Naumann. A research agenda for query processing in large-
scale peer data management systems. Inf. Syst., 33(7-8):597–610, 2008.

[100] R. Huebsch, B. N. Chun, J. M. Hellerstein, B. T. Loo, P. Maniatis, T. Roscoe, S. Shenker, I. Stoica, and A. R.
Yumerefendi. The Architecture of PIER: an Internet-Scale Query Processor. In CIDR, pages 28–43, January
2005.

[101] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and I. Stoica. Querying the Internet with
PIER. In VLDB, pages 321–332. VLDB Endowment, September 2003.

[102] M. Huijbregts, R. Ordelman, , and F. de Jong. Annotation of Heterogeneous Multimedia Content Using
Automatic Speech Recognition. In SAMT, volume 4816 of Lecture Notes in Computer Science, pages 78–90,
Berlin, December 2007. Springer Verlag.

[103] A. H. Igor Tatarinov. Efficient Query Reformulation in Peer-Data Management Systems. In SIGMOD, pages
539–550. ACM, June 2004.

[104] T. Johnsson. Lambda lifting: transforming programs to recursive equations. In FPCA, pages 190–203, New
York, NY, USA, 1985. Springer-Verlag New York, Inc.

[105] V. Josifovski and T. Risch. Query Decomposition for a Distributed Object-Oriented Mediator System. Dis-
tributed and Parallel Databases, 11(3):307–336, 2002.

[106] Y. Kambayashi and M. Yoshikawa. Query processing utilizing dependencies and horizontal decomposition.
In SIGMOD, pages 55–67, New York, NY, USA, 1983. ACM.

[107] M. Karnstedt, K. Sattler, M. Richtarsky, J. Müller, M. Hauswirth, R. Schmidt, and R. John. UniStore: Querying
a DHT-based Universal Storage. In ICDE. IEEE, April 2007.

[108] M. Karnstedt, K.-U. Sattler, M. Richtarsky, J. Müller, M. Hauswirth, R. Schmidt, and R. John. UniStore:
Querying a DHT-based Universal Storage. Technical report, LSIR, 2006.

[109] M. Kay. SAXON The XSLT and XQuery Processor. http://saxon.sourceforge.net.

[110] J. Knoop and B. Steffen. Code Motion for Explicitly Parallel Programs. ACM SIGPLAN Nottices, 34(8):13–24,
1999.

[111] C. Koch, S. Scherzinger, and M. Schmidt. XML Prefiltering as a String Matching Problem. In ICDE, April
2008.

[112] G. Koloniari and E. Pitoura. Content-Based Routing of Path Queries in Peer-to-Peer Systems. In EDBT,
volume 2992 of Lecture Notes in Computer Science, pages 29–47. Springer, March 2004.

[113] G. Koloniari and E. Pitoura. Peer-to-Peer Management of XML Data: Issues and Research Challenges. SIG-
MOD Rec., 34(2):6–17, 2005.

[114] D. Kossmann. The state of the art in distributed query processing. ACM Computing Surveys, 32(4):422–469,
2000.

[115] H. Kozankiewicz, K. Stencel, and K. Subieta. Distributed Query Optimization in the Stack-Based Approach.
In HPCC, pages 904–909. Springer Berlin / Heidelberg, October 2005.

[116] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communication of the ACM,
21(7):558–565, 1978.

[117] J. C. Lavariega and S. D. Urban. An Object Algebra Approach to Multidatabase Query Decomposition in
Donají. Distributed and Parallel Databases, 12(1):27–71, 2002.

[118] T. T. T. Le, D. D. Doan, V. C. Bhavsar, and H. Boley. A Bottom-up Strategy for Query Decomposition.
International Journal of Innovative Computing and Applications, 1(3):185–193, 2008.



174 REFERENCES

[119] E. Leclercq, M. Savonnet, M.-N. Terrasse, and K. Tétongnon. Objekt Clustering Methods and a Query De-
composition Strategy for Distributed Objekt-Based Information Systems. In DEXA, pages 781–790, London,
UK, 1999. Springer-Verlag.

[120] Y. Li, T. Özsu, and K.-L. Tan. XCube: Processing XPath Queries in a Hypercube Overlay Network. Peer-to-
Peer Networking and Applications, 2(2):128–145, June 2009.

[121] J. A. List, V. Mihajlović, G. Ramírez, A. P. de Vries, D. Hiemstra, and H. E. Blok. Tijah: Embracing informa-
tion retrieval methods in XML databases. Information Retrieval Journal, 8(4):547–570, 2005.

[122] S. Lyubka. SHTTPD: Simple HTTPD. http://shttpd.sourceforge.net.

[123] L. M. Mackinnon, D. H. Marwick, and M. H. Williams. A Model for Query Decomposition and Answer
Construction inHeterogeneous Distributed Database Systems. JIIS, 11(1):69–87, 1998.

[124] A. Malhotra, J. Melton, and N. Walsh. XQuery 1.0 and XPath 2.0 Functions and Operators. W3C Recom-
mendation 23 January 2007, January 2007.

[125] A. Marian and J. Siméon. Projecting XML Documents. In VLDB, pages 213–224. VLDB Endowment,
September 2003.

[126] V. Martins, R. Akbarinia, E. Pacitti, and P. Valduriez. Reconciliation in the APPA P2P System. In ICPADS,
pages 401–410, Washington, DC, USA, 2006. IEEE Computer Society.

[127] T. Milo, S. Abiteboul, B. Amann, O. Benjelloun, and F. D. Ngoc. Exchanging Intensional XML Data. In
SIGMOD, pages 289–300. ACM, June 2003.

[128] N. Mitra and Y. Lafon. SOAP Version 1.2 Part 0: Primer. W3C Recommendation 27 April 2007, April 2007.

[129] MonetDB/XQuery. http://monetdb.cwi.nl.

[130] A. Ng, S. Chen, and P. Greenfield. An Evaluation of Contemporary Commercial SOAP Implementation. In
AWSA, pages 64–71, April 2004.

[131] W. S. Ng, B. C. Ooi, and K.-L. Tan. BestPeer: A Self-Configurable Peer-to-Peer System. In ICDE, Los
Alamitos, CA, USA, 2002. IEEE Computer Society.

[132] W. S. Ng, B. C. Ooi, K.-L. Tan, and A. Zhou. PeerDB: a P2P-based System for Distributed Data Sharing. In
ICDE, 2003.

[133] R. A. O’Keefe and A. Trotman. The Simplest Query Language That Could Possibly Work. In INEX Workshop,
pages 167–174, 2004.

[134] N. Onose and J. Siméon. XQuery at Your Web Service. In WWW, pages 603–611, New York, NY, USA, May
2004. ACM.

[135] M. T. Özsu and P. Valduriez. Principles of distributed database systems (2nd ed.). Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1999.

[136] V. Papadimos and D. Maier. Distributed Queries without Distributed State. In WebDB, pages 95–100, June
2002.

[137] V. Papadimos, D. Maier, and K. Tufte. Distributed Query Processing and Catalogs for Peer-to-Peer Systems.
In CIDR, January 2003.

[138] E. Pitoura, S. Abiteboul, D. Pfoser, G. Samaras, and M. Vazirgiannis. DBGlobe: a service-oriented P2P system
for global computing. SIGMOD Rec., 32(3), 2003.

[139] E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF. W3C Recommendation 15 January
2008, January 2008.

[140] IBM DB2 pureXML. http://www-01.ibm.com/software/data/db2/xml/.

[141] Qizx. http://www.qizx.com.

[142] W. Rao, H. Song, and F. Ma. Querying XML Data over DHT System Using XPeer. In GCC, pages 559–566.
Springer Berlin / Heidelberg, October 2004.

[143] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A Scalable Content-Addressable Network.
In SIGCOMM, pages 161–172, New York, NY, USA, August 2001. ACM.

[144] C. Re, J. Brinkley, K. Hinshaw, and D. Suciu. Distributed XQuery. In IIWeb, pages 116–121. VLDB Endow-
ment, August 2004.



REFERENCES 175

[145] A High-Level Framework for Network-Based Resource Sharing. RFC 707, January 1976.

[146] S. Rhea, B.-G. Chun, J. Kubiatowicz, and S. Shenker. Fixing the Embarrassing Slowness of OpenDHT on
PlanetLab. In WORLDS, pages 25–30, Berkeley, CA, USA, December 2005. USENIX Association.

[147] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling Churn in a DHT. In ATEC, pages 10–10, Berkeley,
CA, USA, April 2004. USENIX Association.

[148] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker, I. Stoica, and H. Yu. OpenDHT: a
public DHT service and its uses. In SIGCOMM, 2005.

[149] J. Robie, D. Chamberlin, M. Dyck, and J. Snelson. XQuery 1.1: An XML Query Language. W3C Working
Draft 15 December 2009, December 2009.

[150] P. Rodríguez-Gianolli, A. Kementsietsidis, M. Garzetti, I. Kiringa, L. Jiang, M. Masud, R. J. Miller, and
J. Mylopoulos. Data sharing in the Hyperion peer database system. In VLDB, pages 1291–1294. VLDB
Endowment, 2005.

[151] A. Roth and F. Naumann. System P: Completeness-driven Query Answering in Peer Data Management Sys-
tems. In BTW, March 2007.

[152] A. Roth, F. Naumann, T. Hubner, and M. Schweigert. System P: Query Answering in PDMS under Limited
Resources. In IIWeb, May 2006.

[153] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object Location, and Routing for Large-
Scale Peer-to-Peer Systems. In Middleware, pages 329–350, London, UK, November 2001. Springer-Verlag.

[154] G. Ruberg and M. Mattoso. XCraft: boosting the performance of active XML materialization. In EDBT, pages
299–310, New York, NY, USA, 2008. ACM.

[155] N. Ruberg, G. Ruberg, and I. Manolescu. Towards Cost-based Optimization for Data-intensive Web Service
Computations. In SBBD, pages 283–297. UnB, 2004.

[156] C. Sartiani, P. Manghi, G. Ghelli, and G. Conforti. XPeer: A Self-Organizing XML P2P Database System. In
P2P&DB, pages 456–465. Springer Berlin / Heidelberg, March 2004.

[157] F. Scarcello, G. Greco, and N. Leone. Weighted hypertree decompositions and optimal query plans. In PODS,
pages 210–221, New York, NY, USA, 2004. ACM.

[158] R. Schenkel, G. Weikum, N. Weißenberg, and X. Wu. Federated Transaction Management with Snapshot
Isolation. In Proceedings of the 8th International Workshop on Foundations of Models and Languages for
Data and Objects - Transactions and Database Dynamics ’99, volume 1773, Dagstuhl Castle, Germany, 1999.
Springer.

[159] A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu, and R. Busse. XMark: A Benchmark for XML
Data Management. In VLDB, pages 974–985. VLDB Endowment, August 2002.

[160] F. V. Silveira and C. A. Heuser. A Two Layered Approach for Querying Integrated XML Sources. In IDEAS,
pages 3–11, Washington, DC, USA, 2007. IEEE Computer Society.

[161] G. Skobeltsyn, M. Hauswirth, and K. Aberer. Efficient Processing of XPath Queries with Structured Overlay
Networks. In ODBASE, volume 3761 of Lecture Notes in Computer Science, pages 1243–1260. Springer
Berlin / Heidelberg, October 2005.

[162] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications. In SIGCOMM, pages 149–160, New York, NY, USA, August 2001. ACM.

[163] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell, C. Staelin, and A. Yu. Mariposa: a
wide-area distributed database system. VLDB Journal, 5(1), 1996.

[164] S. Subramanian and G. Sindre. An Optimization Rule for ActiveXML Workflows. In ICWE, pages 410–418,
Berlin, Heidelberg, 2009. Springer-Verlag.

[165] S. Subramanian and G. Sindre. Improving the Performance of ActiveXML Workflows: The Formal Descrip-
tions. In SCC, pages 308–315, Washington, DC, USA, 2009. IEEE Computer Society.

[166] D. Suciu. Query Decomposition and View Maintenance for Query Languages for Unstructured Data. In
VLDB, pages 227–238, San Francisco, CA, USA, September 1996. Morgan Kaufmann Publishers Inc.

[167] D. Suciu. Distributed query evaluation on semistructured data. TODS, 27(1):1–62, 2002.



176 REFERENCES

[168] L. G. A. Sung, N. Ahmed, R. Blankco, H. Li, M. A. Soliman, and D. Hadaller. A Survey of Data Management
in Peer-to-Peer Systems. Web Data Management, CVS856(Winter 2005):1–50, 2005.

[169] M. Sydow, F. Bonchi, C. Castillo, and D. Donato. Optimising Topical Query Decomposition. In WSCD, pages
43–47, New York, NY, USA, 2009. ACM.

[170] K. Tajima and Y. Fukui. Answering XPath Queries over Networks by Sending Minimal Views. In VLDB,
pages 48–59. VLDB Endowment, August 2004.

[171] I. Tatarinov, Z. Ives, J. Madhavan, A. Halevy, D. Suciu, N. Dalvi, X. L. Dong, Y. Kadiyska, G. Miklau, and
P. Mork. The Piazza peer data management project. SIGMOD Rec., 32(3):47–52, 2003.

[172] C. Thiemann, M. Schlenker, and T. Severiens. Proposed Specification of a Distributed XML-Query Network.
CoRR, cs.DC/0309022, 2003.

[173] K. Triantis and C. J. Egyhazy. A Framework for the Study of Query Decomposition for Heterogeneous Dis-
tributed Database Management Systems. Technical report, Virginia Polytechnic Institute && State University,
Blacksburg, VA, USA, 1987.

[174] P. Valduriez and E. Pacitti. Data Management in Large-Scale P2P Systems. In VECPAR, volume 3402 of
Lecture Notes in Computer Science, pages 104–118. Springer, 2005.

[175] E. Wong and K. Youssefi. Decomposition - A Strategy for Query Processing. TODS, 1(3):223–241, 1976.

[176] XQilla. http://xqilla.sourceforge.net/.

[177] X. Xu, H. Xiang, and J. Chen. Query decomposition based on ontology mapping in data integration system.
In ICNC, pages 265–269, Washington, DC, USA, 2007. IEEE Computer Society.

[178] C. Yu and C. Chang. Distributed query processing. ACM Computing Surveys, 16(4):399–433, 1984.

[179] Y. Zhang and P. Boncz. Integrating XQuery and P2P in MonetDB/XQuery*. In EROW, volume 229 of CEUR
Workshop Proceedings. CEUR-WS.org, January 2007.

[180] Y. Zhang and P. Boncz. XRPC: Interoperable and Efficient Distributed XQuery. In VLDB, pages 99–110.
VLDB Endowment, September 2007.

[181] Y. Zhang and P. Boncz. XRPC: Distributed XQuery and Update Processing with Heterogeneous XQuery
Engines. In SIGMOD, pages 1331–1336, New York, NY, USA, 2008. ACM.

[182] Y. Zhang, A. P. de Vries, P. A. Boncz, D. Hiemstra, and R. Ordelman. StreetTiVo: Using a P2P XML Database
System to Manage Multimedia Data in Your Living Room. In APWeb/WAIM, volume 5446 of Lecture Notes
in Computer Science, pages 404–415. Springer, April 2009.

[183] Y. Zhang, N. Tang, and P. A. Boncz. Efficient Distribution of Full-Fledged XQuery. In ICDE, pages 565–576.
IEEE, March 2009.

[184] Y. Zhang, N. Tang, and P. A. Boncz. Projective Distribution of XQuery with Updates. TKDE, 2010. To appear.

[185] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Kubiatowicz. Tapestry: A Resilient
Global-scale Overlay for Service Deployment. IEEE Journal on Selected Areas in Communications, 22(1):41–
53, January 2004.

[186] D. Zhao, J. Mylopoulos, I. Kiringa, and V. Kantere. An ECA Rule Rewriting Mechanism for Peer Data
Management Systems. In EDBT, pages 1069–1078. Springer Berlin / Heidelberg, March 2006.

[187] Q. Zhu and P.-A. Larson. A Query Sampling Method of Estimating Local Cost Parameters in a Multidatabase
System. In ICDE, pages 144–153, Washington, DC, USA, 1994. IEEE Computer Society.

[188] Q. Zhu and P.-å. Larson. Solving Local Cost Estimation Problem for Global Query Optimization in Multi-
database Systems. Distrib. Parallel Databases, 6(4):373–421, 1998.



Summary

While P2P applications that provide trivial keywords search and file sharing features (such
as Kazaa, eDonkey) have gained enormous popularity in a short time, the development of
P2P applications that provide complex distributed data management and querying facilities
advances only slowly. This is because that the development of such applications is still a
highly cumbersome task, as applications have to deal with information from different data
sources. In P2P settings this set of data sources is extremely dynamic and has an enormously
large scale, thus foreseeing all possible combinations of available data sources is impractical.
This puts a high adaptivity burden on the shoulders of the application programmers.

To ease the development of data-intensive P2P applications, we envision a P2P XDBMS
that acts as a database middle-ware system. It manages dynamic collections of heteroge-
neous XML data sources (i.e., peers with different software installed) and provides a uniform
database abstraction to the application. The ultimate goal is to research which features such
a database abstraction should offer, and how it can be realized efficiently by extending and
combining existing XDBMS systems with P2P technologies.

In our quest for creating P2P XDBMS technology, we first focus on Distributed XDBMS
technology, as this area also was unexplored, with an extra requirement that the to be devel-
oped technology will serve as a building block for P2P XDBMS technology. The distinction
between Distributed and P2P technology is that in the former, users (i.e., application program-
mers) are aware of on which sites (i.e., peers) data are located. Distributed queries typically
involve specific and explicit locations where data are to be queried from. In P2P systems that
mainly target large environments where users cannot keep track which data is on which peer
and where the group membership is highly volatile (peers enter and leave continuously and
unpredictably), users are typically shielded from explicit knowledge where data is located.

In this thesis we have looked into different aspects of Distributed XDBMS including query
execution, query optimisation and transaction management. The result of this work is XRPC,
a minimal but orthogonal XQuery extension that enables efficient distributed querying of het-
erogeneous XQuery data sources. XRPC allows any XQuery expressions including the XQUF
expressions to be included in a function body and executed on an arbitrary number of (remote)
peers using an RPC mechanism. The main design and implementation criteria of XRPC are
imposed by the targeted P2P environments: interoperability, efficiency and scalability.

First, the thesis gives a formal definition of the syntax and the semantics of XRPC includ-
ing the semantics of distributed updates that follow from the use of XQUF updating functions
over XRPC. This includes the definitions of two isolation levels for read-only and updating
XRPC queries. The experiences in MonetDB/XQuery suggest that adding XRPC to exist-
ing XDBMS is easy, as shredding, serialisation and HTTP functionality are usually already
present. The work is limited to a small parser extension and stub code generation. Since
interoperability is a major goal, XRPC also comprises a SOAP-based network communica-
tion protocol SOAP XRPC. Such a SOAP protocol has the additional advantage of seamless
integration with web services and AJAX-based GUIs. The SOAP XRPC protocol supports
the concept of Bulk RPC, i.e., the execution of multiple function calls can be handled in a

177



178 SUMMARY

single message exchange. This amortises network and parsing latencies and can make XRPC
a quite efficient communication mechanism. This thesis shows that the loop-lifting technique,
which is pervasively applied in the MonetDB/XQuery system for the translation of XQuery
expressions to relational algebra, can easily generate such Bulk RPC requests.

Then, the thesis discusses various aspects of using XRPC in distributed XQuery processing
in Chapter 4, First, it shows that XRPC can be easily adopted by different XQuery engines,
such that complex P2P communication patterns can be programmed using XRPC. To enhance
adoption of XRPC, an XRPC Wrapper is described that allows any XQuery data source to
handle XRPC calls. The experiments on Saxon show that Bulk RPC enables set-oriented
optimisations, such that Bulk RPC execution of a selection function can be handled using a
join strategy. To better match the transaction semantics in databases, a deterministic update
semantics for XQUF queries is defined and the SOAP XRPC protocol is extended to guarantee
a deterministic order in distributed update scenarios. Atomic distributed commit is supported
by using a SOAP-based 2PC protocol defined by the industry standard Web Services Atomic
Transaction.

Decomposing queries to address multiple data sources is a well-studied optimisation tech-
nique in relational, object-oriented and semi-structured databases. While many of the existing
techniques can be carried over, the XML data model and the XQuery language introduce a
number of particular challenges not met elsewhere that revolve around XML node identities
and structural (rather than value-based) relationships between nodes. In Chapter 5, the the-
sis elaborates a framework for distributed execution of full-fledged XQuery (i.e., including
XQUF), focusing on the issue of providing deep-equal query decompositions, in the face of
semantic differences when (parts of) nodes are shipped across the network in XML messages.
The thesis proposes a series of decomposition techniques such as pass-by-projection and the
use of a novel runtime XML projection method for serialising XML messages, that remove
virtually all semantic problems and strongly improve performance. The thesis also defines
the semantics of updating both local and remote documents using XQUF expressions and ad-
ditional constraints that should be added to the proposed techniques to guarantee semantic
equivalence for such queries. The correctness of all proposed algorithms is formally proven
in Chapter 6.

In this thesis we have also taken a first step towards creating powerful P2P XDBMS tech-
nology that preserves the full XQuery language (+XQUF) by extending it only with a single
new construct, i.e., XRPC. The thesis proposes MonetDB/XQuery? in which DHTs can be in-
tegrated with XDBMS by adding support for a new dht:// protocol in URIs. Thus no further
XQuery extensions are required. The thesis discusses the semantics of two ways of coupling
(loose and tight) a DHT with an XDBMS, of which the latter is more complex but powerful.

The XRPC remote function execution mechanism and the ideas of MonetDB/XQuery? are
applied in a P2P Information Retrieval application called StreetTiVo. StreetTiVo enables near
real-time search in video contents by distributed and parallel execution of compute-intensive
video analysis tasks on multiple peers. Our work on the StreetTiVo application confirms
the assumption that a P2P middle-ware DBMS could ease the development of data-intensive
P2P applications. With XRPC the rather complex functionalities of StreetTiVo were quickly
implemented using just a handful of XQuery functions which in turn are executed on the
participating machines.



Samenvatting

XRPC: Efficiënte Gespreide Query Verwerking op Heterogene XQuery Systemen
Terwijl Peer-to-Peer (P2P) applicaties (bijvoorbeeld Kazaa en eDonkey) die triviale functies
aanbieden zoals het zoeken op trefwoorden en het delen van bestanden, enorm aan populariteit
hebben gewonnen in een korte tijd, lijkt de ontwikkeling van P2P applicaties die complexe
functies aanbieden, zoals het beheren en opvragen van gedistribueerde data, meer op iets
van de lange adem. De reden is dat de ontwikkeling van zulke data-intensieve applicaties
nog steeds een zeer moeilijke taak is, omdat de applicaties om moeten gaan met data die
uit veel verschillende bronnen vandaan komt. In P2P omgevingen is de complete set van
data bronnen uiterst dynamisch en heeft een enorme omvang. Het is onuitvoerbaar om alle
mogelijk combinaties van de beschikbare data-bronnen te voorspellen. Deze situatie zet een
zware last op de schouders van applicatie-ontwikkelaars.

Om het ontwikkelen van data-intensieve P2P applicaties te vereenvoudigen, voorzien we
een P2P XDBMS die de rol van een database middle-ware systeem speelt. Het P2P XDBMS
is de tussenpersoon tussen de (bovenliggende) applicaties en de (onderliggende) heterogene
XML data bronnen (d.w.z. computers waarop verschillende software programma’s zijn geïn-
stalleerd). Aan de ene kant, beheert het P2P XDBMS de dynamische verzamelingen van de
heterogene XML data-bronnen. Aan de andere kant, verbergt het P2P XDBMS de verschil-
len tussen de heterogene XML data-bronnen en voorziet de (bovenliggende) applicaties van
één abstractie van de databases. Ons ultiem doel is om te onderzoeken voor welke functies
deze gegevensbanken abstracties moeten aanbieden en hoe deze functies op een efficiënte ma-
nier gerealiseerd kunnen worden door de bestaande XDBMS systemen uit te breiden en te
combineren met P2P technologiën.

Tijdens onze zoektocht naar het creëren van P2P XDBMS technologiën hebben we ons
eerst geconcentreerd op het ontwikkelen van Gedistribueerde XDBMS technologiën, die ook
een onontgonnen gebied is. Tegelijkertijd houden we er rekening mee dat de technologiën
die we voor de Gedistribueerd XDBMSs bedenken as bouwstenen van de P2P technologiën
zouden dienen. De verschillen tussen de Gedistribueerde en P2P technologiën zijn dat, in het
eerst geval, de omvang van een systeem klein is en de samenstelling van de deelnemers van het
systeem (d.w.z. de participerende computers) heel stabiel is. De gebruikers (d.w.z. de applica-
tie programmeurs) hebben het overzicht over het hele systeem en weten op welke computers
de gegevens zijn opgeslagen. In gedistribueerde systemen bevatten de queries specifieke in-
formatie van locaties waar de data vandaan moet worden gehaald. P2P systemen daarentegen
hebben meestal zo’n enorme omvang dat het onmogelijk is voor de gebruikers om precies
bij te houden welke data waar is opgeslagen. De samenstelling van de deelnemeners is zeer
vluchtig, omdat de computers op elk willekeurig moment zich kunnen aanmelden of afmel-
den. In P2P systemen worden de gebruikers meestal afgeschermd van de exacte samenstelling
van de ondeliggende systemen.

In dit proefschrift hebben we gekeken naar verschillende aspecten in Gedistribueerde
XDBMS, inclusief het uitvoeren van queries, de optimalisatie van queries en het beheren
van transacties. Het resultaat van dit onderzoekswerk is XRPC, een minimale maar ortho-

179



180 SAMENVATTING

gonale uitbreiding van XQuery die het efficiënt en gedistribueerd opvragen van heterogene
XQuery data-bronnen mogelijk maakt. Met XRPC kan elke XQuery expressie, inclusief de
XQUF expressies, gebruikt worden in de body van een functie die vervolgens uitgevoerd kan
worden op een willekeurig aantal computers op willekeurige locaties. De meest belangrijke
ontwerp- en implementatie-voorwaarden voor XRPC zijn opgelegd door de eigenschappen
van de P2P omgevingen waarvoor XRPC uiteindelijk bedoeld is: interoperabiliteit, efficiëntie
en schaalbaarheid.

Het proefschrift begint met een formele definitie van de syntaxis en de semantiek van
XRPC, inclusief de semantiek van de gedistribueerde bijwerking van data die uit het gebruik
van XQUF updating functies over XRPC volgt. Dit omvat de definities van twee isolatie
niveaus voor read-only en updating XRPC queries. De ervaringen met MonetDB/XQuery
suggereren dat het toevoegen van XRPC aan de bestaande XDBMSs heel makkelijk is, om-
dat de functionaliteiten om XML documenten te genereren, te verwerken en te versturen (via
HTTP) gewoonlijk al beschikbaar zijn. Alleen een kleine uitbreiding van de parser en het
schrijven van de stub code was vereist. Omdat interoperabiliteit een belangrijk doel is van
XRPC, omvat XRPC ook een op SOAP gebaseerd netwerk communicatie-protocol SOAP
XRPC. Zo een op SOAP gebaseerd protocol heeft als extra voordeel dat het naadloos ge-
ïntegreerd kan worden met Web services en op AJAX gebaseerde GUIs. Het SOAP XRPC
protocol ondersteunt het zogenaamde Bulk RPC concept, wat will zeggen dat het uitvoeren
van meerdere functie-aanroepen in één uitwisseling van berichten afgehandeld kan worden.
Dit amortiseert de vertragingen die zijn veroorzaakt door de netwerk communicatie en het
parseren van berichten, waardoor XRPC een behoorlijk efficiënt communicatie mechanisme
kan zijn. Het proefschrift laat zien dat met de loop-lifting techniek – welke overal is toegepast
– in MonetDB/XQuery voor het vertalen van XQuery expressies naar de relationele algebra
het heel eenvoudig is om Bulk RPC request berichten te genereren.

Vervolgens behandelt het proefschrift verschillende aspecten van het gebruik van XRPC
in gedistribueerde verwerking van XQuery in Hoofdstuk 4. Eerst toon het aan dat XRPC
makkelijk aangenomen kan worden door verschillende XQuery systemen, zodat ingewikkelde
P2P communicatie patronen geprogrammeerd kunnen worden met XRPC. Om de toepassing
van XRPC te verhogen, bieden we een XRPC Wrapper aan die het mogelijk maakt om voor
elke XQuery data bron, XRPC aanroepen te verwerken. De experimenten op Saxon tonen
aan dat Bulk RPC set-georiënteerde optimalisaties mogelijk maakt, zodat met Bulk RPC een
select functie uitgevoerd kan worden met een join strategie die veel efficiënter is. Om de
transactie-semantiek in gegevensbanken te behouden, hebben we een deterministische update
semantiek voor XQUF queries gedefinieerd. Het SOAP XRPC protocol is uitgebreid om
een deterministische volgorde in gedistribueerde update scenario’s te garanderen. Atomaire
gedistribueerde commit is ondersteund door gebruik te maken van een SOAP gebaseerd 2PC
protocol die gedefinieerd is door de industrie standaard Web Service Atomic Transaction.

Query decompositie om meerdere data bronnen te adresseren is een goed bestudeerde
optimalisatie techniek in relationele, object-georiënteerde en semi-gestructureerde gegevens-
banken. Tewijl veel van de bestaande technieken hergebruikt kunnen worden, hebben het
XML datamodel en de XQuery taal een aantal nieuwe uitdagingen geïntroduceerd. Deze
uitdagingen draaien rondom de XML node identiteiten en structurele (in plaats van waarde-
gebaseerde) relaties tussen nodes. In Hoofdstuk 5, werkt het proefschrift een framework uit
voor het gedistribueerd uitvoeren van volwaardige XQuery (d.w.z. inclusief XQUF), gericht
op de kwestie van het verstrekken van deep-equal query decomposities, in het aanzicht van



semantische verschillen wanneer (delen van) XML nodes verscheept worden over de net-
werken in XML berichten. Het proefschrift stelt een reeks decompositie-technieken zoals
pass-by-projection en een nieuwe runtime XML projectie-methode voor voor het serialiseren
van XML berichten, die samen bijna alle semantische problemen oplossen en de prestatie van
query verwerking sterk verbeteren. Het proefschrift definieert ook de semantiek van het bij-
werken van zowel locale as remote XML documenten gebruikmakend van XQUF expressies
en de extra beperkingen die toegevoegd moeten worden aan de voorgestelde decompositie
technieken om de semantische gelijkwaardigheid van de gedecomposeerde queries te garan-
deren. De juistheid van alle voorgestelde algoritmes worden formeel bewezen in Hoofdstuk 6.

In dit proefschrift hebben we ook een eerste stap genomen in de richting van het cre-
ëren van krachtige P2P XDBMS technologieën die de volwaardige XQuery taal (+XQUF)
behouden. Het proefschrift stelt MonetDB/XQuery? voor, waarin DHTs geïntegreerd kun-
nen worden met XDBMS door het toevoegen van een nieuw dht:// protocol in URIs. Geen
verdere XQuery uitbreidingen zijn nodig. Het proefschrift bediscussieert de semantieken van
twee technieken (“loose” of “tight”) om een DHT aan een XDBMS te koppelen, waarvan de
laatste ingewikkelder maar krachtiger is.

Het mechanisme om functies uit te voeren op computers op afstand en de ideeën van
MonetDB/XQuery? zijn toegepast in een P2P Information Retrieval applicatie genaamd Street-
TiVo. StreetTiVo maakt bijna real-time zoeken in video mogelijk door gebruik te maken van
het gedistribueerd en parallel uitvoeren van reken-intensieve video-analyse-taken op meerdere
computers. Het werk dat we gedaan hebben voor de StreetTiVo applicatie bevestigt de aan-
name dat een P2P middle-ware DBMS de ontwikkeling van data-intensieve P2P applicaties
zal vereenvoudigen. Met XRPC waren de tamelijk complexe functionaliteiten van StreetTi-
Vo snel geïmplementeerd gebruikmakend van alleen een handvol XQuery functies die op hun
beurt uitgevoerd worden op de deelnemende computers.





SIKS Dissertation Series

1998
1998-1 Johan van den Akker (CWI)

DEGAS - An Active, Temporal Database of Au-
tonomous Objects

1998-2 Floris Wiesman (UM)
Information Retrieval by Graphically Browsing Meta-
Information

1998-3 Ans Steuten (TUD)
A Contribution to the Linguistic Analysis of Business
Conversations within the Language/Action Perspective

1998-4 Dennis Breuker (UM)
Memory versus Search in Games

1998-5 E.W.Oskamp (RUL)
Computerondersteuning bij Straftoemeting

1999
1999-1 Mark Sloof (VU)

Physiology of Quality Change Modelling; Automated
modelling of Quality Change of Agricultural Products

1999-2 Rob Potharst (EUR)
Classification using decision trees and neural nets

1999-3 Don Beal (UM)
The Nature of Minimax Search

1999-4 Jacques Penders (UM)
The practical Art of Moving Physical Objects

1999-5 Aldo de Moor (KUB)
Empowering Communities: A Method for the Legiti-
mate User-Driven Specification of Network Information
Systems

1999-6 Niek J.E. Wijngaards (VU)
Re-design of compositional systems

1999-7 David Spelt (UT)
Verification support for object database design

1999-8 Jacques H.J. Lenting (UM)
Informed Gambling: Conception and Analysis of a
Multi-Agent Mechanism for Discrete Reallocation.

2000
2000-1 Frank Niessink (VU)

Perspectives on Improving Software Maintenance
2000-2 Koen Holtman (TUE)

Prototyping of CMS Storage Management
2000-3 Carolien M.T. Metselaar (UvA)

Sociaal-organisatorische gevolgen van kennistechnolo-
gie; een procesbenadering en actorperspectief.

2000-4 Geert de Haan (VU)
ETAG, A Formal Model of Competence Knowledge for
User Interface Design

2000-5 Ruud van der Pol (UM)
Knowledge-based Query Formulation in Information
Retrieval.

2000-6 Rogier van Eijk (UU)
Programming Languages for Agent Communication

2000-7 Niels Peek (UU)
Decision-theoretic Planning of Clinical Patient Manage-
ment

2000-8 Veerle Coupé (EUR)
Sensitivity Analyis of Decision-Theoretic Networks

2000-9 Florian Waas (CWI)
Principles of Probabilistic Query Optimization

2000-10 Niels Nes (CWI)
Image Database Management System Design Consider-
ations, Algorithms and Architecture

2000-11 Jonas Karlsson (CWI)
Scalable Distributed Data Structures for Database Man-
agement

2001
2001-1 Silja Renooij (UU)

Qualitative Approaches to Quantifying Probabilistic
Networks

2001-2 Koen Hindriks (UU)
Agent Programming Languages: Programming with
Mental Models

2001-3 Maarten van Someren (UvA)
Learning as problem solving

2001-4 Evgueni Smirnov (UM)
Conjunctive and Disjunctive Version Spaces with
Instance-Based Boundary Sets

2001-5 Jacco van Ossenbruggen (VU)
Processing Structured Hypermedia: A Matter of Style

2001-6 Martijn van Welie (VU)
Task-based User Interface Design

2001-7 Bastiaan Schonhage (VU)
Diva: Architectural Perspectives on Information Visual-
ization

2001-8 Pascal van Eck (VU)
A Compositional Semantic Structure for Multi-Agent
Systems Dynamics.

2001-9 Pieter Jan ’t Hoen (RUL)
Towards Distributed Development of Large Object-
Oriented Models, Views of Packages as Classes

2001-10 Maarten Sierhuis (UvA)
Modeling and Simulating Work Practice BRAHMS: a
multiagent modeling and simulation language for work
practice analysis and design

2001-11 Tom M. van Engers (VUA)
Knowledge Management: The Role of Mental Models
in Business Systems Design



2002
2002-01 Nico Lassing (VU)

Architecture-Level Modifiability Analysis
2002-02 Roelof van Zwol (UT)

Modelling and searching web-based document collec-
tions

2002-03 Henk Ernst Blok (UT)
Database Optimization Aspects for Information Re-
trieval

2002-04 Juan Roberto Castelo Valdueza (UU)
The Discrete Acyclic Digraph Markov Model in Data
Mining

2002-05 Radu Serban (VU)
The Private Cyberspace Modeling Electronic Environ-
ments inhabited by Privacy-concerned Agents

2002-06 Laurens Mommers (UL)
Applied legal epistemology; Building a knowledge-
based ontology of the legal domain

2002-07 Peter Boncz (CWI)
Monet: A Next-Generation DBMS Kernel For Query-
Intensive Applications

2002-08 Jaap Gordijn (VU)
Value Based Requirements Engineering: Exploring In-
novative E-Commerce Ideas

2002-09 Willem-Jan van den Heuvel(KUB)
Integrating Modern Business Applications with Objecti-
fied Legacy Systems

2002-10 Brian Sheppard (UM)
Towards Perfect Play of Scrabble

2002-11 Wouter C.A. Wijngaards (VU)
Agent Based Modelling of Dynamics: Biological and
Organisational Applications

2002-12 Albrecht Schmidt (Uva)
Processing XML in Database Systems

2002-13 Hongjing Wu (TUE)
A Reference Architecture for Adaptive Hypermedia Ap-
plications

2002-14 Wieke de Vries (UU)
Agent Interaction: Abstract Approaches to Modelling,
Programming and Verifying Multi-Agent Systems

2002-15 Rik Eshuis (UT)
Semantics and Verification of UML Activity Diagrams
for Workflow Modelling

2002-16 Pieter van Langen (VU)
The Anatomy of Design: Foundations, Models and Ap-
plications

2002-17 Stefan Manegold (UvA)
Understanding, Modeling, and Improving Main-
Memory Database Performance

2003
2003-01 Heiner Stuckenschmidt (VU)

Ontology-Based Information Sharing in Weakly Struc-
tured Environments

2003-02 Jan Broersen (VU)
Modal Action Logics for Reasoning About Reactive
Systems

2003-03 Martijn Schuemie (TUD)
Human-Computer Interaction and Presence in Virtual
Reality Exposure Therapy

2003-04 Milan Petković (UT)
Content-Based Video Retrieval Supported by Database
Technology

2003-05 Jos Lehmann (UvA)
Causation in Artificial Intelligence and Law - A mod-
elling approach

2003-06 Boris van Schooten (UT)
Development and specification of virtual environments

2003-07 Machiel Jansen (UvA)
Formal Explorations of Knowledge Intensive Tasks

2003-08 Yongping Ran (UM)
Repair Based Scheduling

2003-09 Rens Kortmann (UM)
The resolution of visually guided behaviour

2003-10 Andreas Lincke (UvT)
Electronic Business Negotiation: Some experimental
studies on the interaction between medium, innovation
context and culture

2003-11 Simon Keizer (UT)
Reasoning under Uncertainty in Natural Language Dia-
logue using Bayesian Networks

2003-12 Roeland Ordelman (UT)
Dutch speech recognition in multimedia information re-
trieval

2003-13 Jeroen Donkers (UM)
Nosce Hostem - Searching with Opponent Models

2003-14 Stijn Hoppenbrouwers (KUN)
Freezing Language: Conceptualisation Processes across
ICT-Supported Organisations

2003-15 Mathijs de Weerdt (TUD)
Plan Merging in Multi-Agent Systems

2003-16 Menzo Windhouwer (CWI)
Feature Grammar Systems - Incremental Maintenance
of Indexes to Digital Media Warehouses

2003-17 David Jansen (UT)
Extensions of Statecharts with Probability, Time, and
Stochastic Timing

2003-18 Levente Kocsis (UM)
Learning Search Decisions

2004
2004-01 Virginia Dignum (UU)

A Model for Organizational Interaction: Based on
Agents, Founded in Logic

2004-02 Lai Xu (UvT)
Monitoring Multi-party Contracts for E-business

2004-03 Perry Groot (VU)
A Theoretical and Empirical Analysis of Approximation
in Symbolic Problem Solving

2004-04 Chris van Aart (UvA)
Organizational Principles for Multi-Agent Architectures

2004-05 Viara Popova (EUR)
Knowledge discovery and monotonicity

2004-06 Bart-Jan Hommes (TUD)
The Evaluation of Business Process Modeling Tech-
niques

2004-07 Elise Boltjes (UM)
Voorbeeldig onderwijs; voorbeeldgestuurd onderwijs,
een opstap naar abstract denken, vooral voor meisjes

2004-08 Joop Verbeek(UM)
Politie en de Nieuwe Internationale politiële gegeven-
suitwisseling en digitale expertise

2004-09 Martin Caminada (VU)
For the Sake of the Argument; explorations into
argument-based reasoning



2004-10 Suzanne Kabel (UvA)
Knowledge-rich indexing of learning-objects

2004-11 Michel Klein (VU)
Change Management for Distributed Ontologies

2004-12 The Duy Bui (UT)
Creating emotions and facial expressions for embodied
agents

2004-13 Wojciech Jamroga (UT)
Using Multiple Models of Reality: On Agents who
Know how to Play

2004-14 Paul Harrenstein (UU)
Logic in Conflict. Logical Explorations in Strategic
Equilibrium

2004-15 Arno Knobbe (UU)
Multi-Relational Data Mining

2004-16 Federico Divina (VU)
Hybrid Genetic Relational Search for Inductive Learn-
ing

2004-17 Mark Winands (UM)
Informed Search in Complex Games

2004-18 Vania Bessa Machado (UvA)
Supporting the Construction of Qualitative Knowledge
Models

2004-19 Thijs Westerveld (UT)
Using generative probabilistic models for multimedia
retrieval

2004-20 Madelon Evers (Nyenrode)
Learning from Design: facilitating multidisciplinary de-
sign teams

2005
2005-01 Floor Verdenius (UvA)

Methodological Aspects of Designing Induction-Based
Applications

2005-02 Erik van der Werf (UM))
AI techniques for the game of Go

2005-03 Franc Grootjen (RUN)
A Pragmatic Approach to the Conceptualisation of Lan-
guage

2005-04 Nirvana Meratnia (UT)
Towards Database Support for Moving Object data

2005-05 Gabriel Infante-Lopez (UvA)
Two-Level Probabilistic Grammars for Natural Lan-
guage Parsing

2005-06 Pieter Spronck (UM)
Adaptive Game AI

2005-07 Flavius Frasincar (TUE)
Hypermedia Presentation Generation for Semantic Web
Information Systems

2005-08 Richard Vdovjak (TUE)
A Model-driven Approach for Building Distributed
Ontology-based Web Applications

2005-09 Jeen Broekstra (VU)
Storage, Querying and Inferencing for Semantic Web
Languages

2005-10 Anders Bouwer (UvA)
Explaining Behaviour: Using Qualitative Simulation in
Interactive Learning Environments

2005-11 Elth Ogston (VU)
Agent Based Matchmaking and Clustering - A Decen-
tralized Approach to Search

2005-12 Csaba Boer (EUR)
Distributed Simulation in Industry

2005-13 Fred Hamburg (UL)
Een Computermodel voor het Ondersteunen van Eu-
thanasiebeslissingen

2005-14 Borys Omelayenko (VU)
Web-Service configuration on the Semantic Web; Ex-
ploring how semantics meets pragmatics

2005-15 Tibor Bosse (VU)
Analysis of the Dynamics of Cognitive Processes

2005-16 Joris Graaumans (UU)
Usability of XML Query Languages

2005-17 Boris Shishkov (TUD)
Software Specification Based on Re-usable Business
Components

2005-18 Danielle Sent (UU)
Test-selection strategies for probabilistic networks

2005-19 Michel van Dartel (UM)
Situated Representation

2005-20 Cristina Coteanu (UL)
Cyber Consumer Law, State of the Art and Perspectives

2005-21 Wijnand Derks (UT)
Improving Concurrency and Recovery in Database Sys-
tems by Exploiting Application Semantics

2006
2006-01 Samuil Angelov (TUE)

Foundations of B2B Electronic Contracting
2006-02 Cristina Chisalita (VU)

Contextual issues in the design and use of information
technology in organizations

2006-03 Noor Christoph (UvA)
The role of metacognitive skills in learning to solve
problems

2006-04 Marta Sabou (VU)
Building Web Service Ontologies

2006-05 Cees Pierik (UU)
Validation Techniques for Object-Oriented Proof Out-
lines

2006-06 Ziv Baida (VU)
Software-aided Service Bundling - Intelligent Methods
& Tools for Graphical Service Modeling

2006-07 Marko Smiljanic (UT)
XML schema matching – balancing efficiency and ef-
fectiveness by means of clustering

2006-08 Eelco Herder (UT)
Forward, Back and Home Again - Analyzing User Be-
havior on the Web

2006-09 Mohamed Wahdan (UM)
Automatic Formulation of the Auditor’s Opinion

2006-10 Ronny Siebes (VU)
Semantic Routing in Peer-to-Peer Systems

2006-11 Joeri van Ruth (UT)
Flattening Queries over Nested Data Types

2006-12 Bert Bongers (VU)
Interactivation - Towards an e-cology of people, our
technological environment, and the arts

2006-13 Henk-Jan Lebbink (UU)
Dialogue and Decision Games for Information Exchang-
ing Agents

2006-14 Johan Hoorn (VU)
Software Requirements: Update, Upgrade, Redesign -
towards a Theory of Requirements Change

2006-15 Rainer Malik (UU)
CONAN: Text Mining in the Biomedical Domain

2006-16 Carsten Riggelsen (UU)
Approximation Methods for Efficient Learning of
Bayesian Networks



2006-17 Stacey Nagata (UU)
User Assistance for Multitasking with Interruptions on a
Mobile Device

2006-18 Valentin Zhizhkun (UvA)
Graph transformation for Natural Language Processing

2006-19 Birna van Riemsdijk (UU)
Cognitive Agent Programming: A Semantic Approach

2006-20 Marina Velikova (UvT)
Monotone models for prediction in data mining

2006-21 Bas van Gils (RUN)
Aptness on the Web

2006-22 Paul de Vrieze (RUN)
Fundaments of Adaptive Personalisation

2006-23 Ion Juvina (UU)
Development of Cognitive Model for Navigating on the
Web

2006-24 Laura Hollink (VU)
Semantic Annotation for Retrieval of Visual Resources

2006-25 Madalina Drugan (UU)
Conditional log-likelihood MDL and Evolutionary
MCMC

2006-26 Vojkan Mihajlovic (UT)
Score Region Algebra: A Flexible Framework for Struc-
tured Information Retrieval

2006-27 Stefano Bocconi (CWI)
Vox Populi: generating video documentaries from se-
mantically annotated media repositories

2006-28 Borkur Sigurbjornsson (UvA)
Focused Information Access using XML Element Re-
trieval

2007
2007-01 Kees Leune (UvT)

Access Control and Service-Oriented Architectures
2007-02 Wouter Teepe (RUG)

Reconciling Information Exchange and Confidentiality:
A Formal Approach

2007-03 Peter Mika (VU)
Social Networks and the Semantic Web

2007-04 Jurriaan van Diggelen (UU)
Achieving Semantic Interoperability in Multi-agent Sys-
tems: a dialogue-based approach

2007-05 Bart Schermer (UL)
Software Agents, Surveillance, and the Right to Privacy:
a Legislative Framework for Agent-enabled Surveil-
lance

2007-06 Gilad Mishne (UvA)
Applied Text Analytics for Blogs

2007-07 Natasa Jovanović (UT)
To Whom It May Concern - Addressee Identification in
Face-to-Face Meetings

2007-08 Mark Hoogendoorn (VU)
Modeling of Change in Multi-Agent Organizations

2007-09 David Mobach (VU)
Agent-Based Mediated Service Negotiation

2007-10 Huib Aldewereld (UU)
Autonomy vs. Conformity: an Institutional Perspective
on Norms and Protocols

2007-11 Natalia Stash (TUE)
Incorporating Cognitive/Learning Styles in a General-
Purpose Adaptive Hypermedia System

2007-12 Marcel van Gerven (RUN)
Bayesian Networks for Clinical Decision Support: A
Rational Approach to Dynamic Decision-Making under
Uncertainty

2007-13 Rutger Rienks (UT)
Meetings in Smart Environments; Implications of Pro-
gressing Technology

2007-14 Niek Bergboer (UM)
Context-Based Image Analysis

2007-15 Joyca Lacroix (UM)
NIM: a Situated Computational Memory Model

2007-16 Davide Grossi (UU)
Designing Invisible Handcuffs. Formal investigations in
Institutions and Organizations for Multi-agent Systems

2007-17 Theodore Charitos (UU)
Reasoning with Dynamic Networks in Practice

2007-18 Bart Orriens (UvT)
On the development an management of adaptive busi-
ness collaborations

2007-19 David Levy (UM)
Intimate relationships with artificial partners

2007-20 Slinger Jansen (UU)
Customer Configuration Updating in a Software Supply
Network

2007-21 Karianne Vermaas (UU)
Fast diffusion and broadening use: A research on resi-
dential adoption and usage of broadband internet in the
Netherlands between 2001 and 2005

2007-22 Zlatko Zlatev (UT)
Goal-oriented design of value and process models from
patterns

2007-23 Peter Barna (TUE)
Specification of Application Logic in Web Information
Systems

2007-24 Georgina Ramírez Camps (CWI)
Structural Features in XML Retrieval

2007-25 Joost Schalken (VU)
Empirical Investigations in Software Process Improve-
ment

2008
2008-01 Katalin Boer-Sorbán (EUR)

Agent-Based Simulation of Financial Markets: A mod-
ular, continuous-time approach

2008-02 Alexei Sharpanskykh (VU)
On Computer-Aided Methods for Modeling and Analy-
sis of Organizations

2008-03 Vera Hollink (UvA)
Optimizing hierarchical menus: a usage-based approach

2008-04 Ander de Keijzer (UT)
Management of Uncertain Data - towards unattended in-
tegration

2008-05 Bela Mutschler (UT)
Modeling and simulating causal dependencies on
process-aware information systems from a cost perspec-
tive

2008-06 Arjen Hommersom (RUN)
On the Application of Formal Methods to Clinical
Guidelines, an Artificial Intelligence Perspective

2008-07 Peter van Rosmalen (OU)
Supporting the tutor in the design and support of adap-
tive e-learning

2008-08 Janneke Bolt (UU)
Bayesian Networks: Aspects of Approximate Inference



2008-09 Christof van Nimwegen (UU)
The paradox of the guided user: assistance can be
counter-effective

2008-10 Wauter Bosma (UT)
Discourse oriented summarization

2008-11 Vera Kartseva (VU)
Designing Controls for Network Organizations: A
Value-Based Approach

2008-12 Jozsef Farkas (RUN)
A Semiotically Oriented Cognitive Model of Knowledge
Representation

2008-13 Caterina Carraciolo (UvA)
Topic Driven Access to Scientific Handbooks

2008-14 Arthur van Bunningen (UT)
Context-Aware Querying; Better Answers with Less Ef-
fort

2008-15 Martijn van Otterlo (UT)
The Logic of Adaptive Behavior: Knowledge Represen-
tation and Algorithms for the Markov Decision Process
Framework in First-Order Domains.

2008-16 Henriette van Vugt (VU)
Embodied agents from a user’s perspective

2008-17 Martin Op ’t Land (TUD)
Applying Architecture and Ontology to the Splitting and
Allying of Enterprises

2008-18 Guido de Croon (UM)
Adaptive Active Vision

2008-19 Henning Rode (UT)
From Document to Entity Retrieval: Improving Preci-
sion and Performance of Focused Text Search

2008-20 Rex Arendsen (UvA)
Geen bericht, goed bericht. Een onderzoek naar de ef-
fecten van de introductie van elektronisch berichtenver-
keer met de overheid op de administratieve lasten van
bedrijven.

2008-21 Krisztian Balog (UvA)
People Search in the Enterprise

2008-22 Henk Koning (UU)
Communication of IT-Architecture

2008-23 Stefan Visscher (UU)
Bayesian network models for the management of
ventilator-associated pneumonia

2008-24 Zharko Aleksovski (VU)
Using background knowledge in ontology matching

2008-25 Geert Jonker (UU)
Efficient and Equitable Exchange in Air Traffic Manage-
ment Plan Repair using Spender-signed Currency

2008-26 Marijn Huijbregts (UT)
Segmentation, Diarization and Speech Transcription:
Surprise Data Unraveled

2008-27 Hubert Vogten (OU)
Design and Implementation Strategies for IMS Learning
Design

2008-28 Ildiko Flesch (RUN)
On the Use of Independence Relations in Bayesian Net-
works

2008-29 Dennis Reidsma (UT)
Annotations and Subjective Machines - Of Annotators,
Embodied Agents, Users, and Other Humans

2008-30 Wouter van Atteveldt (VU)
Semantic Network Analysis: Techniques for Extracting,
Representing and Querying Media Content

2008-31 Loes Braun (UM)
Pro-Active Medical Information Retrieval

2008-32 Trung H. Bui (UT)
Toward Affective Dialogue Management using Partially
Observable Markov Decision Processes

2008-33 Frank Terpstra (UvA)
Scientific Workflow Design; theoretical and practical is-
sues

2008-34 Jeroen de Knijf (UU)
Studies in Frequent Tree Mining

2008-35 Ben Torben Nielsen (UvT)
Dendritic morphologies: function shapes structure

2009
2009-01 Rasa Jurgelenaite (RUN)

Symmetric Causal Independence Models
2009-02 Willem Robert van Hage (VU)

Evaluating Ontology-Alignment Techniques
2009-03 Hans Stol (UvT)

A Framework for Evidence-based Policy Making Using
IT

2009-04 Josephine Nabukenya (RUN)
Improving the Quality of Organisational Policy Making
using Collaboration Engineering

2009-05 Sietse Overbeek (RUN)
Bridging Supply and Demand for Knowledge Intensive
Tasks - Based on Knowledge, Cognition, and Quality

2009-06 Muhammad Subianto (UU)
Understanding Classification

2009-07 Ronald Poppe (UT)
Discriminative Vision-Based Recovery and Recognition
of Human Motion

2009-08 Volker Nannen (VU)
Evolutionary Agent-Based Policy Analysis in Dynamic
Environments

2009-09 Benjamin Kanagwa (RUN)
Design, Discovery and Construction of Service-oriented
Systems

2009-10 Jan Wielemaker (UvA)
Logic programming for knowledge-intensive interactive
applications

2009-11 Alexander Boer (UvA)
Legal Theory, Sources of Law & the Semantic Web

2009-12 Peter Massuthe (TUE, Humboldt-Universitaet zu
Berlin)
Operating Guidelines for Services

2009-13 Steven de Jong (UM)
Fairness in Multi-Agent Systems

2009-14 Maksym Korotkiy (VU)
From ontology-enabled services to service-enabled on-
tologies (making ontologies work in e-science with
ONTO-SOA)

2009-15 Rinke Hoekstra (UvA)
Ontology Representation - Design Patterns and Ontolo-
gies that Make Sense

2009-16 Fritz Reul (UvT)
New Architectures in Computer Chess

2009-17 Laurens van der Maaten (UvT)
Feature Extraction from Visual Data

2009-18 Fabian Groffen (CWI)
Armada, an Evolving Database System

2009-19 Valentin Robu (CWI)
Modeling Preferences, Strategic Reasoning and Collab-
oration in Agent-Mediated Electronic Markets

2009-20 Bob van der Vecht (UU)
Adjustable Autonomy: Controling Influences on Deci-
sion Making

2009-21 Stijn Vanderlooy (UM)
Ranking and Reliable Classification

2009-22 Pavel Serdyukov (UT)
Search For Expertise: Going beyond direct evidence

2009-23 Peter Hofgesang (VU)
Modelling Web Usage in a Changing Environment



2009-24 Annerieke Heuvelink (VUA)
Cognitive Models for Training Simulations

2009-25 Alex van Ballegooij (CWI)
RAM: Array Database Management through Relational
Mapping

2009-26 Fernando Koch (UU)
An Agent-Based Model for the Development of Intelli-
gent Mobile Services

2009-27 Christian Glahn (OU)
Contextual Support of social Engagement and Reflec-
tion on the Web

2009-28 Sander Evers (UT)
Sensor Data Management with Probabilistic Models

2009-29 Stanislav Pokraev (UT)
Model-Driven Semantic Integration of Service-Oriented
Applications

2009-30 Marcin Żukowski (CWI)
Balancing vectorized query execution with bandwidth-
optimized storage

2009-31 Sofiya Katrenko (UVA)
A Closer Look at Learning Relations from Text

2009-32 Rik Farenhorst (VU) and Remco de Boer (VU)
Architectural Knowledge Management: Supporting Ar-
chitects and Auditors

2009-33 Khiet Truong (UT)
How Does Real Affect Affect Affect Recognition In
Speech?

2009-34 Inge van de Weerd (UU)
Advancing in Software Product Management: An Incre-
mental Method Engineering Approach

2009-35 Wouter Koelewijn (UL)
Privacy en Politiegegevens; Over geautomatiseerde nor-
matieve informatie-uitwisseling

2009-36 Marco Kalz (OUN)
Placement Support for Learners in Learning Networks

2009-37 Hendrik Drachsler (OUN)
Navigation Support for Learners in Informal Learning
Networks

2009-38 Riina Vuorikari (OU)
Tags and self-organisation: a metadata ecology for
learning resources in a multilingual context

2009-39 Christian Stahl (TUE, Humboldt-Universitaet zu Berlin)
Service Substitution – A Behavioral Approach Based on
Petri Nets

2009-40 Stephan Raaijmakers (UvT)
Multinomial Language Learning: Investigations into the
Geometry of Language

2009-41 Igor Berezhnyy (UvT)
Digital Analysis of Paintings

2009-42 Toine Bogers
Recommender Systems for Social Bookmarking

2009-43 Virginia Nunes Leal Franqueira (UT)
Finding Multi-step Attacks in Computer Networks using
Heuristic Search and Mobile Ambients

2009-44 Roberto Santana Tapia (UT)
Assessing Business-IT Alignment in Networked Orga-
nizations

2009-45 Jilles Vreeken (UU)
Making Pattern Mining Useful

2009-46 Loredana Afanasiev (UvA)
Querying XML: Benchmarks and Recursion

2010
2010-01 Matthijs van Leeuwen (UU)

Patterns that Matter
2010-02 Ingo Wassink (UT)

Work flows in Life Science
2010-03 Joost Geurts (CWI)

A Document Engineering Model and Processing Frame-
work for Multimedia documents

2010-04 Olga Kulyk (UT)
Do You Know What I Know? Situational Awareness of
Co-located Teams in Multidisplay Environments

2010-05 Claudia Hauff (UT)
Predicting the Effectiveness of Queries and Retrieval
Systems

2010-06 Sander Bakkes (UvT)
Rapid Adaptation of Video Game AI

2010-07 Wim Fikkert (UT)
A Gesture interaction at a Distance

2010-08 Krzysztof Siewicz (UL)
Towards an Improved Regulatory Framework of Free
Software. Protecting user freedoms in a world of soft-
ware communities and eGovernments

2010-09 Hugo Kielman (UL)
A Politiele gegevensverwerking en Privacy, Naar een ef-
fectieve waarborging

2010-10 Rebecca Ong (UL)
Mobile Communication and Protection of Children

2010-11 Adriaan Ter Mors (TUD)
The world according to MARP: Multi-Agent Route
Planning

2010-12 Susan van den Braak (UU)
Sensemaking software for crime analysis

2010-13 Gianluigi Folino (RUN)
High Performance Data Mining using Bio-inspired tech-
niques

2010-14 Sander van Splunter (VU)
Automated Web Service Reconfiguration

2010-15 Lianne Bodenstaff (UT)
Managing Dependency Relations in Inter-
Organizational Models

2010-16 Sicco Verwer (TUD)
Efficient Identification of Timed Automata, theory and
practice

2010-17 Spyros Kotoulas (VU)
Scalable Discovery of Networked Resources: Algo-
rithms, Infrastructure, Applications

2010-18 Charlotte Gerritsen (VU)
Caught in the Act: Investigating Crime by Agent-Based
Simulation

2010-19 Henriette Cramer (UvA)
People’s Responses to Autonomous and Adaptive Sys-
tems

2010-20 Ivo Swartjes (UT)
Whose Story Is It Anyway? How Improv Informs
Agency and Authorship of Emergent Narrative

2010-21 Harold van Heerde (UT)
Privacy-aware data management by means of data
degradation

2010-22 Michiel Hildebrand (CWI)
End-user Support for Access to Heterogeneous Linked
Data

2010-23 Bas Steunebrink (UU)
The Logical Structure of Emotions

2010-24 Dmytro Tykhonov
Designing Generic and Efficient Negotiation Strategies

2010-25 Zulfiqar Ali Memon (VU)
Modelling Human-Awareness for Ambient Agents: A
Human Mindreading Perspective

2010-26 Ying Zhang (CWI)
XRPC: Efficient Distributed Query Processing on Het-
erogeneous XQuery Engines


